1
|
Wang B, Shi Y, Zhang H, Hu Y, Chen H, Liu Y, Wang F, Chen L. Influence of microorganisms on flavor substances and functional components of sojae semen praeparatum during fermentation: A study integrating comparative metabolomics and high-throughput sequencing. Food Res Int 2024; 187:114405. [PMID: 38763659 DOI: 10.1016/j.foodres.2024.114405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
Sojae semen praeparatum (SSP), a fermented product known for its distinctive flavor and medicinal properties, undergoes a complex fermentation process due to the action of various microorganisms. Despite its widespread use, the effect of these microorganisms on the flavor compounds and functional components of SSP remains poorly understood. This study aimed to shed light on this aspect by identifying 20 metabolites as potential key flavor substances in SSP. Moreover, glycine and lysine were identified as crucial flavor substances. Additionally, 24 metabolites were identified as key functional components. The dominant microorganisms involved in the fermentation process were examined, revealing six genera of fungi and 12 genera of bacteria. At the species level, 16 microorganisms were identified as dominant through metagenome sequencing. Spearman correlation analysis demonstrated a strong association between dominant microorganisms and both flavor substances and functional components. Furthermore, the study validated the significance of four core functional microorganisms in improving the flavor and quality of SSP. This comprehensive exploration of functional microorganisms of SSP on key flavor substances/functional components during SSP fermentation. The study findings serve as a valuable reference for enhancing the overall flavor and quality of SSP.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan, China
| | - Yifan Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan, China
| | - Hongyi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan, China
| | - Yuan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan, China
| | - Hongping Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan, China
| | - Youping Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan, China
| | - Fu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan, China.
| | - Lin Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Su Q, Su T, Lu Y, Wu M, Huang S, Chen S, Liang J, An Z. Establishment of an HPLC Fingerprint and Cluster Analysis for Miao Ethnic Medicine Osbeckia opipara. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2024; 23:e146396. [PMID: 39830655 PMCID: PMC11742105 DOI: 10.5812/ijpr-146396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/11/2024] [Accepted: 06/26/2024] [Indexed: 01/22/2025]
Abstract
Osbeckia opipara, a traditional Miao medicine, is commonly used by the renowned national-level Chinese Traditional Medicine practitioner Zhengshi Wu for the treatment of diarrhea due to its strong antioxidative, anti-inflammatory, and antidiarrheal effects. This study aimed to establish a high-performance liquid chromatography (HPLC) fingerprint for O. opipara to provide new evidence and technical means for the scientific evaluation and effective quality control of O. opipara. The procedure involved isolation with a Nano ChromCore C18 column (250 mm × 4.6 mm, 5 μm), using a gradient elution of 0.1% formic acid in water and 0.1% formic acid in acetonitrile as the mobile phase, with a flow rate of 1.0 mL/min, a column temperature of 30°C, an injection volume of 10 μL, and detection at a wavelength of 254 nm. Under these chromatographic conditions, fingerprint analysis was conducted on 11 batches of O. opipara collected from different origins. The National Pharmacopoeia Committee developed the 'Chromatographic Fingerprint Similarity Evaluation System' (2004A version) for automated comparison, similarity computation, and analysis of chromatographic data. The results revealed 13 common peaks across the 11 batches of O. opipara samples, with a similarity to the automatically generated reference spectrum exceeding 0.9. SPSS 26.0 software was used to conduct cluster analysis on the peak areas of the 13 common peaks. The observations indicated that the reference spectrum generated from the 11 batches could serve as the standard fingerprint profile for O. opipara, providing sufficient characteristic information extraction.
Collapse
Affiliation(s)
- Qiang Su
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
- Fenggang County Traditional Chinese Medicine Hospital, Zunyi, Guizhou Province, China
| | - Ting Su
- Changsha Jingyi Pharmaceutical Technology Co., Ltd, Changsha, Hunan Province, China
| | - Yun Lu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
- Department of Rheumatology and Hematology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Min Wu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Song Huang
- Fenggang County Traditional Chinese Medicine Hospital, Zunyi, Guizhou Province, China
| | - Shouneng Chen
- Department of Rheumatology and Hematology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Jiang Liang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
- Department of Rheumatology and Hematology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Zhenxiang An
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
- Department of Gastroenterology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| |
Collapse
|
3
|
Huang Y, Li B, Du LL, Wu Y, Yin HX, Chen C. Qualitative and quantitative evaluations of Chuanxiong dispensing granules by using chemical fingerprint in combination with chemometrics methods. J Pharm Biomed Anal 2023; 236:115741. [PMID: 37793313 DOI: 10.1016/j.jpba.2023.115741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/03/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
To better elucidate the chemical constituents and evaluate the quality consistency of Chuanxiong dispensing granules (CDG), qualitative and quantitative analyses were performed in this study. Firstly, a high-performance liquid chromatography-diode array detector (HPLC-DAD) based fingerprint was constructed by 12 batches of CDGs from different manufacturers, in which 16 common peaks were assigned. Then, two of them were directionally isolated for structural elucidation. According to the nuclear magnetic resonance (NMR) and mass spectrometry (MS) spectra, 5,6-dihydrophthalic acid was identified as novel compound, and 8-O-4/8-O-4-dehydrotriferulic acid was firstly discovered in plant belonging to the genus Ligusticum. Secondly, a total of 46 components were detected in CDG using high performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry (HPLC-Q-TOF-MS), and 14 of them were unambiguously identified by comparing with reference standards. Additionally, a HPLC-DAD method was firstly established to quantify 10 characteristic peaks specified in the China National Standard of CDG, and the results revealed that ferulic acid (1.71 mg/g), chlorogenic acid (1.14 mg/g), 5,6-dihydrophthalic acid (1.13 mg/g), and senkyunolide I (1.13 mg/g) are the major components in CDGs. Chemometrics analyses suggested that phenolic acids are more important than phthalides in discrimination of CDGs from different manufacturers.
Collapse
Affiliation(s)
- Yan Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bin Li
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| | - Lei-Lei Du
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yan Wu
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| | - Hong-Xiang Yin
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chu Chen
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China.
| |
Collapse
|
4
|
Wang J, Liu Y, Zuo C, Zhang J, Liang W, Liu Y, Yu W, Yu H, Peng C. Different origins and processing methods affect the intrinsic quality of ginger: a novel approach to evaluating ginger quality. Front Chem 2023; 11:1296712. [PMID: 38025052 PMCID: PMC10667423 DOI: 10.3389/fchem.2023.1296712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Ginger (Zingiber officinale Roce.) is a widely consumed food item and a prominent traditional Chinese medicinal herb. The intrinsic quality of ginger may differ due to variations in its origin and processing techniques. To evaluate the quality of ginger, a straightforward and efficient discriminatory approach has been devised, utilizing 6-gingerol, 8-gingerol, and 10-gingerol as benchmarks. Methods: In order to categorize ginger samples according to their cultivated origins with different longitude and latitude (Shandong, Anhui, and Yunnan provinces in China) and processing methods (liquid nitrogen pulverization, ultra-micro grinding, and mortar grinding), similarity analysis (SA), hierarchical cluster analysis (HCA), and principal component analysis (PCA) were employed. Furthermore, there was a quantitative determination of the significant marker compounds gingerols, which has considerable impact on maintaining quality control and distinguishing ginger products accurately. Moreover, discrimination analysis (DA) was utilized to further distinguish and classify samples with unknown membership degrees based on the eigenvalues, with the aim of achieving optimal discrimination between groups. Results: The findings obtained from the high-performance liquid chromatography (HPLC) data revealed that the levels of various gingerols present in all samples exhibited significant variations. The study confirmed that the quality of ginger was primarily influenced by its origin and processing method, with the former being the dominant factor. Notably, the sample obtained from Anhui province and subjected to liquid nitrogen pulverization demonstrated the highest content of gingerols. Conclusion: The results obtained from the analysis of SA, HCA, PCA, and DA were consistent and could be employed to evaluate the quality of ginger. As such, the combination of HPLC fingerprints and chemo metric techniques provided a dependable approach for comprehensively assessing the quality and processing of ginger.
Collapse
Affiliation(s)
- Jie Wang
- A School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yujie Liu
- A School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Chijing Zuo
- A School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Zhang
- A School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Wanhui Liang
- A School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yan Liu
- A School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Weidong Yu
- A School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Hao Yu
- A School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- College of Traditional Chinese Medicine, Bozhou University, Bozhou, China
| | - Can Peng
- A School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
- Anhui Province Rural Revitalization Collaborative Technology Service Center, Hefei, China
- Anhui Province Modern Chinese Medicine Industry Common Technology Research Center, Heifei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Heifei, Anhui, China
| |
Collapse
|
5
|
Xie J, Wang Y, Zhong R, Yuan Z, Du J, Huang J. Quality evaluation of Sojae Semen Praeparatum by HPLC combined with HS-GC-MS. Heliyon 2023; 9:e18767. [PMID: 37593616 PMCID: PMC10432166 DOI: 10.1016/j.heliyon.2023.e18767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/29/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023] Open
Abstract
Sojae Semen Praeparatum is a popular fermented legume product in China, with a delicious flavour and health benefits. However, the quality control methods for Sojae Semen Praeparatum are now incomplete, and there are no standards for defining its degree of fermentation. In this study, we introduced colour, acid value, ethanol-soluble extractives and six flavonoid components' content to evaluate the quality of Sojae Semen Praeparatum comprehensively. Multiple linear regression was used to streamline the 11 evaluation indicators to 4 and confirm the evaluating feasibility of the four indicators. The degree of fermentation and odour of Sojae Semen Praeparatum were analyzed on headspace-gas chromatography-mass, and two types of odours, 'pungent' and 'unpleasant', could distinguish over-fermented Sojae Semen Praeparatum. Our research developed fermentation specifications and quality standards for Sojae Semen Praeparatum.
Collapse
Affiliation(s)
- Jiaqi Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yibo Wang
- China National Traditional Chinese Medicine Co., Ltd, China
| | - Rongrong Zhong
- China National Traditional Chinese Medicine Co., Ltd, China
| | - Zhenshuang Yuan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jie Du
- China National Traditional Chinese Medicine Co., Ltd, China
| | - Jianmei Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
6
|
Zhang L, Wei Y, Wang W, Fan Y, Li F, Li Z, Lin A, Gu H, Song M, Wang T, Liu G, Li X. Quantitative fingerprint and antioxidative properties of Artemisia argyi leaves combined with chemometrics. J Sep Sci 2023; 46:e2200624. [PMID: 36579954 DOI: 10.1002/jssc.202200624] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
Abstract
Quantitative fingerprint and differences of Artemisia argyi from different varieties, picking time, aging year, and origins were analyzed combing with chemometrics. The antioxidant activity was determined and antioxidant markers of Artemisia argyi were screened. Variety WA3 was significantly different from that of the other varieties. Fingerprint peak response and antioxidant activity of A. argyi picked in December were lower than samples collected in May and August. Fresh A. argyi leaves were significantly superior to withered leaves and stems. Artemisia argyi aging 1-5 years presented a classification trend. Antioxidant activity of A. argyi produced in Nanyang was generally superior to others origins. Peak 9, isochlorogenic acid A, and 6-methoxyluteolin contributed greatly for classification of A. argyi from different variety, picking time, aging year, and origin. Isochlorogenic acid A, isochlorogenic acid C, 6-methoxyluteolin, and chlorogenic acid were selected as antioxidant marker of A. argyi. The method based on quantitative fingerprint, antioxidant activity evaluation, and chemometrics was reliable to analyze the differences of A. argyi samples from different sources.
Collapse
Affiliation(s)
- Lixian Zhang
- Henan Natural Product Biotechnology Co. Ltd., Zhengzhou, P. R. China.,Henan Academy of Sciences, Zhengzhou, P. R. China
| | - Yue Wei
- Henan Natural Product Biotechnology Co. Ltd., Zhengzhou, P. R. China.,Henan Academy of Sciences, Zhengzhou, P. R. China
| | - Wei Wang
- Henan Natural Product Biotechnology Co. Ltd., Zhengzhou, P. R. China.,Henan Academy of Sciences, Zhengzhou, P. R. China
| | - Yi Fan
- Henan Academy of Sciences, Zhengzhou, P. R. China
| | - Feifei Li
- Henan Natural Product Biotechnology Co. Ltd., Zhengzhou, P. R. China.,Henan Academy of Sciences, Zhengzhou, P. R. China
| | - Zhining Li
- Henan Natural Product Biotechnology Co. Ltd., Zhengzhou, P. R. China.,Henan Academy of Sciences, Zhengzhou, P. R. China
| | - Aiqin Lin
- Zhengzhou Railway Vocational & Technical College, Zhengzhou, P. R. China
| | - Haike Gu
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing, P. R. China
| | - Meifang Song
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing, P. R. China
| | - Tao Wang
- Henan Natural Product Biotechnology Co. Ltd., Zhengzhou, P. R. China
| | - Guijun Liu
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing, P. R. China
| | - Xiao Li
- Henan Natural Product Biotechnology Co. Ltd., Zhengzhou, P. R. China.,Henan Academy of Sciences, Zhengzhou, P. R. China
| |
Collapse
|
7
|
Guo H, Liu X, Jiang Y, He J, Ge W, Hao H, Huang T, He Y, Wen J, Zhou T. Characterization and quantification of the Chinese medical formula Zhi-Zi-Chi decoction, a systematic strategy for the attenuation and synergy of compatibility mechanism. J Pharm Biomed Anal 2023; 223:115130. [DOI: 10.1016/j.jpba.2022.115130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
8
|
LIU X, WANG J, XU Z, SUN J, LIU Y, XI X, MA Y. Quality assessment of fermented soybeans: physicochemical, bioactive compounds and biogenic amines. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.102722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Xu LIU
- Hebei Agricultural University, China
| | - Jun WANG
- Nanyang Institute of Technology, China; Nanyang Institute of Technology, China
| | - Zihan XU
- Nanyang Institute of Technology, China; Nanyang Institute of Technology, China
| | | | | | - Xiaoli XI
- Hebei Agricultural University, China
| | - Yanli MA
- Hebei Agricultural University, China; Nanyang Institute of Technology, China; Nanyang Institute of Technology, China
| |
Collapse
|
9
|
Li X, Yang T, Bu H, Yang H, Liu X, Wang J, Sun G. Constructing a “Four in One” fingerprint quality evaluation system of Cistanche Herba. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Li X, Liang C, Su R, Wang X, Yao Y, Ding H, Zhou G, Luo Z, Zhang H, Li Y. An integrated strategy combining metabolomics and machine learning for the evaluation of bioactive markers that differentiate various bile. Front Chem 2022; 10:1005843. [PMID: 36339047 PMCID: PMC9627196 DOI: 10.3389/fchem.2022.1005843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 09/07/2024] Open
Abstract
Animal bile is an important component of natural medicine and is widely used in clinical treatment. However, it is easy to cause mixed applications during processing, resulting in uneven quality, which seriously affects and harms the interests and health of consumers. Bile acids are the major bioactive constituents of bile and contain a variety of isomeric constituents. Although the components are structurally similar, they exhibit different pharmacological activities. Identifying the characteristics of each animal bile is particularly important for processing and reuse. It is necessary to establish an accurate analysis method to distinguish different types of animal bile. We evaluated the biological activity of key feature markers from various animal bile samples. In this study, a strategy combining metabolomics and machine learning was used to compare the bile of three different animals, and four key markers were screened. Quantitative analysis of the key markers showed that the levels of Glycochenodeoxycholic acid (GCDCA) and Taurodeoxycholic acid (TDCA) were highest in pig bile; Glycocholic acid (GCA) and Cholic acid (CA) were the most abundant in bovine and sheep bile, respectively. In addition, four key feature markers significantly inhibited the production of NO in LPS-stimulated RAW264.7 macrophage cells. These findings will contribute to the targeted development of bile in various animals and provide a basis for its rational application.
Collapse
Affiliation(s)
- Xinyue Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - ChenRui Liang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Su
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiang Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaqi Yao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haoran Ding
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanru Zhou
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Zhanglong Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, China
| | - Han Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
11
|
Jia Q, Zhang H, Hu P, Yang Y, Yang Y, Kang X, Li X, Wu Y, Xiao J, Zhou B. Chemical profiling and quality evaluation of Callicarpa nudiflora from different regions in China by UPLC-QTOF-MS fingerprint. Chem Biodivers 2022; 19:e202200444. [PMID: 36066484 DOI: 10.1002/cbdv.202200444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/06/2022] [Indexed: 11/08/2022]
Abstract
Callicarpa nudiflora, belonging to the family Verbenaceaae, is wildly used as a traditional Chinese herbal medicine (Luo-hua-zi-zhu) for hemostasis, antibiosis and antiphlogosis in clinlic. However, the underlying chemical basis of C. nudiflora for the significant effects remains obscure. Hence, an ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry method was established for the characterization of multi-constituents in C. nudiflora. As a result, 57 chemical compounds were identified based on their retention times, accurate masses and MS/MS data, and 20 of them were uncovered for the first time in C. nudiflora. In addition, an optimized UHPLC fingerprint analysis, combined with chemometrics including similarity analysis , principal component analysis and partial least squares-discriminant analysis was developed for quality assessment and origin discrimination of C. nudiflora. Multivariate data analysis revealed the resemblances and differences of C. nudiflora related to regions, while partial least squares-discriminant analysis screened nine characteristic markers including luteoloside, acteoside, luteolin-4'-O-β-D-glucopyranoside, pachypodol, isoquercitrin, nudifloside, 5,7,3',4'-tetrahydroxy-8-methoxy-6-C-β-D-glucopyranosyl flavone, 7α-acetoxysandaracopimaric acid and sandaracopimaric acid which contributed the most to the classification. This was the first report on the comprehensive profiling of chemical components in C. nudiflora, which helped to uncover the material basis of C. nudiflora and possess potential value for quality evaluation and clinical application purpose.
Collapse
Affiliation(s)
- Qiangqiang Jia
- Qinghai University, state key laboratory, 251 Ning Road, Chengbei District, Xining City, Qinghai Province, 810016, xining, CHINA
| | - Hongyan Zhang
- East-China Institute of Technology: East China University of Science and Technology, School of Chemistry and Molecular Engineering, 130 meilong road, 810016, shanghai, CHINA
| | - Ping Hu
- East China University of Science and Technology, School of Chemistry and Molecular Engineering, Meilong road, 200237, Shanghai, CHINA
| | - Yang Yang
- Shanghai Institute of Pharmaceutical Industry: China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry: China State Institute of Pharmaceutical Industry, 285 ge bai ni road, shanghai, CHINA
| | - Yifang Yang
- Shanghai Institute of Pharmaceutical Industry: China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry: China State Institute of Pharmaceutical Industry, 285 ge bai ni road, shanghai, CHINA
| | - Xingdong Kang
- jiangxi puzheng pharmaceutical Co.Ltd, jiangxi puzheng pharmaceutical Co.Ltd, 5 ji an road, ji an, CHINA
| | - Xiaofeng Li
- jiangxi puzheng pharmaceutical Co.Ltd, iangxi puzheng pharmaceutical Co.Ltd, 5 ji an road, ji an, CHINA
| | - Yongzhong Wu
- jiangxi puzheng pharmaceutical Co. Ltd., jiangxi puzheng pharmaceutical Co. Ltd., 5 ji an road, ji an, CHINA
| | - Junping Xiao
- jiangxi puzheng pharmaceutical Co.Ltd., jiangxi puzheng pharmaceutical Co.Ltd., 5 ji an road, ji an, CHINA
| | - Bin Zhou
- Shanghai Institute of Pharmaceutical Industry: China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry: China State Institute of Pharmaceutical Industry, 285 ge bai ni road, shanghai, CHINA
| |
Collapse
|
12
|
Krstić Đ, Milinčić DD, Kostić AŽ, Fotirić Akšić M, Stanojević SP, Milojković-Opsenica D, Pešić MB, Trifković J. Comprehensive electrophoretic profiling of proteins as a powerful tool for authenticity assessment of seeds of cultivated berry fruits. Food Chem 2022; 383:132583. [PMID: 35245833 DOI: 10.1016/j.foodchem.2022.132583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/02/2022] [Accepted: 02/25/2022] [Indexed: 11/24/2022]
Abstract
Product authentication is one of the most important food quality assurances. Considering the importance of consumption of berry fruits with proven health-beneficial properties, high sensory values and rich composition in bioactive substances, the aim of this study was to evaluate a straightforward and simple procedure for the protein fingerprinting of berry seeds. For this purpose, protein profiles of 45 samples of genuine berry fruit cultivars (strawberry, raspberry, blackberry, black currant, blueberry, gooseberry, chokeberry, cape gooseberry, and gojiberry) were analyzed by SDS-PAGE electrophoresis in combination with advanced chemometric tools. The most important parameters for discrimination among berry seeds were polypeptides at 12.8; 15.1; 25.0; 26.4; 30.0; 41.8; 44.4; 46.0; 48.5; 52.3 and 56.4 kDa. Biomarkers obtained from the protein profile of berry seeds proved to be a powerful tool in the authentication of their botanical origin, as well as for potential detection of berry-based products adulteration.
Collapse
Affiliation(s)
- Đurđa Krstić
- University of Belgrade - Faculty of Chemistry, P.O.Box 51, 11158 Belgrade, Serbia
| | - Danijel D Milinčić
- University of Belgrade, Faculty of Agriculture, Chair of Chemistry and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia
| | - Aleksandar Ž Kostić
- University of Belgrade, Faculty of Agriculture, Chair of Chemistry and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia
| | - Milica Fotirić Akšić
- University of Belgrade, Faculty of Agriculture, Chair of Fruit Science, Nemanjina 6, 11080 Belgrade, Serbia
| | - Slađana P Stanojević
- University of Belgrade, Faculty of Agriculture, Chair of Chemistry and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia
| | | | - Mirjana B Pešić
- University of Belgrade, Faculty of Agriculture, Chair of Chemistry and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia.
| | - Jelena Trifković
- University of Belgrade - Faculty of Chemistry, P.O.Box 51, 11158 Belgrade, Serbia
| |
Collapse
|
13
|
Liu J, Fang Y, Cui L, Wang Z, Luo Y, Gao C, Ge W, Huang T, Wen J, Zhou T. Butyrate emerges as a crucial effector of Zhi-Zi-Chi decoctions to ameliorate depression via multiple pathways of brain-gut axis. Biomed Pharmacother 2022; 149:112861. [PMID: 35339110 DOI: 10.1016/j.biopha.2022.112861] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 11/09/2022] Open
Abstract
Gut microbiota has emerged as a crucial target of gut-brain axis to influence depression. Zhi-Zi-Chi decoctions (ZZCD), as a classic oral formula in clinic, is widely applied in depression treatment nowadays. However, the underlying mechanism in the antidepressant activity of ZZCD remains unknown. A classic depression model of chronic mild unpredictable stress (CUMS) was established in rats based on the results of behavioral tests and hippocampal histomorphology. 16S rRNA sequencing analysis indicated that ZZCD could increase short-chain fatty acid-producing and anti-inflammatory bacteria and reduce inflammatory and tryptophan-metabolizing bacteria. Furthermore, ZZCD reversed the alterations of BDNF, TNF-α, pro-inflammatory cytokines and neurotransmitters in the gut, blood and brain along the brain-gut axis and restored the decrease of butyrate in cecal content caused by CUMS. Then, butyrate was utilized to validate its ameliorative effect on pathological characteristics of depressive rats. Taken together, these results show that ZZCD exhibits antidepressant effect through modulating gut microbiota to facilitate the production of butyrate, which further regulate anti-inflammation, neurotransmitters, endocrine and BDNF along the gut-brain axis. Hence, this study fills the gap of the antidepressive mechanism of ZZCD in the light of the brain-gut axis and established a multi-targets and multi-levels platform eventually for further research into the mechanism of other TCM efficacy.
Collapse
Affiliation(s)
- Jialin Liu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yichao Fang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lixun Cui
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhongzhao Wang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Changzheng hospital, second affiliated hospital of Second Military Medical University, Shanghai 200003, China
| | - Yusha Luo
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Congcong Gao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wen Ge
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | | | - Jun Wen
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Tingting Zhou
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
14
|
Zhang Y, Fang YC, Cui LX, Jiang YT, Luo YS, Zhang W, Yu DX, Wen J, Zhou TT. Zhi-Zi-Chi Decoction Reverses Depressive Behaviors in CUMS Rats by Reducing Oxidative Stress Injury Via Regulating GSH/GSSG Pathway. Front Pharmacol 2022; 13:887890. [PMID: 35462900 PMCID: PMC9021728 DOI: 10.3389/fphar.2022.887890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 12/27/2022] Open
Abstract
Depression is one of the main diseases that lead to disability and loss of ability to work. As a traditional Chinese medicine, Zhi-zi-chi decoction is utilized to regulate and improve depression. However, the research on the antidepressant mechanism and efficacy material basis of Zhi-zi-chi decoction has not been reported yet. Our previous research has found that Zhi-Zi-chi decoction can reduce glutamate-induced oxidative stress damage to PC 12 cells, which can exert a neuroprotective effect, and the antidepressant effect of Zhi-Zi-chi decoction was verified in CUMS rat models. In this study, the animal model of depression was established by chronic unpredictable mild stimulation combined with feeding alone. The brain metabolic profile of depressed rats was analyzed by the method of metabolomics based on ultra-performance liquid chromatography-quadrupole/time-of-flight mass. 26 differential metabolites and six metabolic pathways related to the antidepressant of Zhi-zi-chi decoction were screened and analyzed. The targeted metabolism of the glutathione metabolic pathway was analyzed. At the same time, the levels of reactive oxygen species, superoxide dismutase, glutathione reductase, glutathione peroxidase in the brain of depressed rats were measured. Combined with our previous study, the antioxidant effect of the glutathione pathway in the antidepressant effect of Zhi-zi-chi decoction was verified from the cellular and animal levels respectively. These results indicated that Zhi-zi-chi decoction exerted a potential antidepressive effect associated with reversing the imbalance of glutathione and oxidative stress in the brain of depressed rats.
Collapse
Affiliation(s)
- Yin Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
- Chengdu Institute for Drug Control, Chengdu, China
| | - Yi-Chao Fang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Li-Xun Cui
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yue-Tong Jiang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yu-Sha Luo
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Wen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - De-Xun Yu
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jun Wen
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
- *Correspondence: Jun Wen, ; Ting-Ting Zhou,
| | - Ting-Ting Zhou
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
- *Correspondence: Jun Wen, ; Ting-Ting Zhou,
| |
Collapse
|
15
|
Chemical profiling and quality evaluation of Pogostemon cablin Benth by liquid chromatography tandem mass spectrometry combined with multivariate statistical analysis. J Pharm Biomed Anal 2021; 209:114526. [PMID: 34915323 DOI: 10.1016/j.jpba.2021.114526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 01/14/2023]
Abstract
Pogostemon cablin Benth (PCB) is a well-known traditional Chinese medicine that has been used for treatment of many ailments for several centuries. In presently, the chemical profiling and quality control study of PCB has mainly concentrated on the volatile fractions. However, the non-volatile chemical profile of PCB was still unclear. In this study, 73 non-volatile constituents (i.e., 33 flavonoids, 21 organic acids, 9 phenylpropanoids, 4 sesquiterpenes, 3 alkaloids, and 3 other types of compounds) were identified and characterized in PCB using high performance liquid chromatography coupled with quadruple time-of-flight tandem mass spectrometry (HPLC-Q-TOF-MS). Meanwhile, to assess PCB samples, an established HPLC-Q-TOF-MS fingerprint was combined with multivariate statistical analysis that included similarity analysis (SA), hierarchical cluster analysis (HCA), principal component analysis (PCA), and orthogonal partial least squares-discriminant analysis (OPLS-DA). The PCB samples could be classified into two groups (herbal decoction pieces and processed medicinal materials), and acteoside, isoacteoside, 4',6-Dihydroxy-5,7-dimethoxyflavone, pachypodol and pogostone were screened as the potential chemical markers that attributed classification. In addition, nine representative components (pachypodol, vicenin-2, apigenin, rhamnocitrin, acteoside, isoacteoside, chlorogenic acid, azelaic acid and pogostone) in PCB were simultaneously determined by using an ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UPLC-QQQ-MS/MS). This study is the first to describe the chemical profile of PCB using liquid chromatography tandem mass spectrometry, which would improve our understanding of the substance basis of PCB and is helpful to the PCB further quality evaluation.
Collapse
|
16
|
Luo Y, Zhang X, Zhang W, Yang Q, You W, Wen J, Zhou T. Compatibility with Semen Sojae Praeparatum attenuates hepatotoxicity of Gardeniae Fructus by regulating the microbiota, promoting butyrate production and activating antioxidant response. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153656. [PMID: 34332844 DOI: 10.1016/j.phymed.2021.153656] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/22/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Herb-induced liver injury is a leading cause of drug-induced liver injury in China and its incidence is also increasing worldwide. Gardeniae Fructus (ZZ) has aroused wide concern for hepatotoxicity in recent decades. But when ZZ is administered in combination with Semen Sojae Praeparatum (DDC) to compose a herbal pair Zhizichi Decoction (ZZCD), lower hepatotoxicity is observed. The mechanism involved in the attenuated effect remains to be investigated. HYPOTHESIS/PURPOSE Our previous studies showed that DDC benefited host metabolism by regulating the gut microbiota and it reduced the exposure of major toxic components of ZZ. The present study was aimed to investigate how DDC attenuated hepatotoxicity of ZZ from the perspective of gut microbiota. METHODS Rats received ZZ and ZZCD treatment of different dosages and antibiotic treatment was applied to explore the involvement of gut microbiota. Biochemical assays and histopathological analysis were conducted to evaluate liver injury. Gut microbiota in caecal contents was profiled by 16S rRNA sequencing. Short-chain fatty acids (SCFAs) in caecal contents were measured by gas chromatography mass spectrometry (GCMS). To verify the protective effect of butyrate, it was administered with genipin, the major hepatotoxic metabolite of ZZ, to rats and HepG2 cells. Plasma lipopolysaccharide (LPS) level and colon tissue section were used to evaluate gut permeability. Expression level of Nuclear factor erythroid-derived 2-like 2 (Nrf2) was detected by immunohistochemistry in vitro and by western blot in vivo. RESULTS Our study showed that ZZCD displayed lower hepatotoxicity than ZZ at the same dosage. ZZ induced gut dysbiosis, significantly reducing Lactobacillus and Enterococcus levels and increasing the Parasutterella level. In combination with DDC, these alterations were reversed and beneficial genus including Akkermansia and Prevotella were significantly increased. Besides, butyrate production was diminished by ZZ but was restored when in combination with DDC. Butyrate showed detoxification on genipin-induced liver injury by promoting colon integrity and promoting Nrf2 activation. Besides, it protected genipin-induced hepatocyte damage by promoting Nrf2 activation. CONCLUSION DDC attenuates ZZ-induced liver injury by regulating the microbiota, promoting butyrate production and activating antioxidant response.
Collapse
Affiliation(s)
- Yusha Luo
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai 200433, China
| | - Xingjie Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai 200433, China
| | - Qiliang Yang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wei You
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jun Wen
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai 200433, China.
| | - Tingting Zhou
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai 200433, China.
| |
Collapse
|
17
|
Han J, Xu K, Yan Q, Sui W, Zhang H, Wang S, Zhang Z, Wei Z, Han F. Qualitative and quantitative evaluation of Flos Puerariae by using chemical fingerprint in combination with chemometrics method. J Pharm Anal 2021; 12:489-499. [PMID: 35811625 PMCID: PMC9257449 DOI: 10.1016/j.jpha.2021.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/29/2021] [Accepted: 09/11/2021] [Indexed: 11/29/2022] Open
Abstract
In order to better control the quality of Flos Puerariae (FP), qualitative and quantitative analyses were initially performed by using chemical fingerprint and chemometrics methods in this study. First, the fingerprint of FP was developed by HPLC and the chemical markers were screened out by similarity analysis (SA), hierarchical clustering analysis (HCA), principal components analysis (PCA), and orthogonal partial least squares discriminant analysis (OPLS-DA). Next, the chemical constituents in FP were profiled and identified by HPLC coupled to Fourier transform ion cyclotron resonance mass spectrometry (HPLC-FT-ICR MS). Then, the characteristic constituents in FP were quantitatively analyzed by HPLC. As a result, 31 common peaks were assigned in the fingerprint and 6 of them were considered as qualitative markers. A total of 35 chemical constituents were detected by HPLC-FT-ICR MS and 16 of them were unambiguously identified by comparing retention time, UV absorption wavelength, accurate mass, and MS/MS data with those of reference standards. Subsequently, the contents of glycitin, genistin, tectoridin, glycitein, genistein, and tectorigenin in 13 batches of FP were detected, ranging from 0.4438 to 11.06 mg/g, 0.955 to 1.726 mg/g, 9.81 to 57.22 mg/g, 3.349 to 41.60 mg/g, 0.3576 to 0.989 mg/g, and 2.126 to 9.99 mg/g, respectively. In conclusion, fingerprint analysis in combination with chemometrics methods could discover chemical markers for improving the quality control standard of FP. It is expected that the strategy applied in this study will be valuable for further quality control of other traditional Chinese medicines. The qualitative and quantitative analysis were carried out for Flos Puerariae. Fingerprints were combined with different chemometrics to discover the qualitative markers FP. Thirty five constituents of FP were characterized by HPLC-FT-ICR MS. Six chemical constituents were simultaneously determined by HPLC.
Collapse
Affiliation(s)
- Jing Han
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ke Xu
- Department of Ophthalmology, the Fourth People's Hospital of Shenyang, Shenyang, 110031, China
| | - Quanxiang Yan
- Science and Technology Institute of Shenyang Open University, Shenyang, 110003, China
| | - Wenwen Sui
- Shenyang Harmony Health Medical Laboratory, Shenyang, 110016, China
| | - Haotian Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Sijie Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zan Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ziyun Wei
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Corresponding author.
| |
Collapse
|
18
|
Zhang Q, Xu K, Zhang Y, Han J, Sui W, Zhang H, Yu M, Tong Y, Wang S, Han F. Quality control of Semen Hoveniae by high-performance liquid chromatography coupled to Fourier transform-ion cyclotron resonance mass spectrometry. J Sep Sci 2021; 44:3366-3375. [PMID: 34288432 DOI: 10.1002/jssc.202100240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 01/28/2023]
Abstract
A method based on high-performance liquid chromatography and Fourier transform-ion cyclotron resonance mass spectrometry was developed to control the quality of Semen Hoveniae. First, the chromatographic fingerprint was established in combination with the chemometrics methods such as similarity analysis, cluster analysis, principal component analysis, and orthogonal partial least squares discriminant analysis to discover the qualitative markers. Then, an high-performance liquid chromatography mass spectrometry method was developed to identify the chemical constituents in Semen Hoveniae. Moreover, the content of dihydromyricetin and dihydroquercetin in Semen Hoveniae were determined by high-performance liquid chromatography. As a result, nine common peaks were assigned in the fingerprints and the similarity of the 13 batch samples varied from 0.425 to 0.993, indicating an obviously different quality. Dihydromyricetin and dihydroquercetin were the main qualitative markers to differ the quality of Semen Hoveniae. Meanwhile, a total of 21 chemical compounds were characterized by high-performance liquid chromatography mass spectrometry and six of them were identified by comparing with information of reference standards. Finally, the content of dihydromyricetin and dihydroquercetin in 13 batch samples varied from 0.824 to 7.499 mg/g and from 0.05941 to 4.258 mg/g , respectively. In conclusion, the methods developed here will provide sufficient qualitative and quantitative information for the quality control of Semen Hoveniae.
Collapse
Affiliation(s)
- Qingyu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, P. R. China
| | - Ke Xu
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, No.20 Huang He South Street, Huang Gu District, Shenyang, 110031, P. R. China
| | - Yu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, P. R. China
| | - Jing Han
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, P. R. China
| | - Wenwen Sui
- Shenyang Harmony Health Medical Laboratory, 15 Buildings, 19 Wenhui Street, JinPenglong Hightech Industry Park, Shenyang, 110016, P. R. China
| | - Haotian Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, P. R. China
| | - Maomao Yu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, P. R. China
| | - Yichen Tong
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, P. R. China
| | - Sijie Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, P. R. China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, P. R. China
| |
Collapse
|
19
|
A smart spectral analysis strategy-based UV and FT-IR spectroscopy fingerprint: Application to quality evaluation of compound liquorice tablets. J Pharm Biomed Anal 2021; 202:114172. [PMID: 34082163 DOI: 10.1016/j.jpba.2021.114172] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 04/21/2021] [Accepted: 05/22/2021] [Indexed: 10/21/2022]
Abstract
This study focuses on development of a smart spectral analysis strategy for rapid quality evaluation of complex sample. Firstly, the ultraviolet (UV) and Fourier Transform Infrared (FT-IR) spectroscopy were established. Secondly, the second derivative UV spectral was obtained and showed 7 major absorption peaks, which was the projection of the 3D-spectrum profile. It can perform peak matching like chromatogram, thus, helpful for 3D UV spectrum analysis, qualitatively and quantitatively. The qualitative and quantitative similarity results based on systematic quantified fingerprint method displayed basically a consistency with their hierarchical cluster analysis results. Notably, the quality evaluation of the first proposed FT-IR spectral quantized fingerprints and the good correlation of Pm% with PA (R2 = 0.80296), as well as the excellent quantitative prediction model for liquiritin, glycyrrhizinic acid and sodium benzoate all indicated the promising of FT-IR spectral quantized fingerprint in quantitative analysis and QC of compound liquorice tablets. Finally, an integrated evaluate strategy was developed by mean algorithm to reduce the error caused by single technique. 54 samples integrally had a good quality consistency as their quality ranged grade 1-5. This study illustrated that the smart data analysis strategy based on spectral fingerprint has potential to enhance existing methodologies for further rapid and integrated studies evaluating the quality of herbal medicine and its related products.
Collapse
|
20
|
Li T, Zhang X, Zeng Y, Ren Y, Sun J, Yao R, Wang Y, Wang J, Huang Q. Semen Sojae Preparatum as a Traditional Chinese Medicine: Manufacturing Technology, Bioactive Compounds, Microbiology and Medicinal Function. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1928180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Tingna Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaorui Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yijia Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanyuan Ren
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jilin Sun
- Sichuan Fuzheng Pharm Corporation, Chengdu, China
| | - Renchuan Yao
- Sichuan Engineering Technology Research Center of Fermented Traditional Chinese Medicine (Koji), China
| | - Yijie Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinwan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
21
|
Zhou M, Zheng W, Sun X, Yuan M, Zhang J, Chen X, Yu K, Guo B, Ma B. Comparative analysis of chemical components in different parts of Epimedium Herb. J Pharm Biomed Anal 2021; 198:113984. [PMID: 33691203 DOI: 10.1016/j.jpba.2021.113984] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/29/2020] [Accepted: 02/12/2021] [Indexed: 11/28/2022]
Abstract
Epimedium herb is a well-known traditional Chinese medicine (TCM) that is used for treating kidney-yang deficiency, impotence and rheumatism, and flavonoids are the main active ingredients. The leaves and rhizomes of Epimedium herb are two separate kinds of medicinal materials with different functional indications and clinical applications. This study aimed to comprehensively analyze the chemical components of different parts of the herb from three Epimedium species (Epimedium sagittatum, E. pubescens and E. myrianthum) by using ultra high-performance liquid chromatography coupled with photo-diode array and quadrupole time-of-flight mass spectrometry (UHPLC-PDA-Q-TOF/MS) and multivariate statistical analysis to clarify the differences. Firstly, the workflow of UHPLC-Q-TOF/MS combined with UNIFI informatics was developed for characterizing the chemical compounds in different parts of Epimedium herb. Based on the exact mass information, the fragmentation characteristics and the retention times of compounds, all chromatographic peaks (74 chemical components) were identified. Secondly, 21 potential chemical markers for differentiating different parts of Epimedium herb were selected through PCA and PLS-DA analysis. The characteristic components in the leaves included flavonoids with Anhydroicaritin (type A, C-4' linked methoxy) as the backbone, and the characteristic components in the stems and rhizomes were Magnoline and flavonoids with Demethylanhydroicaritin (type B, C-4' linked hydroxyl) as the backbone. Thirdly, the UHPLC-PDA combined with heatmap visualization was employed to clarify the distribution of chemical components with high content in different parts of Epimedium herb. The results showed clear differences in the contents of chemical components in leaves, stems and rhizomes. The levels of flavonoids with Anhydroicaritin backbone were high in the leaves, and levels of flavonoids with Demethylanhydroicaritin backbone were high in the rhizomes. The levels of Magnoline in stems and rhizomes were higher than that in leaves. The contents of most of the compounds in stems remained low. The leaves and the other two parts (stems and rhizomes) can be distinguished by qualitative and semi-quantitative analysis of Magnoline and Epimedoside A (type B backbone). These results indicated that the different plant parts of Epimedium herb can be quickly and accurately distinguished by this method, establishing a foundation for the application of Epimedium herb.
Collapse
Affiliation(s)
- Ming Zhou
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Wei Zheng
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xinguang Sun
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ming Yuan
- Waters Technologies (Shanghai) Limited, Shanghai 201206, China
| | - Jie Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaojuan Chen
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Kate Yu
- Waters Technologies (Shanghai) Limited, Shanghai 201206, China
| | - Baolin Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Baiping Ma
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
22
|
Zhang Y, Li S, Liang Y, Liu R, Lv X, Zhang Q, Xu H, Bi K, Li Z, Li Q. A systematic strategy for uncovering quality marker of Asari Radix et Rhizoma on alleviating inflammation based chemometrics analysis of components. J Chromatogr A 2021; 1642:461960. [PMID: 33684872 DOI: 10.1016/j.chroma.2021.461960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
Asari Radix et Rhizoma (Asarum), a traditional Chinese medicine (TCM), has been applied in clinical generally. However, due to the lack of valid methods for Asarum quality control, inhomogenous quality and therapy issues have become severe with each passing day. In this study, we aimed to establish a comprehensive multi-system to explore the quality control markers underlying pharmaceutical effects based on chemometrics analysis on the total ingredients of Asarum. In brief, DNA barcoding technology was used to screen out the unadulterated herbs in the 15 batches Asarum collected from different origins. Then, the chemical profiles of volatile/nonvolatile components of 10 batches Asarum with definite resource were obtained by HPLC Q-TOF/MS and GC/MS. Combination with chemometrics methods, 14 characteristic ingredients and 4 qualitative and quantitative markers were figured out preliminarily. Moreover, correlation analysis between the characteristic ingredients and the cytokines integrating the virtual targets prediction of network pharmacology, 3 potential bioactive substance were ascertained. In conclusion, l-asarinin, 2-Methoxy-4-vinylphenol and safrole were considered as the potent candidates for quality control markers based on the comprehensive understanding for therapeutic effects and the chemical information of Asarum, which provided a novel perspective of the development for the quality control of TCM.
Collapse
Affiliation(s)
- Yiwen Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Saiyu Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yuting Liang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Ran Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xinyan Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qian Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Huarong Xu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Zuojing Li
- School of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
23
|
Zhang Y, Luo Y, Zhang D, Pang B, Wen J, Zhou T. Predicting a Potential Link to Antidepressant Effect: Neuroprotection of Zhi-zi-chi Decoction on Glutamate-induced Cytotoxicity in PC12 Cells. Front Pharmacol 2021; 11:625108. [PMID: 33569009 PMCID: PMC7868552 DOI: 10.3389/fphar.2020.625108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/24/2020] [Indexed: 12/28/2022] Open
Abstract
Zhi-zi-chi Decoction (ZZCD), composed of Fructus Gardeniae (Zhizi in Chinese, ZZ in brief) and Semen sojae praeparatum (Dandouchi in Chinese, DDC in brief), has been used as a drug therapy for depression for thousands of years in China. However, the antidepressant mechanism of ZZCD still remains unknown. This study was aimed at exploring antidepressant effects of ZZCD from the aspect of neuroprotection based on herb compatibility. Glutamate-treated PC12 cells and chronic unpredictable mild stress (CUMS)-induced rats were established as models of depression in vitro and in vivo respectively. Cell viability, lactate dehydrogenase (LDH), apoptosis rate, reactive oxygen species (ROS), glutathione reductase (GR) and superoxide dismutase (SOD), and the expressions of Bax, Bcl-2 and cyclic adenosine monophosphate-response element binding protein (CREB) were measured to compare neuroprotection among single herbs and the formula in vitro. Behavior tests were conducted to validate antidepressant effects of ZZCD in vivo. Results showed that the compatibility of ZZ and DDC increased cell viability and activities of GR and SOD, and decreased the levels of LDH, apoptosis cells and ROS. Besides, the expressions of Bcl-2 and CREB were up-regulated while that of Bax was down-regulated by ZZCD. Furthermore, the compatibility of ZZ and DDC reversed abnormal behaviors in CUMS-induced rats and displayed higher efficacy than any of the single herbs. This study revealed that the antidepressant effects of ZZCD were closely associated with neuroprotection and elucidated synergistic effects of the compatibility of ZZ and DDC based on it.
Collapse
Affiliation(s)
- Yin Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yusha Luo
- School of Pharmacy, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Dongqi Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Bo Pang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jun Wen
- School of Pharmacy, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Tingting Zhou
- School of Pharmacy, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
24
|
Gong D, Zheng Z, Chen J, Pang Y, Sun G. Holistic quality evaluation of compound liquorice tablets using capillary electrophoresis fingerprinting combined with chemometric methods. NEW J CHEM 2021. [DOI: 10.1039/d0nj05461e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Integrated quality control of herbal medicine using eco-friendly capillary zone electrophoresis and equal weight ratio quantitative fingerprint method.
Collapse
Affiliation(s)
- Dandan Gong
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Zijia Zheng
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Jinyu Chen
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Ying Pang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Guoxiang Sun
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| |
Collapse
|
25
|
Sang Q, Jia Q, Zhang H, Lin C, Zhao X, Zhang M, Wang Y, Hu P. Chemical profiling and quality evaluation of Zhishi-Xiebai-Guizhi Decoction by UPLC-Q-TOF-MS and UPLC fingerprint. J Pharm Biomed Anal 2020; 194:113771. [PMID: 33280997 DOI: 10.1016/j.jpba.2020.113771] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 11/19/2022]
Abstract
Zhishi-Xiebai-Guizhi Decoction (ZSXBGZD), a traditional Chinese medicine (TCM) formula, has been used for treatment of coronary heart disease and myocardial infarction for nearly two thousand years. However, the chemical composition of ZSXBGZD is still unclear. In order to obtain the chemical profile of ZSXBGZD, an ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) method was utilized for the identification of its multi-constituents. As a result, a total of 148 compounds were identified based on their retention times, accurate masses and MS/MS data. In addition, an optimized UPLC fingerprint analysis, combined with chemometrics such as similarity analysis (SA), hierarchical cluster analysis (HCA), principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) was developed for quality assessment of ZSXBGZD. Multivariate data analysis revealed that samples could be classified correctly according to their geographic origins, and four compounds neohesperidin, naringin, guanosine and adenosine contributed the most to classification. The established UPLC method with multi-wavelength detection was further validated and implemented for simultaneous quantification of 12 representative ingredients in the prescription, including guanosine, adenosine, 2'-deoxyadenoside, syringin, magnoloside A, forsythoside A, naringin, hesperidin, cinnamaldehyde, neohesperidin, honokiol and magnolol. This is the first report on the comprehensive profiling of major chemical components in ZSXBGZD. The results of the study could help to uncover the chemical basis of ZSXBGZD and possess potential value for quality evaluation purpose.
Collapse
Affiliation(s)
- Qingni Sang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qiangqiang Jia
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Hongyang Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Chuhui Lin
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaodan Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Min Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuerong Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ping Hu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
26
|
Yang X, Sun A, Boadi EO, Li J, He J, Gao XM, Chang YX. A Rapid High Throughput Vibration and Vortex-Assisted Matrix Solid Phase Dispersion for Simultaneous Extraction of Four Isoflavones for Quality Evaluation of Semen Sojae Praeparatum. Front Pharmacol 2020; 11:590587. [PMID: 33214793 PMCID: PMC7665882 DOI: 10.3389/fphar.2020.590587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Isoflavones (daidzein, daidzin, genistein and genistin) were main chemical components and usually selected as markers for quality control of Traditional Chinese Medicine semen sojae praeparatum (SSP). High throughput vibration and vortex-assisted matrix solid phase dispersion and high performance liquid chromatography with diode array detection were developed to simultaneously extract and quantify four isoflavones in SSP. Some parameters influencing extraction efficiency of isoflavones by vortex-assisted matrix solid phase dispersion such as sorbent type, ratio of sample to sorbent, crushing time, vibration frequency, methanol concentration, eluting solvent volume and vortex time were optimized. It was found that the best extraction yields of four isoflavones were obtained when the sample (20 mg) and SBA-3 (40 mg) was crushed by ball mill machine for 2 min at vibration frequency of 800 times per minute. Methanol/water (1.5 ml, 8:2, v/v) solution was dropped into the treated sample and vortexed for 3 min. The recoveries of the four isoflavones ranged from 86.1 to 94.8% and all relative standard deviations were less than 5%. A good linearity (r > 0.9994) was achieved within the range 0.5-125 μg/ml. It was concluded that the high throughput vibration and vortex-assisted matrix solid-phase dispersion coupled with high performance liquid chromatography was user-friendly extraction and quantification method of multiple isoflavones for quality evaluation of SSP.
Collapse
Affiliation(s)
- Xuejing Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Ali Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Evans Owusu Boadi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiu-mei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan-xu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
27
|
Mi R, Li X, Zhang Z, Cheng T, Tian S, Xu X, Zhang Y, Yuan W, Ye J, Liu L, Zhang X. Chemical profiling of Honghua Xiaoyao tablet and simultaneous determination of its quality markers by liquid chromatography-tandem mass spectrometry combined with chemometrics methods. J Sep Sci 2020; 43:4263-4280. [PMID: 32990401 DOI: 10.1002/jssc.202000689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 01/19/2023]
Abstract
Discovering marker components of traditional Chinese medicine formulas is challenging because of the hundreds of components they inherently contain. This study first proposed a reliable and validated method for the comprehensive profiling of chemical constituents in Honghua Xiaoyao tablet by using high-performance liquid chromatography coupled with mass spectrometry. After searching within the in-house library, a total of 55 constituents were unambiguously characterized or tentatively identified through reference standards and by comparing mass spectrometry data with literature values. Quantitative analysis of 14 compounds, which were selected as the quality marker components based on a serum pharmacochemistry study, has been performed by triple-quardrupole mass spectrometry technique. Multiple chemometric methods, including principal components analysis and hierarchical cluster analysis, were subsequently used to analyze the quantitative results, classify samples from three manufacturers, and distinguish the analytical markers. In method validation results, 14 quality marker compounds have shown good linearity (R2 ≥ 0.9965) with a relative wide concentration range and acceptable recovery at 98.39-102.46%. The proposed approach provides the chemical evidence for revealing the material basis of Honghua Xiaoyao tablet, and establishes a reliable statistical analysis-based strategy of quality marker investigation for controlling its quality.
Collapse
Affiliation(s)
- Rui Mi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Xiaofeng Li
- School of Pharmacy, Fudan University, Shanghai, P. R. China
| | - Zhen Zhang
- School of Pharmacy, The Second Military Medical University, Shanghai, P. R. China
| | - Taofang Cheng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Saisai Tian
- School of Pharmacy, The Second Military Medical University, Shanghai, P. R. China
| | - Xike Xu
- School of Pharmacy, The Second Military Medical University, Shanghai, P. R. China
| | - Yuhao Zhang
- School of Pharmacy, The Second Military Medical University, Shanghai, P. R. China
| | - Wenlin Yuan
- School of Pharmacy, The Second Military Medical University, Shanghai, P. R. China
| | - Ji Ye
- School of Pharmacy, The Second Military Medical University, Shanghai, P. R. China
| | - Li Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P. R. China.,School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Xinrong Zhang
- School of Pharmacy, The Second Military Medical University, Shanghai, P. R. China
| |
Collapse
|
28
|
Xu T, Li X, Huang M, Wang Q, Li C, Tian G, Chen Y. A Preferable Approach for the Quality Control of Xiaoer Chiqiao Qingre Granules Based on the Combination of Chromatographic Fingerprints and Chemometrics. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2020; 2020:6836981. [PMID: 33062374 PMCID: PMC7542504 DOI: 10.1155/2020/6836981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
A preferable approach of a combination of a multiwavelength fusion HPLC fingerprint and chemometrics for the quality control of Xiaoer Chiqiao Qingre granules (XCQG) was established in this study. A single-wavelength HPLC fingerprint was performed to identify 18 peaks as common peaks in the beginning, and 12 of them were recognized by HPLC-Q/TOF-MS. To overcome the limitation of the single-wavelength HPLC fingerprint, a three-wavelength (230 nm, 250 nm, and 330 nm) fusion fingerprint was established for a more thorough quality assessment. Six main active ingredients (geniposide, paeoniflorin, forsythin, forsythoside A, baicalin, and wogonoside) were selected as chemical markers for simultaneous quantitative analysis, while the results indicated that the content of other five ingredients except forsythoside A presented comparatively stable. Chemometrics including hierarchical cluster analysis (HCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were performed to evaluate the homogeneity and heterogeneity of sixteen batches of XCQG. The results of the multiwavelength fingerprint were clearly classified into two clusters by HCA, whereas the single-wavelength fingerprint showed no distinct difference between them. OPLS-DA was further employed to prove that the above six main active ingredients made great contributions to clustering. In summary, this integrated analysis provided a better promoted and more comprehensive method to control the quality of XCQG.
Collapse
Affiliation(s)
- Tong Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- The State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoqi Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-Component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Mengmeng Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-Component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Qi Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-Component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Chao Li
- Jumpcan Pharmaceutical Co., Ltd., Taixing 225400, China
| | - Gang Tian
- Jumpcan Pharmaceutical Co., Ltd., Taixing 225400, China
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-Component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| |
Collapse
|
29
|
Chang S, Yin C, Liang S, Lu M, Wang P, Li Z. Confirmation of brand identification in infant formulas by using near-infrared spectroscopy fingerprints. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2469-2475. [PMID: 32930236 DOI: 10.1039/d0ay00375a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, a near infrared (NIR) spectroscopy fingerprinting method coupled with principal component analysis (PCA) was developed for the confirmation of brand identification in infant formulas. The NIR spectroscopy fingerprints of the Brand A infant formula were acquired in 12 000-4000 cm-1 at a sample temperature of 20 °C without pressing the sample. The contents of major nutrients of Stage 1, 2, and 3 infant formulas were compared within Brand A. The NIR spectroscopy fingerprints of Brand A Stage 1 samples were compared with those of four other brand-named Stage 1 samples, whereas the fingerprints of Brand A Stage 2 and 3 were compared with those of two of the four brands, to distinguish the differences between brands. The NIR spectroscopy fingerprinting results showed that the Brand A formula can be completely differentiated from the other brands at each stage. The combination of NIR spectroscopy fingerprinting and PCA is an effective method for the purpose of confirmation of brand identification and brand protection in infant formulas.
Collapse
Affiliation(s)
- Shuyi Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Chengcheng Yin
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Sha Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Mei Lu
- Department of Food Science and Technology, University of Nebraska-Lincoln, 1901 N21st Street, Lincoln, Nebraska 68588, USA
| | - Ping Wang
- Xi'an Yinqiao Dairy Group Co., Ltd, Xi'an 710600, PR China
| | - Zhicheng Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
30
|
The Spectrum–Effect Relationship Between HPLC Fingerprint and the Invigorating Blood and Dissolving Stasis Effect of Hawthorn Leaves. Chromatographia 2020. [DOI: 10.1007/s10337-020-03861-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Quality assessment and differentiation of Aucklandiae Radix and Vladimiriae Radix based on GC-MS fingerprint and chemometrics analysis: basis for clinical application. Anal Bioanal Chem 2020; 412:1535-1549. [DOI: 10.1007/s00216-019-02380-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/06/2019] [Accepted: 12/27/2019] [Indexed: 12/18/2022]
|
32
|
Shi L, Wang R, Liu T, Wu J, Zhang H, Liu Z, Liu S, Liu Z. A rapid protocol to distinguish between Citri Exocarpium Rubrum and Citri Reticulatae Pericarpium based on the characteristic fingerprint and UHPLC-Q-TOF MS methods. Food Funct 2020; 11:3719-3729. [DOI: 10.1039/d0fo00082e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Citri Exocarpium Rubrum and Citri Reticulatae Pericarpium were successfully distinguished by the characteristic fingerprint and UHPLC-Q-TOF MS methods.
Collapse
Affiliation(s)
- Liqiang Shi
- School of Pharmaceutical Sciences
- Jilin University
- Changchun 130021
- China
| | - Rongjin Wang
- School of Pharmaceutical Sciences
- Jilin University
- Changchun 130021
- China
| | - Tianshu Liu
- School of Pharmaceutical Sciences
- Jilin University
- Changchun 130021
- China
| | - Jiajie Wu
- School of Pharmaceutical Sciences
- Jilin University
- Changchun 130021
- China
| | - Hongxu Zhang
- School of Pharmaceutical Sciences
- Jilin University
- Changchun 130021
- China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Zhongying Liu
- School of Pharmaceutical Sciences
- Jilin University
- Changchun 130021
- China
| |
Collapse
|
33
|
Chang R, Liu J, Luo Y, Huang T, Li Q, Wen J, Chen W, Zhou T. Isoflavones' effects on pharmacokinetic profiles of main iridoids from Gardeniae Fructus in rats. J Pharm Anal 2019; 10:571-580. [PMID: 33425451 PMCID: PMC7775847 DOI: 10.1016/j.jpha.2019.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
Gardeniae Fructus (GF) and Semen Sojae Praeparatum (SSP) are both medicine food homologies and widely used in Chinese clinical prescriptions together. The research investigated the pharmacokinetics of four iridoids in normal rats and isolfavones-fed rats, which were administered with isolfavones from SSP for 7, 14, 21 and 28 consecutive days. A validated LC-MS/MS method was developed for determining shanzhiside, genipin-1-gentiobioside, geniposide and their metabolite genipin in rat plasma. Plasma samples were pretreated by solid-phase extraction using paeoniflorin as the internal standard. The chromatographic separation was performed on a Waters Atlantis T3 (4.6 mm × 150 mm, 3 μm) column using a gradient mobile phase consisting of acetonitril and water (containing 0.06% acetic acid). The mass detection was under the multiple reaction monitoring (MRM) mode via polarity switching between negative and positive ionization modes. The calibration curves exhibited good linearity (r > 0.997) for all components. The lower limit of quantitation was in the range of 1–10 ng/mL. The intra-day and inter-day precisions (RSD) at three different levels were both less than 12.2% and the accuracies (RE) ranged from −10.1% to 16.4%. The extraction recovery of them ranged from 53.8% to 99.7%. Pharmacokinetic results indicated the bioavailability of three iridoid glycosides and the metabolite, genipin in normal rats was higher than that in rats exposed to isoflavones. With the longer time of administration of isoflavones, plasma concentrations of iridoids decreased, while genipin sulfate, the phase Ⅱ metabolite of genposide and genipin-1-gentiobioside, appeared the rising exposure. The pharmacokinetic profiles of main iridoids from GF were altered by isoflavones. A LC-MS/MS method for determination of four iridoids in rat plasma was developed and applied. The bioavailability of four iridoids decreased in rats with their increasing isoflavones exposure time. Isoflavones could alter the fate of iridoids in vivo when GF and SSP were prescribed together to obtain toxicity-reducing.
Collapse
Affiliation(s)
- Ruirui Chang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.,School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jialin Liu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yusha Luo
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | | | - Qiang Li
- Shimadzu China Co.LTD., Shanghai, 200233, China
| | - Jun Wen
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Tingting Zhou
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|
34
|
Gao S, Chen H, Zhou X. Study on the spectrum-effect relationship of the xanthine oxidase inhibitory activity of Ligustrum lucidum. J Sep Sci 2019; 42:3281-3292. [PMID: 31444949 DOI: 10.1002/jssc.201900531] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022]
Abstract
To evaluate the xanthine oxidase inhibitory activity of the chemical constituents of Ligustrum lucidum in vitro, the spectrum-effect relationship was investigated. The high-performance liquid chromatography fingerprint was established by ultraviolet spectrophotometry, and the xanthine oxidase inhibitory activity was tested in vitro by a high-throughput screening method. Cluster analysis, principal component analysis, gray correlation analysis, and partial least squares regression were used to explore the spectrum-effect relationships. Sixty batches of Ligustrum lucidum were collected from 16 provinces for testing. The results revealed differences among the batches of medicinal materials, and the similarity score was between 0.635 and 0.968. Thirty-three characteristic peaks (1-33) were calibrated by fingerprint evaluation software for traditional Chinese medicine. The spectrum-effect relationship study further revealed that the contents of peaks 1, 2, 4, 5, 6, 7, 14, 17, 25, 28, 31, and 33, which are potentially critical ingredients for quality control of Ligustrum lucidum fruit, were highly correlated with the inhibition of xanthine oxidase activity.
Collapse
Affiliation(s)
- Sai Gao
- Key Laboratory for the Information System of Mountainous Areas and Protection of the Ecological Environment, Guizhou Normal University, Guiyang, Guizhou, P. R. China.,Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, P. R. China.,Research Center for Quality Control of Natural Medicine, Guizhou Normal University, Guiyang, Guizhou, P. R. China
| | - Huaguo Chen
- Key Laboratory for the Information System of Mountainous Areas and Protection of the Ecological Environment, Guizhou Normal University, Guiyang, Guizhou, P. R. China.,Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, P. R. China.,Research Center for Quality Control of Natural Medicine, Guizhou Normal University, Guiyang, Guizhou, P. R. China
| | - Xin Zhou
- Key Laboratory for the Information System of Mountainous Areas and Protection of the Ecological Environment, Guizhou Normal University, Guiyang, Guizhou, P. R. China.,Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, P. R. China.,Research Center for Quality Control of Natural Medicine, Guizhou Normal University, Guiyang, Guizhou, P. R. China
| |
Collapse
|
35
|
Zhang Y, Yao Y, Shi X, Fan J, Huang T, Wen J, Zhou T. Combination of cell metabolomics and pharmacology: A novel strategy to investigate the neuroprotective effect of Zhi-zi-chi decoction. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:302-315. [PMID: 30872169 DOI: 10.1016/j.jep.2019.03.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/23/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhi-zi-chi Decoction(ZZCD), a traditional Chinese medicine formula, has been reported its potential protective effect on psychological sub-health diseases. However, there still remains a lack of molecular mechanism interpretation. AIM OF THE STUDY This study was aimed at investigating the mechanism of glutamate-induced toxicity in PC12 cells and the neuroprotective effect of ZZCD based on a novel strategy of the combination of cell metabolomics and pharmacology. MATERIALS AND METHODS The PC12 cells were treated with glutamate to simulate neurotoxic cell model. Gas chromatography coupled with mass spectrometry based on cell metabolomics approach was performed to comprehensively investigate the molecular mechanism of glutamate-induced toxicity The cell viability and cytotoxicity analysis, the determination of glutathione reductase(GR), superoxide dismutase(SOD) and reactive oxygen species(ROS), apoptosis analysis and western blot analysis were performed to evaluate the neuroprotection of ZZCD. RESULTS Forty metabolites were identified as potential biomarkers in model cells by principal components analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA). Glutamate decreased the GR and SOD activities, increased the level of intracellular ROS, activated the apoptotic pathway, and induced the changes of energy metabolism, amino acid metabolism and lipid metabolism. In addition, the extract of ZZCD could reverse the disturbed metabolic pathways by regulating those potential biomarkers and exerted anti-oxidation and anti-apoptosis. CONCLUSION ZZCD has neuroprotective effect and the novel strategy can be applicable for other traditional Chinese medicine formulas.
Collapse
Affiliation(s)
- Yin Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yuan Yao
- Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiaolei Shi
- Shimadzu China Co.LTD., Shanghai 200233, China
| | - Jun Fan
- Shimadzu China Co.LTD., Shanghai 200233, China
| | | | - Jun Wen
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Tingting Zhou
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
36
|
Chai C, Cui X, Shan C, Yu S, Wang X, Wen H. Simultaneous Characterization and Quantification of Varied Ingredients from Sojae semen praeparatum in Fermentation Using UFLC⁻TripleTOF MS. Molecules 2019; 24:E1864. [PMID: 31096583 PMCID: PMC6571576 DOI: 10.3390/molecules24101864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 11/16/2022] Open
Abstract
Systematic comparison of active ingredients in Sojae semen praeparatum (SSP) during fermentation was performed using ultra-fast liquid chromatography (UFLC)-TripleTOF MS and principal component analysis (PCA). By using this strategy, a total of 25 varied compounds from various biosynthetic groups were assigned and relatively quantified in the positive or negative ion mode, including two oligosaccharides, twelve isoflavones, eight fatty acids, N-(3-Indolylacetyl)-dl-aspartic acid, methylarginine, and sorbitol. Additionally, as the representative constituents, six targeted isoflavones were sought in a targeted manner and accurately quantified using extracted ion chromatograms (XIC) manager (AB SCIEX, Los Angeles, CA, USA) combined with MultiQuant software (AB SCIEX, Los Angeles, CA, USA). During the fermentation process, the relative contents of oligoses decreased gradually, while the fatty acids increased. Furthermore, the accurate contents of isoflavone glycosides decreased, while aglycones increased and reached a maximum in eight days, which indicated that the ingredients converted obviously and regularly throughout the SSP fermentation. In combination with the morphological changes, which meet the requirements of China Pharmacopoeia, this work suggested that eight days is the optimal time for fermentation of SSP from the aspects of morphology and content.
Collapse
Affiliation(s)
- Chuan Chai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China.
| | - Xiaobing Cui
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China.
| | - Chenxiao Shan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China.
| | - Sheng Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China.
| | - Xinzhi Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China.
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
37
|
Medina S, Perestrelo R, Silva P, Pereira JA, Câmara JS. Current trends and recent advances on food authenticity technologies and chemometric approaches. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.01.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
38
|
Yao Y, Ma X, Li T, Guo H, Chang R, Liu J, Liu Q, Hao H, Huang T, Chen W, Wen J, Zhou T. Quantification of isoflavone glycosides and aglycones in rat plasma by LC-MS/MS: Troubleshooting of interference from food and its application to pharmacokinetic study of Semen Sojae Praeparatum extract. J Pharm Biomed Anal 2018; 161:444-454. [PMID: 30216793 DOI: 10.1016/j.jpba.2018.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/06/2018] [Accepted: 09/03/2018] [Indexed: 11/29/2022]
Abstract
The isoflavones widely exist in the daily diets and interferences are usually inevitable in the determination of the in vivo level of the same analytes. A new strategy to eliminate the dietary interference was established to evaluate the exposure of isoflavones including daidzin, glycitin, genistin, daidzein, glycitein, and genistein in rats fed with Semen Sojae Praeparatum (SSP) extract. Plasma samples were pretreated by liquid-liquid extraction with ethyl acetate using quercetin as the internal standard (IS). The chromatographic separation was achieved on a Symmetry C18 column (100 mm × 3.0 mm) using a gradient mobile phase consisting of acetonitril and water (containing 0.1% formic acid) with a run time of 13.0 min at a flow rate of 0.4ml/min. The detection was carried out by a triple-quadrupole tandem mass spectrometer in multiple reaction monitoring (MRM) mode via polarity switching between negative (for and positive (for daidzin glycitin) ionization mode. All calibration curves exhibited good linearity (r> 0.99) over a wide concentration range for all components. The lower limit of quantitation (LLOQ) was in the range of 0.1-0.4 ng/ml. The intra-day and inter-day precisions (RSD) at three different levels were both less than 14.9% and the accuracies (RE) ranged from -9.3% to 14.5%. The extraction recoveries of the analytes and the IS ranged from 85.7% to 100.2%. The validated method was first successfully applied to pharmacokinetic study of the six isoflavones in rat plasma after oral administration of SSP extract. The dynamic baseline levels of six isoflavones in blank plasma from rats consuming food containing dietary isoflavones were measured for the correction of the plasma concentrations. The principle pharmacokinetic parameters were calculated from rats with or without regular commercial food, and found to be altered by the dietary food containing some isoflavones.
Collapse
Affiliation(s)
- Yuan Yao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Xin Ma
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Teng Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; 92154 Military Hospital, Yantai 264680, China
| | - Hui Guo
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ruirui Chang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Jialin Liu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Qiaoxia Liu
- Shimadzu China Co.LTD., Shanghai 200233, China
| | | | | | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China.
| | - Jun Wen
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Tingting Zhou
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|