1
|
Wu C, Zhu J, Zhang B, Shi H, Zhang H, Yuan S, Yin Y, Chen G, Chen C. Efficient pH-universal aqueous supercapacitors enabled by an azure C-decorated N-doped graphene aerogel. J Colloid Interface Sci 2023; 650:1871-1880. [PMID: 37517187 DOI: 10.1016/j.jcis.2023.07.142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/15/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
Current aqueous supercapacitors (SCs) possess the relative low energy density, and there is therefore widespread interest in cost-effective fabrication of capacitive materials with promoted specific capacitance and/or broadened voltage window. Here, a redox-active azure C-decorated N-doped graphene aerogel (AC - NGA) is fabricated using a simple hydrothermal self-assembly method through strong noncovalent π-π interaction. AC - NGA highlights an excellent charge storage performance (a high 591F g-1 gravimetric capacitance under a current density of 1.0 A g-1 and ultrahigh voltage window of 2.3 V) under pH-universal conditions. The capacitive contribution of charge storage is 91.7%, exceeding or comparable to those of the best pseudocapacitors known. Furthermore, a symmetric AC - NGA//AC - NGA device realizes high energy and power densities (15.2-60.2 Wh kg-1 at 650-23,000 W kg-1) and excellent cycling stability in acidic, neutral, and basic aqueous solutions. This work offers a cost-effective strategy to combine redox dye molecules with heteroatom-doped graphene aerogel for building green efficient pH-universal aqueous supercapacitors.
Collapse
Affiliation(s)
- Chenghan Wu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, Jiangsu, PR China
| | - Jiawan Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, Jiangsu, PR China
| | - Buyuan Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, Jiangsu, PR China
| | - Hucheng Shi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, Jiangsu, PR China
| | - Hui Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, Jiangsu, PR China
| | - Saisai Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, Jiangsu, PR China
| | - Yu Yin
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, Jiangsu, PR China
| | - Guangchun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, Jiangsu, PR China
| | - Chuanxiang Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, Jiangsu, PR China.
| |
Collapse
|
2
|
Wijayanti SD, Tsvik L, Haltrich D. Recent Advances in Electrochemical Enzyme-Based Biosensors for Food and Beverage Analysis. Foods 2023; 12:3355. [PMID: 37761066 PMCID: PMC10529900 DOI: 10.3390/foods12183355] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Food analysis and control are crucial aspects in food research and production in order to ensure quality and safety of food products. Electrochemical biosensors based on enzymes as the bioreceptors are emerging as promising tools for food analysis because of their high selectivity and sensitivity, short analysis time, and high-cost effectiveness in comparison to conventional methods. This review provides the readers with an overview of various electrochemical enzyme-based biosensors in food analysis, focusing on enzymes used for different applications in the analysis of sugars, alcohols, amino acids and amines, and organic acids, as well as mycotoxins and chemical contaminants. In addition, strategies to improve the performance of enzyme-based biosensors that have been reported over the last five years will be discussed. The challenges and future outlooks for the food sector are also presented.
Collapse
Affiliation(s)
- Sudarma Dita Wijayanti
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Wien, Austria; (S.D.W.)
- Department of Food Science and Biotechnology, Brawijaya University, Malang 65145, Indonesia
| | - Lidiia Tsvik
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Wien, Austria; (S.D.W.)
| | - Dietmar Haltrich
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Wien, Austria; (S.D.W.)
| |
Collapse
|
3
|
Cruz-O’Byrne R, Gamez-Guzman A, Piraneque-Gambasica N, Aguirre-Forero S. Genomic sequencing in Colombian coffee fermentation reveals new records of yeast species. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
4
|
Zhang X, Zhao J, Wang C, Zhu L, Pan X, Liu Y, Li J, Guo X, Chen D. Measurement of sucrose in beverages using a blood glucose meter with cascade-catalysis enzyme particle. Food Chem 2023; 398:133951. [DOI: 10.1016/j.foodchem.2022.133951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022]
|
5
|
Lara-Cruz GA, Jaramillo-Botero A. Molecular Level Sucrose Quantification: A Critical Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:9511. [PMID: 36502213 PMCID: PMC9740140 DOI: 10.3390/s22239511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Sucrose is a primary metabolite in plants, a source of energy, a source of carbon atoms for growth and development, and a regulator of biochemical processes. Most of the traditional analytical chemistry methods for sucrose quantification in plants require sample treatment (with consequent tissue destruction) and complex facilities, that do not allow real-time sucrose quantification at ultra-low concentrations (nM to pM range) under in vivo conditions, limiting our understanding of sucrose roles in plant physiology across different plant tissues and cellular compartments. Some of the above-mentioned problems may be circumvented with the use of bio-compatible ligands for molecular recognition of sucrose. Nevertheless, problems such as the signal-noise ratio, stability, and selectivity are some of the main challenges limiting the use of molecular recognition methods for the in vivo quantification of sucrose. In this review, we provide a critical analysis of the existing analytical chemistry tools, biosensors, and synthetic ligands, for sucrose quantification and discuss the most promising paths to improve upon its limits of detection. Our goal is to highlight the criteria design need for real-time, in vivo, highly sensitive and selective sucrose sensing capabilities to enable further our understanding of living organisms, the development of new plant breeding strategies for increased crop productivity and sustainability, and ultimately to contribute to the overarching need for food security.
Collapse
Affiliation(s)
| | - Andres Jaramillo-Botero
- Omicas Alliance, Pontificia Universidad Javeriana, Cali 760031, Colombia
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
6
|
Portillo OR, Arévalo AC. Coffee's carbohydrates. A critical review of scientific literature. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.03.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Only two species have gained economic importance in coffee production: Coffea arabica L. (Arabica coffee) & Coffea canephora Pierre ex A. Froehner var. Robusta, with 65 and 35% of world production attributed to C. arabica http://wsx5customurl.comL. & C. canephora P. respectively. In general, it is estimated that 6 mt of fresh and ripe fruits produce approximately 1 mt of raw and dry grains. The grain endosperm is mainly composed of cellulose, hemicelluloses, proteins, minerals and lipids, but starch and tannins are absent. However, the seed's chemical composition of C. arabica and C. canephora, before roasting, differs concerning their primary and secondary metabolites content, which serve as precursors for the synthesis of volatile compounds during the roasting process. For this reason, there are marked organoleptic differences between both species' roasted and ground grain. However, the evidence suggests that such differences can also be attributed to other factors since coffees grown in cool, highland areas generally have better sensory attributes than their counterparts grown in hot, lowland areas. It has been speculated that environmental conditions in cool, highland areas induce the slow accumulation of primary and secondary metabolites during the endosperm development resulting in sensorial differences after roasting. This essay focuses on the study of coffee beans' carbohydrates (primary metabolites) before and after roasting, their influence on cup quality, biosynthesis and differences linked to the involved species, their metabolism, solubility and extraction, as well as a discussion on the analytical techniques used for its determination.
Keywords: sucrose synthase, sucrose phosphate phosphatase, sucrose phosphate synthase, aploplasm, cytoplasm, Manan synthase, Galactosyl transferase.
Collapse
Affiliation(s)
- Ostilio R. Portillo
- Faculty of Engineering, National Autonomous University of Honduras (UNAH), Tegucigalpa, Honduras
| | - Ana C. Arévalo
- Faculty of Chemistry & Pharmacy, National Autonomous University of Honduras (UNAH), Tegucigalpa, Honduras
| |
Collapse
|
7
|
De Rosso M, Lonzarich V, Navarini L, Flamini R. Identification of new glycosidic terpenols and norisoprenoids (aroma precursors) in C. arabica L. green coffee by using a high-resolution mass spectrometry database developed in grape metabolomics. Curr Res Food Sci 2022; 5:336-344. [PMID: 35198992 PMCID: PMC8841958 DOI: 10.1016/j.crfs.2022.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 11/18/2022] Open
Abstract
Grape aroma precursors have been extensively studied and many glycosidically-bound terpenols and C13-norisoprenoids were identified. Instead, these compounds were scarcely investigated in green Coffea arabica where just few glycosidic compounds were identified so far. By resorting to knowledge of glycoside aroma precursors in grape and the possibility to identify their structures using a high-resolution mass spectrometry database constructed for grape metabolomics, targeted investigation of glycoside precursors in green C. arabica from different geographical origins, was performed. High linalool hexose-pentose was found in all the investigated samples and hexosyl-pentoside derivatives of geraniol, linalooloxide and another linalool isomer, were identified. Moreover, two putative norisoprenoid glycosides were characterized. β-Damascenone was detected in the volatile fraction of the examined C. arabica coffees only after acid addition, however no signals of β-damascenone glycosides, were found. Findings suggests that this important aroma compound could form by hydrolysis and dehydration of a putative 3-hydroxy-β-damascone glycoside precursor identified for the first time in coffee. Aglycones released during the roasting process contribute to enrich the coffee aroma with their positive sensory notes and the identification of these glycosides can contribute to disclose the coffee biology including biochemical, physiological and genetic aspects. Glycoside aroma precursors in green C. arabica coffee are poorly known. A grape database was used to investigate aroma precursors in green C. arabica. Geraniol and linalooloxide glycosides were identified for first time in coffee. Linalool hexosyl-pentoside was particularly abundant in samples from Ethiopia. Putative 3-hydroxy-β-damascone and vomifoliol glycosides were characterized.
Collapse
Affiliation(s)
- Mirko De Rosso
- Council for Agricultural Research and Economics – Viticulture & Oenology (CREA-VE), Viale XXVIII Aprile 26, 31015, Conegliano (TV), Italy
| | - Valentina Lonzarich
- Aromalab illycaffè S.p.A., AREA Science Park, Padriciano 99, 34149, Trieste, Italy
| | | | - Riccardo Flamini
- Council for Agricultural Research and Economics – Viticulture & Oenology (CREA-VE), Viale XXVIII Aprile 26, 31015, Conegliano (TV), Italy
- Corresponding author.
| |
Collapse
|
8
|
Li D, Xiong Q, Liang L, Duan H. Multienzyme nanoassemblies: from rational design to biomedical applications. Biomater Sci 2021; 9:7323-7342. [PMID: 34647942 DOI: 10.1039/d1bm01106e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multienzyme nanoassemblies (MENAs) that combine the functions of several enzymes into one entity have attracted widespread research interest due to their improved enzymatic performance and great potential for multiple applications. Considerable progress has been made to design and fabricate MENAs in recent years. This review begins with an introduction of the up-to-date strategies in designing MENAs, mainly including substrate channeling, compartmentalization and control of enzyme stoichiometry. The desirable properties that endow MENAs with important applications are also discussed in detail. Then, the recent advances in utilizing MENAs in the biomedical field are reviewed, with a particular focus on biosensing, tumor therapy, antioxidant and drug delivery. Finally, the challenges and perspectives for development of versatile MENAs are summarized.
Collapse
Affiliation(s)
- Di Li
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qirong Xiong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| | - Li Liang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| |
Collapse
|
9
|
Teepoo S, Laochai T. Reusable Optical Biosensor Based on Poly (Vinyl) Alcohol - Chitosan Cryogel with Incorporated Magnetic Nanoparticles for the Determination of Sucrose in Sugar Cane and Sugar. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1968889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Siriwan Teepoo
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani, Thailand
| | - Thidarut Laochai
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani, Thailand
| |
Collapse
|
10
|
Rapid determination of sucrose and glucose in microbial fermentation and fruit juice samples using engineered multi-enzyme biosensing microchip. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Comparison of chemical and fatty acid composition of green coffee bean (Coffea arabica L.) from different geographical origins. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Li N, Dong J, Dong C, Han Y, Liu H, Du F, Nie H. Spatial Distribution of Endogenous Molecules in Coffee Beans by Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2503-2510. [PMID: 33090781 DOI: 10.1021/jasms.0c00202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mass spectrometry imaging (MSI) is a promising chemical imaging method. Among various endogenous molecules, mapping the concentration and the spatial distribution of specific compounds in the coffee bean tissue is of tremendous significance in its function research, as these compounds are critical to grading coffee beans at the molecular level, determining the geographical origin, and optimizing storage conditions of coffee beans. In this paper, we established an atmospheric pressure (AP) matrix-assisted laser desorption/ionization (MALDI) MSI method for the microscopic distribution analysis of endogenous molecules, for example, sucrose, caffeine, and caffeoylquinic acid, in the coffee bean endosperm. Experiments were done on the differences between coffee beans from eight countries. Principal component analysis (PCA) was performed using IMAGEREVEAL software. The results showed that the chemical composition and relative content of coffee beans from different origins are different. Our work provides a detection method that may be used for coffee bean quality identification, efficient use, product traceability, and product counterfeiting.
Collapse
Affiliation(s)
- Na Li
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jing Dong
- Shimadzu China Innovation Center, Beijing 100020, China
| | - Chenglong Dong
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fuyou Du
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Honggang Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Machín B, Chaves S, Ávila C, Pera LM, Chehín RN, Vera Pingitore E. Highly reusable invertase biocatalyst: Biological fibrils functionalized by photocrosslinking. Food Chem 2020; 331:127322. [PMID: 32569968 DOI: 10.1016/j.foodchem.2020.127322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 11/17/2022]
Abstract
Here we report a novel strategy for the immobilization of invertase using amyloid-like fibrils as a support. Optimal conditions to get Tyr-Tyr covalent binding between invertase and the support were determined using a photocrosslinking approach. The biological fibrils with invertase activity turn into microstructured catalysts according to electron microscopy outcomes. Thermal and storage stability as well as optimal pH and temperature of the enzyme were conserved. Moreover, the immobilized enzyme recovered by low g-force centrifugation retained 83% of its initial enzymatic activity after 15 reuse cycles. Considering that enzyme cost is the most significant part of the overall fee of enzymatic biomass conversion, the highly efficient recovery/reuse strategy described herein becomes relevant. Besides, it can also be applied to the immobilization of other enzymes for industrial biocatalysis.
Collapse
Affiliation(s)
- Belén Machín
- Instituto de Medicina Molecular y Celular Aplicada (IMMCA), SIPROSA-CONICET-UNT. Dorrego 1080, T4000NXB, San Miguel de Tucumán, Tucumán, Argentina.
| | - Silvina Chaves
- Instituto de Medicina Molecular y Celular Aplicada (IMMCA), SIPROSA-CONICET-UNT. Dorrego 1080, T4000NXB, San Miguel de Tucumán, Tucumán, Argentina.
| | - César Ávila
- Instituto de Medicina Molecular y Celular Aplicada (IMMCA), SIPROSA-CONICET-UNT. Dorrego 1080, T4000NXB, San Miguel de Tucumán, Tucumán, Argentina.
| | - Licia María Pera
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Belgrano and Caseros corner, T4001MVB, San Miguel de Tucumán, Tucumán, Argentina.
| | - Rosana Nieves Chehín
- Instituto de Medicina Molecular y Celular Aplicada (IMMCA), SIPROSA-CONICET-UNT. Dorrego 1080, T4000NXB, San Miguel de Tucumán, Tucumán, Argentina.
| | - Esteban Vera Pingitore
- Instituto de Medicina Molecular y Celular Aplicada (IMMCA), SIPROSA-CONICET-UNT. Dorrego 1080, T4000NXB, San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
14
|
A modified nanocomposite biosensor for quantitative l-glutamate detection in beef. Meat Sci 2020; 168:108185. [PMID: 32487350 DOI: 10.1016/j.meatsci.2020.108185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 03/29/2020] [Accepted: 05/08/2020] [Indexed: 11/22/2022]
Abstract
A new biosensor for detecting l-glutamate (l-Glu) in beef was developed. Firstly, a bare Au electrode was surface-modified by gold nanoparticles (Au NPs), graphene oxide (GO), and chitosan (CS) as immobilized materials, and then its surface was connected with l-glutamate oxidase (GluOx). The modified Au NPs/GO/CS electrode was characterized by scanning electron microscopy, and the formation mechanism was elaborated. The response current of the l-Glu biosensor maximized to 0.08 mA at pH 7.5 and 0.09 mA at 30 °C, with a detection range of 0.2-1.4 mM and a detection limit of 0.023 mM. The l-Glu biosensor had high accuracy, and its results linearly fitted with those of the amino acid analyzer with a coefficient of 0.996. The l-Glu biosensor had high selectivity, repeatability, and stability and detected higher l-Glu content in the cooked beef than in the raw beef.
Collapse
|
15
|
Kucherenko IS, Soldatkin OO, Dzyadevych SV, Soldatkin AP. Electrochemical biosensors based on multienzyme systems: Main groups, advantages and limitations - A review. Anal Chim Acta 2020; 1111:114-131. [PMID: 32312388 DOI: 10.1016/j.aca.2020.03.034] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/13/2022]
Abstract
In the review, the principles and main purposes of using multienzyme systems in electrochemical biosensors are analyzed. Coupling several enzymes allows an extension of the spectrum of detectable substances, an increase in the biosensor sensitivity (in some cases, by several orders of magnitude), and an improvement of the biosensor selectivity, as showed on the examples of amperometric, potentiometric, and conductometric biosensors. The biosensors based on cascade, cyclic and competitive enzyme systems are described alongside principles of function, advantages, disadvantages and practical use for real sample analyses in various application areas (food production and quality control, clinical diagnostics, environmental monitoring). The complications and restrictions regarding the development of multienzyme biosensors are evaluated. The recommendations on the reasonability of elaboration of novel multienzyme biosensors are given.
Collapse
Affiliation(s)
- I S Kucherenko
- Department of Biomolecular Electronics, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Zabolotnogo Street 150, 03148, Kyiv, Ukraine.
| | - O O Soldatkin
- Department of Biomolecular Electronics, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Zabolotnogo Street 150, 03148, Kyiv, Ukraine; Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, 01003, Kyiv, Ukraine
| | - S V Dzyadevych
- Department of Biomolecular Electronics, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Zabolotnogo Street 150, 03148, Kyiv, Ukraine; Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, 01003, Kyiv, Ukraine
| | - A P Soldatkin
- Department of Biomolecular Electronics, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Zabolotnogo Street 150, 03148, Kyiv, Ukraine; Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, 01003, Kyiv, Ukraine
| |
Collapse
|
16
|
Aksorn J, Teepoo S. Development of the simultaneous colorimetric enzymatic detection of sucrose, fructose and glucose using a microfluidic paper-based analytical device. Talanta 2020; 207:120302. [DOI: 10.1016/j.talanta.2019.120302] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 02/05/2023]
|
17
|
Shitanda I, Katagishi K, Kishiro K, Suzuki N, Nakata K, Katsumata KI, Terashima C, Hoshi Y, Itagaki M, Fujishima A. Proof of Concept of Sucrose Measurement Method that Combines Photocatalysis with Enzymatic Reaction. CHEM LETT 2019. [DOI: 10.1246/cl.190560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Isao Shitanda
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Photocatalysis International Research Center, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Kensuke Katagishi
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Photocatalysis International Research Center, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Kanako Kishiro
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Norihiro Suzuki
- Photocatalysis International Research Center, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Kazuya Nakata
- Photocatalysis International Research Center, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Ken-ichi Katsumata
- Photocatalysis International Research Center, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Chiaki Terashima
- Photocatalysis International Research Center, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yoshinao Hoshi
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Masayuki Itagaki
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Akira Fujishima
- Photocatalysis International Research Center, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|