1
|
Maia GS, Marangoni Júnior L, Vieira RP. Tannic acid as a multifunctional additive in polysaccharide and protein-based films for enhanced food preservation: A comprehensive review. Adv Colloid Interface Sci 2025; 339:103428. [PMID: 39938158 DOI: 10.1016/j.cis.2025.103428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/22/2024] [Accepted: 02/01/2025] [Indexed: 02/14/2025]
Abstract
Fossil-based polymers continue to dominate the market for single-use food packaging, despite increasing concerns about their sustainability. In response, natural and renewable polymers, such as proteins and polysaccharides, are gaining attention as potential alternatives due to their biodegradability and biocompatibility. However, their broader adoption is hindered by the need to improve their mechanical, barrier, and thermal properties. Tannic acid (TA) has emerged as a particularly effective additive for biopolymer-based films, offering strong antioxidant and antimicrobial properties. It also enhances mechanical and barrier characteristics through physical and/or covalent crosslinking. As a result, TA shows great potential as an additive for bioplastics, improving food packaging performance and extending product shelf life, while benefiting both the environment and the food industry. Despite the promising applications of TA, comprehensive reviews that focus on recent developments in its performance and bioactive properties remain limited. This review aims to highlight the effectiveness of TA as both an active ingredient and a crosslinking agent in various biopolymer films, offering valuable insights into its role in sustainable food packaging solutions by critically examining the latest advancements.
Collapse
Affiliation(s)
- Gabriella Simon Maia
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering (FEQ), Campinas, São Paulo, Brazil.
| | - Luís Marangoni Júnior
- Universidade Estadual de Campinas (UNICAMP), School of Food Engineering (FEA), Campinas, São Paulo, Brazil
| | - Roniérik Pioli Vieira
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering (FEQ), Campinas, São Paulo, Brazil.
| |
Collapse
|
2
|
Wei H, Rui J, You M, Wang X, Wang Y, Zhu C, Ma M, Xiao H. Construction of efficient ethylene removal and antibacterial cellulose paper-based packaging materials for avocado preservation. Int J Biol Macromol 2025; 299:139763. [PMID: 39800025 DOI: 10.1016/j.ijbiomac.2025.139763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Fruits are susceptible to ethylene ripening and microbial infestation, which can lead to spoilage and further significant economic losses. Thus, using functional preservation materials is an effective controlling technology to improve the post-harvest quality and extend the shelf life of fruits. Hence, a dual-function cellulose-based paper with exceptional antibacterial efficiency, favourable ethylene removal performance, improved mechanical and hydrophobic properties was prepared by covalently grafted antibacterial guanidine salt and surface-modified ethylene scavenger. When the amount of guanidine salt grafted and ethylene scavenger is 1.85 wt% and 1.5 g·m-2, respectively, the prepared cellulose paper exhibited about 99 % ethylene conversion and killing efficiency with no leaching, which extending the post-harvest avocado preservation time to 20 days at room temperature. Packaging with the preservation paper effectively reduced hardness and consumption of soluble solids in avocado during storage, maintaining their appearance and nutritional quality. These findings highlight the excellent preservation capabilities of the dual-function paper, making it a promising material for fruit and vegetable preservation in small and medium planting areas and households.
Collapse
Affiliation(s)
- Haiying Wei
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jinsheng Rui
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019, China
| | - Min You
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019, China
| | - Xiaochun Wang
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019, China
| | - Yangxun Wang
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019, China
| | - Chengwen Zhu
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019, China.
| | - Mengtao Ma
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| |
Collapse
|
3
|
Mei J, Shi X, Chen M, Cui Y, Fang C, Yang L. Unfolding bovine serum albumin decorated selenium nanoparticles crosslinking with chitosan: Achieve stabilization of Pickering emulsions gel and enhance resveratrol bioaccessibility. Int J Biol Macromol 2025; 289:138798. [PMID: 39689794 DOI: 10.1016/j.ijbiomac.2024.138798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
Resveratrol (Res) is a natural polyphenol exhibiting anti-oxidant and anti-inflammatory activity. However, the applications of Res have been limited due to its low stability and water solubility. To enhance the bioaccessibility of Res, unfolding bovine serum albumin-modified selenium nanoparticles (UBSA@SeNPs) encapsulated within chitosan (CS)-coated Pickering emulsions (CS-UBSA@SeNPs-PE) were used to load Res. The results showed that Res-loaded CS(0.06 %)-UBSA@SeNPs-PE has small droplet size (16.13 μm), high gel properties and excellent antioxidant properties. During the simulated digestion process, CS reduced the release rate of Res from Res-loaded CS(0.06 %)-UBSA@SeNPs-PE (42.27 %) to reach a slow release effect. Importantly, Res could quickly release from CS-UBSA@SeNPs-PE within intestinal fluid or in the presence of chitosanase. In simulated absorption experiments, the intestinal permeability of Res in Res-loaded CS(0.06 %)-UBSA@SeNPs-PE were enhanced by 292.31 % compare to Res-loaded CS(0 %)-UBSA@SeNPs-PE. In pharmacokinetic studies, Res-loaded CS(0.06 %)-UBSA@SeNPs-PE had an area under the curve (AUC) up to 3467.99 ± 127.43 ng*h/mL. Furthermore, CS also improved the mucoadhesive nature of UBSA@SeNPs-PE, resulting in a gut-retention time of Res-loaded CS(0.06 %)-UBSA@SeNPs-PE that reached up to 60 h. In conclusion, CS-UBSA@SeNPs-PE can serve as an effective oral delivery system for improving the bioaccessibility of Res.
Collapse
Affiliation(s)
- Jingtao Mei
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Mingmao Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yanan Cui
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Chaoping Fang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Licong Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
4
|
Günal-Köroğlu D, Capanoglu E. Plant protein-based edible films and the effect of phenolic additives. Crit Rev Food Sci Nutr 2024; 65:2155-2175. [PMID: 38504491 DOI: 10.1080/10408398.2024.2328181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The use of protein-based films in food preservation has been investigated as an alternative to synthetic plastics in recent years. Being biodegradable, edible, natural, and upcycling from food waste/by-products are the benefits of protein-based edible films. Their use ensures food safety as an alternative to synthetic plastics, and their film-forming properties can be improved with the addition of bioactive compounds. This review summarizes the studies on the changes in certain quality parameters of plant protein-based films, including mechanical, physicochemical, or morphological properties with the use of different forms of phenolic additives (pure phenolics, phenolic extracts, essential oils) and their application in foods during storage. Phenolics affect protein film matrix formation by acting as plasticizers or cross-linking agents and confer additional health benefits by providing bioactive properties to protein films. On the other hand, the effects were more pronounced with the use of their oxidized forms or higher concentrations. Consequently, phenolic additives have great potential to improve protein films, but further studies are still required to investigate the effects and mechanisms of phenolic addition to the protein-based films.
Collapse
Affiliation(s)
- Deniz Günal-Köroğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Türkiye
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Türkiye
| |
Collapse
|
5
|
Chen N, Wei W, Yang Y, Chen L, Shan W, Chen J, Lu W, Kuang J, Wu C. Postharvest Physiology and Handling of Guava Fruit. Foods 2024; 13:805. [PMID: 38472918 DOI: 10.3390/foods13050805] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Guavas are typical tropical fruit with high nutritional and commercial value. Because of their thin skin and high metabolic rate, guavas are highly susceptible to water loss, physical damage, and spoilage, severely limiting their shelf-life. Guavas can typically only be stored for approximately one week at room temperature, making transportation, storage, and handling difficult, resulting in low profit margins in the industry. This review focuses on the physiological and biochemical changes and their molecular mechanisms which occur in postharvest guavas, and summarizes the various management strategies for extending the shelf-life of these sensitive fruits by means of physical and chemical preservation and their combinations. This review also suggests future directions and reference ideas for the development of safe and efficient shelf-life extension techniques.
Collapse
Affiliation(s)
- Nanhui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yingying Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Lin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wangjin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianfei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Chaojie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Singh AK. Recent advancements in polysaccharides, proteins and lipids based edible coatings to enhance guava fruit shelf-life: A review. Int J Biol Macromol 2024; 262:129826. [PMID: 38296124 DOI: 10.1016/j.ijbiomac.2024.129826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/13/2024]
Abstract
Fresh fruits are highly needed for the health benefits of human beings because of the presence of high content of natural nutrition in the form of vitamins, minerals, antioxidants, and other phenolic compounds. However, some nutritional fruits such as guava are climacteric in nature with very less post-harvest shelf-life because of the ripening in a very short period and possibility of microbial infections. Thus security of natural nutrients is a serious concern in order to properly utilize guava without generating a huge amount of waste. Among reported various methods for the enhancement of fruits shelf-life, the application of edible coatings with antimicrobial activities on the outer surface of fruits have attracted significant attention because of their eco-friendly nature, easy applicability, high efficacy, and good durability. In recent years, researchers are paying more and more attention in the development of antimicrobial edible coatings to enhance the post-harvest shelf-life of guava using polysaccharides, protein and lipids. In this review, basic approaches and recent advancements in development of antimicrobial and edible coatings on guava fruit by the application of polysaccharides and protein and lipids along with the combination of nanomaterials are summarized. In addition, improvements in basic properties of edible coatings to significantly control the permeation of gases (O2/CO2) by the optimization of coating components as well as delay in ripening process are reviewed and discussed.
Collapse
Affiliation(s)
- Arun K Singh
- Department of Chemistry, M. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| |
Collapse
|
7
|
Yan T, Hu C, Que Y, Song Y, Lu D, Gu J, Ren Y, He J. Chitosan coating enriched with biosynthetic CuO NPs: Effects on postharvest decay and quality of mango fruit. Int J Biol Macromol 2023; 253:126668. [PMID: 37660851 DOI: 10.1016/j.ijbiomac.2023.126668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/08/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
A chitosan-based nanocomposite film (CSC) was developed by mixing chitosan (CS, 2 %, v/v) and copper oxide nanoparticles (CuO NPs, 500 μg∙mL-1) synthesized using Alpinia officinarum extract for the safe storage of mango fruit. The effects of CuO NPs on the morphological, mechanical, thermal, physical and antifungal properties of the CS films and postharvest quality of mango fruit were determined. Scanning electron microscopy (SEM) analysis confirmed that CuO NPs were uniformly dispersed into the CS matrix. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) profiles showed that intermolecular H-bondings occurred between CS and CuO NPs, accompanied by decreased crystallinity and increased amorphous structure. In comparison to the pure CS film, addition of CuO NPs obviously improved the morphological, mechanical, thermal, physical and antifungal properties of CSC film. CSC coating treatment obviously delayed the fruit decay and yellowing, as well as reduced losses of weight and firmness of mango (Mangifera indica L.) fruit during the storage, when compared with the control and CS coating treatment. Meanwhile, it significantly decreased the respiration rate and ethylene generation and maintained high level of ascorbic acid (AsA), titratable acid (TA) and soluble sugar content (SSC) of the fruit during the storage. Notably, Cu presented in the CSC film was restrained to the peel, indicating that the CSC coated mango fruit had good edible safety. Principal component analysis (PCA) confirmed that CSC coating played a positive role in mango preservation. Therefore, CSC coating can be considered a potential application for successfully controlling of postharvest disease and prolonging the shelf life for mango fruit.
Collapse
Affiliation(s)
- Tengyu Yan
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Chunmei Hu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Yuqing Que
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Yaping Song
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Dandan Lu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Jinyu Gu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Yanfang Ren
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China.
| | - Junyu He
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China.
| |
Collapse
|
8
|
Yang J, Fei T, Zhang W, Cong X. Tannic Acid and Ca 2+ Double-Crosslinked Alginate Films for Passion Fruit Preservation. Foods 2023; 12:3936. [PMID: 37959055 PMCID: PMC10650026 DOI: 10.3390/foods12213936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
In this study, the interaction of different concentrations of tannic acid (TA) (10%, 20%, and 30% w/w) and Ca2+ with alginate (SA) was utilized to create double-crosslinked SA films. The resulting films were evaluated for their optical, mechanical, water resistance, and barrier properties, and their microstructure and intermolecular interactions were also characterized. The SA films containing 20% TA showed the best mechanical properties, with an observed increase in tensile strength of 22.54%. In terms of water vapor permeability, the SA film containing 30% TA exhibited the highest barrier property, which was 25.36% higher than that of the pure SA film. Moreover, TA demonstrated a strong UV absorption ability, resulting in a nearly 0% UV transmittance of the SA film at 280 nm. It can be seen that SA films containing 20% TA have excellent barrier and mechanical properties, and the development of such films will be applied to the storage and packaging of fresh food. It is worth noting that this work also investigated the effect of SA coatings containing different concentrations of TA on the preservation of passion fruits for 7 days. The results revealed that passion fruits treated with SA coatings containing a 30% TA concentration maintained a better appearance on the 7th day and had the lowest weight loss and crumpling indices of approximately 8.98% and 2.17, respectively, compared to the other treatment groups. Therefore, based on the overall results, the addition of 30% TA to SA coatings proved to be more effective and can be considered a promising approach for delaying fruit senescence and decay.
Collapse
Affiliation(s)
- Jun Yang
- School of Life Sciences, Hainan University, Haikou 570228, China;
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (T.F.); (W.Z.)
| | - Tao Fei
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (T.F.); (W.Z.)
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (T.F.); (W.Z.)
| | - Xinli Cong
- School of Life Sciences, Hainan University, Haikou 570228, China;
| |
Collapse
|
9
|
Bonser CAR, Astete CE, Sabliov CM, Davis JA. Elucidating the insecticidal mechanisms of zein nanoparticles on Anticarsia gemmatalis (Lepidoptera: Erebidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1196-1204. [PMID: 37229568 DOI: 10.1093/jee/toad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Previous research suggested that positively charged zein nanoparticles [(+)ZNP] were toxic to neonates of Anticarsia gemmatalis Hübner and deleterious to noctuid pests. However, specific modes of action for ZNP have not been elucidated. Diet overlay bioassays attempted to rule out the hypothesis that A. gemmatalis mortality was caused by surface charges from component surfactants. Overlay bioassays indicated that negatively charged zein nanoparticles [(-)ZNP] and its anionic surfactant, sodium dodecyl sulfate (SDS), exhibited no toxic effects when compared to the untreated check. Nonionic zein nanoparticles [(N)ZNP] appeared to increase mortality compared to the untreated check, though larval weights were unaffected. Overlay results for (+)ZNP and its cationic surfactant, didodecyldimethylammonium bromide (DDAB), were found to be consistent with former research indicating high mortalities, and thus, dosage response curves were conducted. Concentration response tests found the LC50 for DDAB on A. gemmatalis neonates was 208.82 a.i./ml. To rule out possible antifeedant capabilities, dual choice assays were conducted. Results indicated that neither DDAB nor (+)ZNP were antifeedants, while SDS reduced feeding when compared to other treatment solutions. Oxidative stress was tested as a possible mode of action, with antioxidant levels used as a proxy for reactive oxygen species (ROS) in A. gemmatalis neonates, which were fed diet treated with different concentrations of (+)ZNP and DDAB. Results indicated that both (+)ZNP and DDAB decreased antioxidant levels compared to the untreated check, suggesting that both (+)ZNP and DDAB may inhibit antioxidant levels. This paper adds to the literature on potential modes of action by biopolymeric nanoparticles.
Collapse
Affiliation(s)
- Colin A R Bonser
- Department of Entomology, LSU Agricultural Center, 404 Life Science Building, Baton Rouge, LA 70803, USA
| | - Carlos E Astete
- Department of Biological and Agricultural Engineering, LSU Agricultural Center, 149 E. B. Doran Building, Baton Rouge, LA 70803, USA
| | - Cristina M Sabliov
- Department of Biological and Agricultural Engineering, LSU Agricultural Center, 149 E. B. Doran Building, Baton Rouge, LA 70803, USA
| | - Jeffrey A Davis
- Department of Entomology, LSU Agricultural Center, 404 Life Science Building, Baton Rouge, LA 70803, USA
| |
Collapse
|
10
|
Pooja N, Chakraborty I, Rahman MH, Mazumder N. An insight on sources and biodegradation of bioplastics: a review. 3 Biotech 2023; 13:220. [PMID: 37265543 PMCID: PMC10230146 DOI: 10.1007/s13205-023-03638-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 05/15/2023] [Indexed: 06/03/2023] Open
Abstract
Durability and affordability are two main reasons for the widespread consumption of plastic in the world. However, the inability of these materials to undergo degradation has become a significant threat to the environment and human health To address this issue, bioplastics have emerged as a promising alternative. Bioplastics are obtained from renewable and sustainable biomass and have a lower carbon footprint and emit fewer greenhouse gases than petroleum-based plastics. The use of these bioplastics sourced from renewable biomass can also reduce the dependency on fossil fuels, which are limited in availability. This review provides an elaborate comparison of biodegradation rates of potential bioplastics in soil from various sources such as biomass, microorganisms, and monomers. These bioplastics show great potential as a replacement for conventional plastics due to their biodegradable and diverse properties.
Collapse
Affiliation(s)
- Nag Pooja
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Ishita Chakraborty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Md. Hafizur Rahman
- Department of Quality Control and Safety Management, Faculty of Food Sciences and Safety, Khulna Agricultural University, Khulna, Bangladesh
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
11
|
Hosseini SF, Mousavi Z, McClements DJ. Beeswax: A review on the recent progress in the development of superhydrophobic films/coatings and their applications in fruits preservation. Food Chem 2023; 424:136404. [PMID: 37257280 DOI: 10.1016/j.foodchem.2023.136404] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/28/2023] [Accepted: 04/30/2023] [Indexed: 06/02/2023]
Abstract
Recently, the design and fabrication of bio-inspired superhydrophobic materials using natural lipid additives such as beeswax (BW) have aroused great attention in food packaging as they can minimize the transfer rate of water molecules and have effective moisture barriers. This review discusses the recent progress in the design and fabrication of BW-containing edible films/coatings (e.g., emulsion and blend films, bilayer materials, bionanocomposites, and antimicrobial materials) and their potential applications on the postharvest life and quality attributes of various fruits. Incorporation of BW into polysaccharides- and proteins-based emulsion films effectively improved their hydrophobicity, water vapor, and UV/visible light barrier properties, as well as the film tensile properties. The addition of nanoparticles to BW-based polymeric matrices often results in improved physico-mechanical properties. BW coatings have been also applied to prolong the shelf-life of various climacteric fruits, however, optimization of the wax concentration can be further investigated to develop targeted food storage systems.
Collapse
Affiliation(s)
- Seyed Fakhreddin Hosseini
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Mazandaran, Iran.
| | - Zahra Mousavi
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Mazandaran, Iran
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
12
|
Li W, Huang D, Song W, Ouyang F, Li W, Song Y, Li F, Jiang Y, Huang Q, Li D. Pickering emulsions stabilized by zein-proanthocyanidins-pectin ternary composites (ZPAAPs): Construction and delivery studies. Food Chem 2023; 404:134642. [DOI: 10.1016/j.foodchem.2022.134642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
|
13
|
Electrospun natural polypeptides based nanofabrics enriched with antioxidant polyphenols for active food preservation. Food Chem 2022; 405:134991. [DOI: 10.1016/j.foodchem.2022.134991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/20/2022]
|
14
|
Wu X, Hu Q, Liang X, Chen J, Huan C, Fang S. Methyl jasmonate encapsulated in protein-based nanoparticles to enhance water dispersibility and used as coatings to improve cherry tomato storage. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Abdollahi M, Bazargani‐Gilani B, Aghajani N, Garmakhany AD. Response surface optimization of the effect of
Aloe vera
gel coating enriched with golpar essential oil on the shelf life, postharvest quality, color change and sensory attributes of fresh cut orange fruit. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mohaddese Abdollahi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Science, Bu‐Ali Sina University Hamedan Iran
| | - Behnaz Bazargani‐Gilani
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Science, Bu‐Ali Sina University Hamedan Iran
| | - Narjes Aghajani
- Department of Food Science and Technology, Bahar Faculty of Food Science and Technology, Bu‐Ali Sina University Hamedan Iran
| | - Amir Daraei Garmakhany
- Department of Food Science and Technology, Tuyserkan Faculty of Engineering & Natural Resources, Bu‐Ali Sina University Hamedan Iran
| |
Collapse
|
16
|
Physicochemical properties of zein films cross-linked with glutaraldehyde. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Yadav A, Kumar N, Upadhyay A, Fawole OA, Mahawar MK, Jalgaonkar K, Chandran D, Rajalingam S, Zengin G, Kumar M, Mekhemar M. Recent Advances in Novel Packaging Technologies for Shelf-Life Extension of Guava Fruits for Retaining Health Benefits for Longer Duration. PLANTS 2022; 11:plants11040547. [PMID: 35214879 PMCID: PMC8879830 DOI: 10.3390/plants11040547] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022]
Abstract
Guava (Psidium guajava L.) fruit is also known as the apple of tropics, belongs to the family of genus Psidium, and is widely cultivated in tropical zones of the world. Recently, the importance of guava fruit has increased due to its inherent nutritional content, pleasant aroma, excellent flavor, and delicious taste. It is considered an excellent source of nutrients and phytochemicals. Guava is a climacteric fruit that continues to mature or ripen even after harvest, showing an increase in the rate of respiration and metabolic activities within a short period, leading to rapid senescence or spoilage of fruit. It has limitations in terms of commercialization due to short storage life after harvest and sensitivity to diseases and chilling injury during the storage period. Many postharvest technologies such as edible packaging, modified atmosphere packaging (MAP), composite packaging, controlled atmosphere packaging (CAP), antimicrobial/antifungal packaging, and nano packaging have been used to retard the chilling injury and enhance the keeping quality of guava fruits during the storage period to control respiration rate, reduce weight loss, minimize lipid oxidation, and maintain organoleptic properties. However, these packaging technologies have varied effects on the internal and external quality attributes of guava fruits. This review, therefore, discusses the physiology, mechanism of ripening, oxidation, and ethylene production of guava fruits. The review also discusses the packaging technologies and their effect on the postharvest characteristics of guava fruits during the storage period.
Collapse
Affiliation(s)
- Ajay Yadav
- Agro Produce Processing Division, ICAR—Central Institute of Agricultural Engineering, Bhopal 462038, India;
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonepat 131028, India;
| | - Nishant Kumar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonepat 131028, India;
| | - Ashutosh Upadhyay
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonepat 131028, India;
- Correspondence: (A.U.); (M.K.); (M.M.)
| | - Olaniyi Amos Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park, Johannesburg P.O. Box 524, South Africa;
| | - Manoj Kumar Mahawar
- Technology Transfer Division, ICAR—Central Institute for Research on Cotton Technology, Mumbai 400019, India;
| | - Kirti Jalgaonkar
- Quality Evaluation and Improvement Division, ICAR—Central Institute for Research on Cotton Technology, Mumbai 400019, India;
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India;
| | - Sureshkumar Rajalingam
- Department of Agronomy, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India;
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR—Central Institute for Research on Cotton Technology, Mumbai 400019, India
- Correspondence: (A.U.); (M.K.); (M.M.)
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht’s University, 24105 Kiel, Germany
- Correspondence: (A.U.); (M.K.); (M.M.)
| |
Collapse
|
18
|
Azeredo HM, Otoni CG, Mattoso LHC. Edible films and coatings – Not just packaging materials. Curr Res Food Sci 2022; 5:1590-1595. [PMID: 36161226 PMCID: PMC9493284 DOI: 10.1016/j.crfs.2022.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/16/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022] Open
Abstract
Edible films and coatings (EFC) are macromolecular-based structures forming thin layers that are usually studied as tools to improve food stability, sometimes being considered as parts of both the packaging system and the food itself. However, EFC are not mere packaging materials, and sometimes they do not even play roles related to those of packaging. This graphical review summarizes possible roles of EFC, including primary packaging, keeping water activity gradients between food components, controlling mass transfer on food processing, carrying active components, or serving as sources of sensory appeal. EFC may even be designed in a way that two or more of those roles may be played simultaneously.
Collapse
|
19
|
Pawłowska A, Stepczyńska M. Natural Biocidal Compounds of Plant Origin as Biodegradable Materials Modifiers. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 30:1683-1708. [PMID: 34720776 PMCID: PMC8541817 DOI: 10.1007/s10924-021-02315-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/15/2021] [Indexed: 05/07/2023]
Abstract
The article presents a literature review of the plant origin natural compounds with biocidal properties. These compounds could be used as modifiers of biodegradable materials. Modification of polymer material is one of the basic steps in its manufacturing process. Biodegradable materials play a key role in the current development of materials engineering. Natural modifiers are non-toxic, environmentally friendly, and renewable. The substances contained in natural modifiers exhibit biocidal properties against bacteria and/or fungi. The article discusses polyphenols, selected phenols, naphthoquinones, triterpenoids, and phytoncides that are natural antibiotics. Due to the increasing demand for biodegradable materials and the protection of the natural environment against the negative effects of toxic substances, it is crucial to replace synthetic modifiers with plant ones. This work mentions industries where materials containing natural modifying additives could find potential applications. Moreover, the probable examples of the final products are presented. Additionally, the article points out the current world's pandemic state and the use of materials with biocidal properties considering the epidemiological conditions.
Collapse
Affiliation(s)
- Alona Pawłowska
- Department of Materials Engineering, Kazimierz Wielki University, J.K. Chodkiewicza 30 street, 85-064 Bydgoszcz, Poland
| | - Magdalena Stepczyńska
- Department of Materials Engineering, Kazimierz Wielki University, J.K. Chodkiewicza 30 street, 85-064 Bydgoszcz, Poland
| |
Collapse
|
20
|
Glusac J, Fishman A. Enzymatic and chemical modification of zein for food application. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Ma J, Zhou Z, Li K, Li K, Liu L, Zhang W, Xu J, Tu X, Du L, Zhang H. Novel edible coating based on shellac and tannic acid for prolonging postharvest shelf life and improving overall quality of mango. Food Chem 2021; 354:129510. [PMID: 33752113 DOI: 10.1016/j.foodchem.2021.129510] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/04/2021] [Accepted: 02/28/2021] [Indexed: 01/25/2023]
Abstract
This study aimed to investigate the combined effects of a coating based on shellac and the active agent tannic acid (TA) on the storability and physiological variations of mangoes stored at room temperature. Results showed that TA-shellac prolonged shelf life and improved overall quality of mangoes to a higher extent compared with controls, which was reflected in the extension of shelf life for approximately 10 days, maintaining of tissue firmness and weight loss, slowing down of respiration rate, improvement of physical properties and chemical qualities, suppression of browning, reduction of lipid peroxidation, preservation of aromatic volatiles, and regulation of the related enzymes activities. Addition of TA to shellac coating also improved the antifungal effect of the formulation. The results suggest that a synergistic effect took place between TA and shellac, which demonstrates the high potential for shelf life extension and quality improvement of mangoes of this formulation.
Collapse
Affiliation(s)
- Jinju Ma
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming 650224, China
| | - Zhiqiang Zhou
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming 650224, China
| | - Kai Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Kun Li
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming 650224, China
| | - Lanxiang Liu
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming 650224, China
| | - Wenwen Zhang
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming 650224, China
| | - Juan Xu
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming 650224, China
| | - Xinghao Tu
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - Liqing Du
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - Hong Zhang
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming 650224, China.
| |
Collapse
|
22
|
Maringgal B, Hashim N, Mohamed Amin Tawakkal IS, Mohamed MTM, Hamzah MH, Mohd Ali M. Effect of Kelulut Honey Nanoparticles Coating on the Changes of Respiration Rate, Ascorbic Acid, and Total Phenolic Content of Papaya ( Carica papaya L.) during Cold Storage. Foods 2021; 10:foods10020432. [PMID: 33669392 PMCID: PMC7920252 DOI: 10.3390/foods10020432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 01/16/2023] Open
Abstract
This study evaluated the respiration rate of coated and uncoated (control) papayas (Carica papaya L.) with 15% of Kelulut honey (KH) nanoparticles (Nps) coating solution during cold storage at 12 ± 1 °C for 21 days. The respiration rate of the papayas significantly changed during storage, with an increase in CO2 and a decrease in O2 and C2H4, while the ascorbic acid and total phenolic content was maintained. The changes in respiration rate were rather slower for coated papayas when compared to control ones. A kinetic model was established from the experimental data to describe the changes of O2, CO2, and C2H4 production in papayas throughout the storage period. All O2, CO2, and C2H4 were experimentally retrieved from a closed system method and then represented by the Peleg model. The outcomes indicated the Peleg constant K1 and K2, which were gained from linear regression analysis and coefficients of determination (R2), seemed to fit well with the experimental data, whereby the R2 values exceeded 0.85 for both coated and control papayas. The model confirmed both the capability and predictability aspects of the respiration rate displayed by papayas coated with KH Nps throughout the cold storage period. This is supported by the differences in the stomatal aperture of coated and control papaya shown by microstructural images.
Collapse
Affiliation(s)
- Bernard Maringgal
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; (B.M.); (M.H.H.); (M.M.A.)
- Department of Agriculture Malaysia, Putrajaya 62624, Malaysia
| | - Norhashila Hashim
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; (B.M.); (M.H.H.); (M.M.A.)
- SMART Farming Technology Research Centre (SFTRC), Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence:
| | | | - Mahmud Tengku Muda Mohamed
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Muhammad Hazwan Hamzah
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; (B.M.); (M.H.H.); (M.M.A.)
| | - Maimunah Mohd Ali
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; (B.M.); (M.H.H.); (M.M.A.)
| |
Collapse
|
23
|
Tannic acid-induced changes in water distribution and protein structural properties of bacon during the curing process. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
24
|
Vimala Bharathi S, Maria Leena M, Moses J, Anandharamakrishnan C. Zein‐based anti‐browning cling wraps for fresh‐cut apple slices. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14401] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- S.K. Vimala Bharathi
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology Thanjavur India
| | - M. Maria Leena
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology Thanjavur India
| | - J.A. Moses
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology Thanjavur India
| | - C. Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology Thanjavur India
| |
Collapse
|
25
|
Formiga AS, Pinsetta JS, Pereira EM, Cordeiro IN, Mattiuz BH. Use of edible coatings based on hydroxypropyl methylcellulose and beeswax in the conservation of red guava ‘Pedro Sato’. Food Chem 2019; 290:144-151. [DOI: 10.1016/j.foodchem.2019.03.142] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/11/2022]
|
26
|
He Y, Chen C, Xiao G, Zhong F, Wu Y, He Z. Improved corrosion protection of waterborne epoxy/graphene coating by combining non-covalent and covalent bonds. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
27
|
Tian F, Chen W, Fan G, Li T, Kou X, Wu C, Wu Z. Effect of Ginkgo biloba seed exopleura extract and chitosan coating on the postharvest quality of ginkgo seed. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3124-3133. [PMID: 30536731 DOI: 10.1002/jsfa.9527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND The effects of Ginkgo biloba seed exopleura extract (GSEE) and chitosan (CH) coating on the preservation of ginkgo seeds were investigated. RESULTS Results showed that CH could alleviate the decay rate, and that CH combined with GSEE (CH-GSEE) treatment further inhibited the development of seed decay due to the additional antifungal activity of GSEE. The nutrient contents, including water, starch and soluble protein, were maintained by both CH-GSEE and CH treatments. CH-GSEE treatment led to better restriction on oxidative stress by decreasing superoxide anion production rate, membrane permeability, malondialdehyde content, respiration rate and ethylene production rate. The antioxidant enzyme activities of peroxidase, superoxide dismutase and catalase in ginkgo seeds were maintained by treatment with CH-GSEE at a higher level. These results were consistent with the enhanced visual appearance, qualities and storability of the CH-GSEE-treated seeds. Principal component analysis provided a global view of the internal relations of the ginkgo seeds with different treatments. CONCLUSIONS The postharvest qualities of CH-GSEE-treated seeds were better than those of other treatment groups. Therefore, CH-GSEE is an effective and alternative way for inhibiting decay, maintaining quality and extending the postharvest life of ginkgo seeds. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fang Tian
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing, China
| | - Weiliang Chen
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing, China
| | - Gongjian Fan
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing, China
| | - Tingting Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Cai'E Wu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhihao Wu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing, China
| |
Collapse
|