1
|
Muti L, Nascimento LBDS, Goracci G, Detti C, Brunetti C, Bilia AR, Ferrini F, Gori A. From Waste to Value: Optimization of Ultrasound-Assisted Extraction of Anthocyanins and Flavonols from Pistacia lentiscus L. Oilcakes. Molecules 2025; 30:237. [PMID: 39860107 PMCID: PMC11767306 DOI: 10.3390/molecules30020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Pistacia lentiscus L., commonly known as the mastic tree or lentisk, is a woody Mediterranean plant revered for its ecological relevance as well as for its extensive ethnobotanical heritage. Historically, the fruits and the resin of P. lentiscus have been widely utilized in traditional medicine, underscoring its important role in local healing practices. Given these properties, this study explored an innovative approach to efficiently extract anthocyanins and flavonols from P. lentiscus oilcakes utilizing ultrasound-assisted extraction (UAE) as an alternative to conventional solvent extraction. Liquid chromatography-mass spectrometry (LC-MS) and high-performance liquid chromatography with diode-array detection (HPLC-DAD) were used to identify and quantify the anthocyanins and flavonols, revealing the successful extraction of eight distinct anthocyanins and twenty flavonols. A Fractional Factorial Design (FFD) followed by a Box-Behnken design (BBD) were applied to optimize the yield of anthocyanins and flavonols. The optimal extraction conditions found were to be an extraction time of 15 min with 70% ethanol as the solvent and a liquid-to-solid ratio of 0.012 L g-1, which resulted in a maximum extraction yield of 19.78 mg g-1 dry extract for the Total Flavonol Content and over 25.4 mg g-1 dry extract for the Total Flavonol and Anthocyanin Content. By elucidating the optimal conditions for extracting anthocyanins and flavonol glycosides, this study opens promising avenues for utilizing P. lentiscus oilcake by-products, supporting sustainable practices, and advancing the valorization of Mediterranean bio-resources for health-promoting applications.
Collapse
Affiliation(s)
- Lucrezia Muti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Sesto Fiorentino, 50019 Florence, Italy; (L.M.); (C.D.); (C.B.); (F.F.); (A.G.)
| | - Luana Beatriz dos Santos Nascimento
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Sesto Fiorentino, 50019 Florence, Italy; (L.M.); (C.D.); (C.B.); (F.F.); (A.G.)
| | - Giulia Goracci
- Department of Chemistry, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (G.G.); (A.R.B.)
| | - Cassandra Detti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Sesto Fiorentino, 50019 Florence, Italy; (L.M.); (C.D.); (C.B.); (F.F.); (A.G.)
| | - Cecilia Brunetti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Sesto Fiorentino, 50019 Florence, Italy; (L.M.); (C.D.); (C.B.); (F.F.); (A.G.)
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy, Sesto Fiorentino, 50019 Florence, Italy
| | - Anna Rita Bilia
- Department of Chemistry, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (G.G.); (A.R.B.)
| | - Francesco Ferrini
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Sesto Fiorentino, 50019 Florence, Italy; (L.M.); (C.D.); (C.B.); (F.F.); (A.G.)
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy, Sesto Fiorentino, 50019 Florence, Italy
| | - Antonella Gori
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Sesto Fiorentino, 50019 Florence, Italy; (L.M.); (C.D.); (C.B.); (F.F.); (A.G.)
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
2
|
Milia EP, Sardellitti L, Eick S. Antimicrobial Efficiency of Pistacia lentiscus L. Derivates against Oral Biofilm-Associated Diseases-A Narrative Review. Microorganisms 2023; 11:1378. [PMID: 37374880 DOI: 10.3390/microorganisms11061378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Pistacia lentiscus L. (PlL) has been used for centuries in traditional medicine. The richness in antimicrobial biomolecules of Pll derivates can represent an alternative to chemically formulated agents used against oral infections. This review summarizes the knowledge on the antimicrobial activity of PlL essential oil (EO), extracts, and mastic resin against microorganisms being of relevance in oral biofilm-associated diseases. Results demonstrated that the potential of PlL polyphenol extracts has led to increasing scientific interest. In fact, the extracts are a significantly more effective agent than the other PlL derivates. The positive findings regarding the inhibition of periodontal pathogens and C. albicans, together with the antioxidant activity and the reduction of the inflammatory responses, suggest the use of the extracts in the prevention and/or reversal of intraoral dysbiosis. Toothpaste, mouthwashes, and local delivery devices could be effective in the clinical management of these oral diseases.
Collapse
Affiliation(s)
- Egle Patrizia Milia
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
- Dental Unit, Azienda Ospedaliero-Universitaria di Sassari, 07100 Sassari, Italy
| | - Luigi Sardellitti
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
- Dental Unit, Azienda Ospedaliero-Universitaria di Sassari, 07100 Sassari, Italy
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
| |
Collapse
|
3
|
Sehaki C, Jullian N, Ayati F, Fernane F, Gontier E. A Review of Pistacia lentiscus Polyphenols: Chemical Diversity and Pharmacological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:279. [PMID: 36678991 PMCID: PMC9866577 DOI: 10.3390/plants12020279] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Pistacia lentiscus (lentisk) is a plant species of the Anacardiaceae family. It is a medicinal plant that grows wild in the Mediterranean region. This review aims to update the existing knowledge regarding P. lentiscus polyphenols by consulting references dated from 1996 to 2022. The data are organized and analyzed as follows: (i) to show the chemical diversity of phenolic products from P. lentiscus; (ii) to summarize the variability in phenolic composition and quantity; this could be attributed to plant origin, environmental conditions, phenological stage, and the polarity of the extraction solvents; (iii) to present the pharmacological properties in agreement with the traditional uses of this plant; and (iv) to demonstrate the correlation between the chemical profile and the pharmacological effect. Various compositions were observed, including phenolic acids, flavonoid glycosides, anthocyanins, catechins, and their derivatives. The biological and therapeutic potentials of lentisk extracts have been evaluated in terms of antioxidant, antimicrobial, and anti-inflammatory activities. Most of these activities are related to the phenolic composition of this plant. The content of this review will undoubtedly contribute to the choice of techniques for isolating the different bioactive molecules contained in the P. lentiscus. It is also of significance for the potential development of a micro-industrial sector based on the valorization of lentisk polyphenols.
Collapse
Affiliation(s)
- Chabha Sehaki
- BIOPI-UPJV Laboratory UMRT BioEcoAgro INRAE1158, SFR Condorcet FR CNRS 3417, UFR of Sciences, University of Picardie Jules Verne, 33 Rue Saint Leu, 80000 Amiens, France
- Laboratory of Natural Resources, University Mouloud Mammeri of Tizi-Ouzou, Tizi Ouzou 15000, Algeria
| | - Nathalie Jullian
- BIOPI-UPJV Laboratory UMRT BioEcoAgro INRAE1158, SFR Condorcet FR CNRS 3417, UFR of Sciences, University of Picardie Jules Verne, 33 Rue Saint Leu, 80000 Amiens, France
| | - Fadila Ayati
- Laboratory of Natural Resources, University Mouloud Mammeri of Tizi-Ouzou, Tizi Ouzou 15000, Algeria
| | - Farida Fernane
- Laboratory of Natural Resources, University Mouloud Mammeri of Tizi-Ouzou, Tizi Ouzou 15000, Algeria
| | - Eric Gontier
- BIOPI-UPJV Laboratory UMRT BioEcoAgro INRAE1158, SFR Condorcet FR CNRS 3417, UFR of Sciences, University of Picardie Jules Verne, 33 Rue Saint Leu, 80000 Amiens, France
| |
Collapse
|
4
|
Physicochemical Stability Enhancement of β-carotene-rich O/W Nanoemulsions using a New Natural Emulsifier Developed from Pistacia lentiscus Fruit Residue. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09766-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Solar A, Medic A, Slatnar A, Mikulic-Petkovsek M, Botta R, Rovira M, Sarraquigne JP, Silva AP, Veberic R, Stampar F, Hudina M, Bacchetta L. The Effects of the Cultivar and Environment on the Phenolic Contents of Hazelnut Kernels. PLANTS (BASEL, SWITZERLAND) 2022; 11:3051. [PMID: 36432780 PMCID: PMC9695389 DOI: 10.3390/plants11223051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Different climatic conditions are known to affect the synthesis of primary and secondary metabolites. Therefore, the phenolic contents in new growing areas could affect the quality and flavor of hazelnuts. The aim of this study was to determine the variability of the phenolic contents of the kernels in different commercial hazelnut cultivars depending on their growing area. Five cultivars ('Tonda Gentile delle Langhe', 'Merveille de Bollwiller', 'Pauetet', 'Tonda di Giffoni', and 'Barcelona' (syn. 'Fertile de Coutard')) grown in different European collection orchards were included in the study. High-performance liquid chromatography coupled with mass spectrometry was used to identify and quantify the phenolic compounds. Thirteen phenols were identified in the hazelnut kernels, including 7 flavanols, 2 hydroxybenzoic acids, 3 flavonols, and one dihydrochalcone. Catechin and procyanidin dimers were the main phenolic compounds found in the hazelnut kernels. The highest contents of catechin and total flavanols were determined in cultivars cultivated in Spain and northern Italy, and the lowest in Slovenia and France. Flavanols were the major phenolic groups independent of the place of cultivation, as they accounted for more than 50% of all phenolic compounds identified. The flavanols were followed by hydroxybenzoic acids, flavonols, and dihydrochalcones. Higher contents of flavanols and flavonols were found in kernels from areas characterized by higher natural irradiation, which stimulates their accumulation. The contents of hydroxybenzoic acids correlated with altitude, which stimulated phenolic acid synthesis. A negative correlation was observed between the dihydrochalcone content and annual rainfall, probably due to hydric stress.
Collapse
Affiliation(s)
- Anita Solar
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, SI 1000 Ljubljana, Slovenia
| | - Aljaz Medic
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, SI 1000 Ljubljana, Slovenia
| | - Ana Slatnar
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, SI 1000 Ljubljana, Slovenia
| | - Maja Mikulic-Petkovsek
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, SI 1000 Ljubljana, Slovenia
| | - Roberto Botta
- DISAFA—Dipartimento di Scienze Agrarie, Forestali e Alimentari, Universita’ degli Studi di Torino (UNITO), Grugliasco, 10095 Torino, Italy
| | - Mercè Rovira
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 Caldes de Montbui, Spain
| | | | - Ana Paula Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Robert Veberic
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, SI 1000 Ljubljana, Slovenia
| | - Franci Stampar
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, SI 1000 Ljubljana, Slovenia
| | - Metka Hudina
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, SI 1000 Ljubljana, Slovenia
| | - Loretta Bacchetta
- Ente per le Nuove Tecnologie, l’Energia e l’Ambiente (ENEA), 00196 Roma, Italy
| |
Collapse
|
6
|
Milia E, Bullitta SM, Mastandrea G, Szotáková B, Schoubben A, Langhansová L, Quartu M, Bortone A, Eick S. Leaves and Fruits Preparations of Pistacia lentiscus L.: A Review on the Ethnopharmacological Uses and Implications in Inflammation and Infection. Antibiotics (Basel) 2021; 10:antibiotics10040425. [PMID: 33921406 PMCID: PMC8069618 DOI: 10.3390/antibiotics10040425] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022] Open
Abstract
There is an increasing interest in revisiting plants for drug discovery, proving scientifically their role as remedies. The aim of this review was to give an overview of the ethnopharmacological uses of Pistacia lentiscus L. (PlL) leaves and fruits, expanding the search for the scientific discovery of their chemistry, anti-inflammatory, antioxidative and antimicrobial activities. PlL is a wild-growing shrub rich in terpenoids and polyphenols, the oil and extracts of which have been widely used against inflammation and infections, and as wound healing agents. The more recurrent components in PlL essential oil (EO) are represented by α-pinene, terpinene, caryophyllene, limonene and myrcene, with high variability in concentration depending on the Mediterranean country. The anti-inflammatory activity of the oil mainly occurs due to the inhibition of pro-inflammatory cytokines and the arachidonic acid cascade. Interestingly, the capacity against COX-2 and LOX indicates PlL EO as a dual inhibitory compound. The high content of polyphenols enriching the extracts provide explanations for the known biological properties of the plant. The protective effect against reactive oxygen species is of wide interest. In particular, their anthocyanins content greatly clarifies their antioxidative capacity. Further, the antimicrobial activity of PlL oil and extracts includes the inhibition of Staphylococcus aureus, Escherichia coli, periodontal bacteria and Candida spp. In conclusion, the relevant scientific properties indicate PlL as a nutraceutical and also as a therapeutic agent against a wide range of diseases based on inflammation and infections.
Collapse
Affiliation(s)
- Egle Milia
- Department of Medicine, Surgery and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
- Correspondence: (E.M.); (S.E.); Tel.: +39-79-228437 (E.M.); +41-31-632-25-42 (S.E.)
| | - Simonetta Maria Bullitta
- C.N.R., Institute for Animal Production System in Mediterranean Environment (ISPAAM), Traversa La Crucca 3, Località Baldinca, 07100 Sassari, Italy;
| | - Giorgio Mastandrea
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/C, 07100 Sassari, Italy;
| | - Barbora Szotáková
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic;
| | - Aurélie Schoubben
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti, 48-06123 Perugia, Italy;
| | - Lenka Langhansová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic;
| | - Marina Quartu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Cagliari, Italy;
| | - Antonella Bortone
- Dental Unite, Azienda Ospedaliero-Universitaria di Sassari, 07100 Sassari, Italy;
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
- Correspondence: (E.M.); (S.E.); Tel.: +39-79-228437 (E.M.); +41-31-632-25-42 (S.E.)
| |
Collapse
|
7
|
Bakour M, Laaroussi H, El menyiy N, Elaraj T, El ghouizi A, Lyoussi B. The Beekeeping State and Inventory of Mellifero-Medicinal Plants in the North-Central of Morocco. ScientificWorldJournal 2021; 2021:9039726. [PMID: 33505225 PMCID: PMC7808807 DOI: 10.1155/2021/9039726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 11/18/2022] Open
Abstract
This study aims to determine the diversity of melliferous plants and to recognize the state of beekeeping in the Fez-Meknes region in Morocco. We conducted a questionnaire for beekeepers that set up their hives in the prefectures and provinces of the region, and we have studied the pharmacological evidence of the most preferred plants by beekeepers to assess its medicinal values. The results indicate that honey, bee pollen, bee bread, royal jelly, propolis, bee wax, bee venom, and bee queens are produced in this region with different percentages, and 102 plants belonging to 32 families were obtained in the inventory of melliferous plants; the most represented families were Asteraceae and Lamiaceae (13.73% each) followed by Rosaceae (8.82%). Among these 102 plants identified, 79 plants provide nectar and pollen for bees, 16 plants provide only pollen, 3 plants provide only nectar, 35 plants are resinous, and 6 plants provide honeydew for bees. The outcome of this study will contribute to the valuation of melliferous plants and help to establish a practical guide for the development of the beekeeping sector as an agricultural economic approach.
Collapse
Affiliation(s)
- Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Nawal El menyiy
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Tarik Elaraj
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Asmae El ghouizi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| |
Collapse
|
8
|
Siano F, Cutignano A, Moccia S, Russo GL, Volpe MG, Picariello G. Phytochemical Characterization and Effects on Cell Proliferation of Lentisk (Pistacia lentiscus) Berry Oil: a Revalued Source of Phenolics. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:487-494. [PMID: 32671681 DOI: 10.1007/s11130-020-00835-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ethno-pharmaceutical use of the edible fixed oil produced from lentisk (Pistacia lentiscus) berries covers a long tradition in several Mediterranean regions. Many of the health-promoting properties of lentisk berry oil (LBO) have been associated with the content of polar (poly)phenolic compounds. However, the polar fraction (methanol 80%, v/v) of LBO (LBO-pf) remains poorly and inadequately characterized. We assessed the phytochemical composition (fatty acids, phytosterols and polyphenols) of cold-pressed LBO produced in Cilento (Campania region, Italy) over four years of production (2015-2018). Main phenolic compounds present in LBO-pf were identified and semi-quantified combining ultra-high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS) and HPLC with diode array detection. Phenolic compounds, also responsible for oil stability and antioxidant properties, are relatively abundant in LBO, compared to other edible oils. LBO-pf induced clear dose-dependent effects on the growth of HT-29 cell line derived from human colorectal adenocarcinoma, as evidenced by the cell cycle arrest. Our data support the health-promoting properties of cold-pressed LBO, which is obtained with good yield from spontaneous plants growing in semiarid regions.
Collapse
Affiliation(s)
- Francesco Siano
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Via Roma 64, 83100, Avellino, Italy
| | - Adele Cutignano
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche (CNR), Via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy
| | - Stefania Moccia
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Via Roma 64, 83100, Avellino, Italy
| | - Gian Luigi Russo
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Via Roma 64, 83100, Avellino, Italy
| | - Maria Grazia Volpe
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Via Roma 64, 83100, Avellino, Italy.
| | - Gianluca Picariello
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Via Roma 64, 83100, Avellino, Italy.
| |
Collapse
|
9
|
Lima LGB, Montenegro J, de Abreu JP, Santos MCB, do Nascimento TP, Santos MDS, Ferreira AG, Cameron LC, Ferreira MSL, Teodoro AJ. Metabolite Profiling by UPLC-MS E, NMR, and Antioxidant Properties of Amazonian Fruits: Mamey Apple (Mammea Americana), Camapu (Physalis Angulata), and Uxi (Endopleura Uchi). Molecules 2020; 25:molecules25020342. [PMID: 31952109 PMCID: PMC7024372 DOI: 10.3390/molecules25020342] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022] Open
Abstract
The metabolite profiling associated with the antioxidant potential of Amazonian fruits represents an important step to the bioactive compound′s characterization due to the large biodiversity in this region. The comprehensive bioactive compounds profile and antioxidant capacities of mamey apple (Mammea americana), camapu (Physalis angulata), and uxi (Endopleura uchi) was determined for the first time. Bioactive compounds were characterized by ultra-performance liquid chromatography coupled to high resolution mass spectrometry (UPLC-MSE) in aqueous and ethanolic extracts. Globally, a total of 293 metabolites were tentatively identified in mamey apple, campau, and uxi extracts. The main classes of compounds in the three species were terpenoids (61), phenolic acids (58), and flavonoids (53). Ethanolic extracts of fruits showed higher antioxidant activity and total ion abundance of bioactive compounds than aqueous. Uxi had the highest values of phenolic content (701.84 mg GAE/100 g), ABTS (1602.7 μmol Trolox g−1), and ORAC (15.04 μmol Trolox g−1). Mamey apple had the highest results for DPPH (1168.42 μmol TE g−1) and FRAP (1381.13 μmol FSE g−1). Nuclear magnetic resonance (NMR) spectroscopy results showed that sugars and lipids were the substances with the highest amounts in mamey apple and camapu. Data referring to chemical characteristics and antioxidant capacity of these fruits can contribute to their economic exploitation.
Collapse
Affiliation(s)
- Larissa Gabrielly Barbosa Lima
- Laboratory of Functional Foods, Nutrition Biochemistry Core, Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro, UNIRIO. Av. Pasteur, 296, Rio de Janeiro 22290-240, Brazil; (L.G.B.L.); (J.M.); (J.P.d.A.)
| | - Julia Montenegro
- Laboratory of Functional Foods, Nutrition Biochemistry Core, Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro, UNIRIO. Av. Pasteur, 296, Rio de Janeiro 22290-240, Brazil; (L.G.B.L.); (J.M.); (J.P.d.A.)
| | - Joel Pimentel de Abreu
- Laboratory of Functional Foods, Nutrition Biochemistry Core, Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro, UNIRIO. Av. Pasteur, 296, Rio de Janeiro 22290-240, Brazil; (L.G.B.L.); (J.M.); (J.P.d.A.)
| | - Millena Cristina Barros Santos
- Laboratory of Bioactives, Nutrition Biochemistry Core, Food and Nutrition Graduate Program, UNIRIO. Av. Pasteur, 296, Rio de Janeiro 22290-240, Brazil; (M.C.B.S.); (T.P.d.N.); (M.S.L.F.)
- Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, UNIRIO. Av. Pasteur, 296, Rio de Janeiro 22290-240, Brazil;
| | - Talita Pimenta do Nascimento
- Laboratory of Bioactives, Nutrition Biochemistry Core, Food and Nutrition Graduate Program, UNIRIO. Av. Pasteur, 296, Rio de Janeiro 22290-240, Brazil; (M.C.B.S.); (T.P.d.N.); (M.S.L.F.)
- Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, UNIRIO. Av. Pasteur, 296, Rio de Janeiro 22290-240, Brazil;
| | - Maiara da Silva Santos
- Fluminense Federal Institute of Education, Science and Technology, IFF, Av. Dário Viêira Borges, 235-Lia Márcia, Bom Jesus do Itabapoana, Rio de Janeiro 28360-000, Brazil;
| | - Antônio Gilberto Ferreira
- Laboratory of NMR, Department of Chemistry, Federal University of São Carlos, UFSCar. Washington Luiz, s/n, São Carlos 13565-905, SP, Brazil;
| | - Luiz Claudio Cameron
- Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, UNIRIO. Av. Pasteur, 296, Rio de Janeiro 22290-240, Brazil;
| | - Mariana Simões Larraz Ferreira
- Laboratory of Bioactives, Nutrition Biochemistry Core, Food and Nutrition Graduate Program, UNIRIO. Av. Pasteur, 296, Rio de Janeiro 22290-240, Brazil; (M.C.B.S.); (T.P.d.N.); (M.S.L.F.)
- Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, UNIRIO. Av. Pasteur, 296, Rio de Janeiro 22290-240, Brazil;
| | - Anderson Junger Teodoro
- Laboratory of Functional Foods, Nutrition Biochemistry Core, Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro, UNIRIO. Av. Pasteur, 296, Rio de Janeiro 22290-240, Brazil; (L.G.B.L.); (J.M.); (J.P.d.A.)
- Correspondence: ; Tel.: +55-21-25427236; Fax: +55-21-25427752
| |
Collapse
|
10
|
Bourgou S, Bettaieb Rebey I, Dakhlaoui S, Msaada K, Saidani Tounsi M, Ksouri R, Fauconnier ML, Hamrouni-Sellami I. Green extraction of oil from Carum carvi seeds using bio-based solvent and supercritical fluid: Evaluation of its antioxidant and anti-inflammatory activities. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:37-45. [PMID: 31313408 DOI: 10.1002/pca.2864] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION The consumption of health-promoting products such as oil seeds may improve human health and prevent certain diseases. Carvi seeds have the potential to produce oil with nutritional and functional properties rich in active compounds. OBJECTIVE To extract bioactive lipids from Carum carvi seeds using green methodologies. MATERIAL AND METHODS Supercritical-carbon dioxide (Sc-CO2 ) and ethanol as co-solvent and bio-based solvent 2-methyltetrahydrofuran (MeTHF) were used to extract the oil from Carum carvi. The yield, the chemical composition, as well as antioxidant and anti-inflammatory activities of green extracted oils were investigated and compared to those obtained with conventional methods (hexane and Folch system). RESULTS MeTHF extraction gave higher oil yield than that obtained by hexane. Fatty acids composition of the two obtained green extracted oils was similar to conventional extracted ones where petroselinic (39-43%), linoleic (29-31%) and oleic (19-21%) acids were the major compounds. Furthermore, MeTHF and Sc-CO2 green extracted oils were enriched of bioactive compounds including sterols (5.4 and 7.3 mg/g oil) and total polyphenols (9.3 and 7.6 mg GAE/g oil) which were correlated to enhanced antiradical capacity. Moreover, the green extracted oils exhibited high anti-inflammatory capacity inhibiting nitric oxide (NO) release in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages with IC50 values of 28 and 24 μg/mL. CONCLUSION Green solvents are a good alternative to petroleum solvents to recover oil from carvi seeds with high amount of nutritionally important fatty acids, along with significant antioxidant and anti-inflammatory potential.
Collapse
Affiliation(s)
- Soumaya Bourgou
- Laboratory of Medicinal and Aromatics Plant, Biotechnology Centre of Borj-Cedria, Hammam-Lif, Tunisia
| | - Iness Bettaieb Rebey
- Laboratory of Medicinal and Aromatics Plant, Biotechnology Centre of Borj-Cedria, Hammam-Lif, Tunisia
- General and Organic Chemistry-Volatolomics, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Sarra Dakhlaoui
- Laboratory of Medicinal and Aromatics Plant, Biotechnology Centre of Borj-Cedria, Hammam-Lif, Tunisia
| | - Kamel Msaada
- Laboratory of Medicinal and Aromatics Plant, Biotechnology Centre of Borj-Cedria, Hammam-Lif, Tunisia
| | - Moufida Saidani Tounsi
- Laboratory of Medicinal and Aromatics Plant, Biotechnology Centre of Borj-Cedria, Hammam-Lif, Tunisia
| | - Riadh Ksouri
- Laboratory of Medicinal and Aromatics Plant, Biotechnology Centre of Borj-Cedria, Hammam-Lif, Tunisia
| | - Marie-Laure Fauconnier
- General and Organic Chemistry-Volatolomics, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Ibtissem Hamrouni-Sellami
- Laboratory of Medicinal and Aromatics Plant, Biotechnology Centre of Borj-Cedria, Hammam-Lif, Tunisia
| |
Collapse
|