1
|
Reinhardt J, Steinhaus M. Injection artifacts in odorant analysis by gas chromatography. J Chromatogr A 2025; 1741:465624. [PMID: 39721401 DOI: 10.1016/j.chroma.2024.465624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Odor-active compounds are major quality parameters in food and other consumer products. In the analysis of odorants, gas chromatography (GC) plays a dominant role and is particularly indispensable for odorant screening by GC-olfactometry (GC-O). Whereas artifact formation during workup before GC analysis has been widely discussed, artifact formation during GC injection has not been adequately addressed so far. Using a set of 14 test compounds, we evaluated ten different GC injection approaches. Artifact-producing reactions were particularly 1,2-eliminations. Linalyl acetate additionally showed [1,3]-sigmatropic shifts. On-column injection was confirmed as the gold standard, with virtually zero artifact formation observed not only with classic cold on-column injection in the oven, but also with on-column injection in a programmable temperature vaporizing (PTV) injector. Substantial artifact formation was observed when a high fixed injector temperature was combined with splitless injection. This applied to the injection of liquid samples but even more so to headspace solid-phase microextraction (HS-SPME) approaches. In conclusion, we recommend using on-column injection whenever aiming at a representative odorant spectrum, such as in GC-O. In targeted analysis, critical approaches such as SPME should be carefully tested for artifact formation. For the evaluation of the artifact formation potential of different injection approaches, cedryl acetate emerged as an excellent test compound.
Collapse
Affiliation(s)
- Julian Reinhardt
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany; Leibniz Institute for Food Systems Biology at the Technical University of Munich (Leibniz-LSB@TUM), Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Martin Steinhaus
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany; Leibniz Institute for Food Systems Biology at the Technical University of Munich (Leibniz-LSB@TUM), Lise-Meitner-Straße 34, 85354 Freising, Germany.
| |
Collapse
|
2
|
Cui J, Zhou J, Du W, Guo D, Tang X, Zhao W, Lu M, Yu K, Luo Z, Chen Y, Wang Q, Gao T, Schwab WG, Song C. Distribution of and Temporal Variation in Volatiles in Tea ( Camellia sinensis) Flowers during the Opening Stages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19682-19693. [PMID: 37988651 DOI: 10.1021/acs.jafc.3c02690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Tea (Camellia sinensis) flowers emit a large amount of volatiles that attract pollinators. However, few studies have characterized temporal and spatial variation in tea floral volatiles. To investigate the distribution of volatiles within tea flowers and their variation among opening stages, volatile components from different parts of tea flowers and different opening stages were collected by headspace solid-phase microextraction and analyzed by gas chromatography-mass spectrometry. A total of 51 volatile compounds of eight chemical classes were identified in the tea flowers. Volatile compounds were most abundant in tea flowers of the Shuchazao cultivar. Acetophenone, 1-phenylethanol, 2-phenylethanol, and benzyl alcohol were the most abundant volatiles. Terpenes were common in the sepals, and benzoids were common in the stamens. The fatty acid derivatives were mainly distributed in the pistils and receptacles and were less abundant in the petals, sepals, and stamens. During the opening phase of tea flowers, the volatile content increased 12-fold, which mainly stemmed from the increase in benzoids. These results enhance our understanding of the formation of volatiles in tea flowers.
Collapse
Affiliation(s)
- Jilai Cui
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
- College of Life Science, Xinyang Normal University, 237 Nanhu R., Xinyang, Henan 464000, People's Republic of China
| | - Jie Zhou
- College of Life Science, Xinyang Normal University, 237 Nanhu R., Xinyang, Henan 464000, People's Republic of China
| | - Wenkai Du
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| | - Danyang Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| | - Xiaoyan Tang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| | - Wei Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| | - Mengqian Lu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| | - Keke Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| | - Zhengwei Luo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| | - Yushan Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| | - Qiang Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| | - Ting Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| | - Wilfried G Schwab
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| |
Collapse
|
3
|
Dötterl S, Gershenzon J. Chemistry, biosynthesis and biology of floral volatiles: roles in pollination and other functions. Nat Prod Rep 2023; 40:1901-1937. [PMID: 37661854 DOI: 10.1039/d3np00024a] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Covering: 2010 to 2023Floral volatiles are a chemically diverse group of plant metabolites that serve multiple functions. Their composition is shaped by environmental, ecological and evolutionary factors. This review will summarize recent advances in floral scent research from chemical, molecular and ecological perspectives. It will focus on the major chemical classes of floral volatiles, on notable new structures, and on recent discoveries regarding the biosynthesis and the regulation of volatile emission. Special attention will be devoted to the various functions of floral volatiles, not only as attractants for different types of pollinators, but also as defenses of flowers against enemies. We will also summarize recent findings on how floral volatiles are affected by abiotic stressors, such as increased temperatures and drought, and by other organisms, such as herbivores and flower-dwelling microbes. Finally, this review will indicate current research gaps, such as the very limited knowledge of the isomeric pattern of chiral compounds and its importance in interspecific interactions.
Collapse
Affiliation(s)
- Stefan Dötterl
- Department of Environment & Biodiversity, Paris Lodron University Salzburg, Hellbrunnerstr 34, 5020 Salzburg, Austria.
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| |
Collapse
|
4
|
Jin J, Zhao M, Jing T, Zhang M, Lu M, Yu G, Wang J, Guo D, Pan Y, Hoffmann TD, Schwab W, Song C. Volatile compound-mediated plant-plant interactions under stress with the tea plant as a model. HORTICULTURE RESEARCH 2023; 10:uhad143. [PMID: 37691961 PMCID: PMC10483893 DOI: 10.1093/hr/uhad143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/15/2023] [Indexed: 09/12/2023]
Abstract
Plants respond to environmental stimuli via the release of volatile organic compounds (VOCs), and neighboring plants constantly monitor and respond to these VOCs with great sensitivity and discrimination. This sensing can trigger increased plant fitness and reduce future plant damage through the priming of their own defenses. The defense mechanism in neighboring plants can either be induced by activation of the regulatory or transcriptional machinery, or it can be delayed by the absorption and storage of VOCs for the generation of an appropriate response later. Despite much research, many key questions remain on the role of VOCs in interplant communication and plant fitness. Here we review recent research on the VOCs induced by biotic (i.e. insects and pathogens) and abiotic (i.e. cold, drought, and salt) stresses, and elucidate the biosynthesis of stress-induced VOCs in tea plants. Our focus is on the role of stress-induced VOCs in complex ecological environments. Particularly, the roles of VOCs under abiotic stress are highlighted. Finally, we discuss pertinent questions and future research directions for advancing our understanding of plant interactions via VOCs.
Collapse
Affiliation(s)
- Jieyang Jin
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Mingyue Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Mengting Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Mengqian Lu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Guomeng Yu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Jingming Wang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Danyang Guo
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Yuting Pan
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Timothy D Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| |
Collapse
|
5
|
Li Y, Li R, Ren X, Wang T, Yu H, Liu Q. Nano-Fe promotes accumulation of phytoestrogens and volatile compounds in Trifolium pratense flowers. THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY 2023; 35:247-262. [DOI: 10.1007/s40626-023-00280-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/11/2023] [Indexed: 01/06/2025]
|
6
|
Ke Y, Zhou Y, Lv Y, Qi Y, Wei H, Lei Y, Huang F, Abbas F. Integrated metabolome and transcriptome analysis provides insights on the floral scent formation in Hydrangea arborescens. PHYSIOLOGIA PLANTARUM 2023:e13914. [PMID: 37072650 DOI: 10.1111/ppl.13914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Hydrangea (Hydrangea arborescens var. 'Annabelle') flowers are composed of sweet aroma sepals rather than true petals and can change color. Floral volatiles play important roles in plants, such as attracting pollinators, defending against herbivores, and signaling. However, the biosynthesis and regulatory mechanisms underlying fragrance formation in H. arborescens during flower development remain unknown. In this study, a combination of metabolite profiling and RNA sequencing (RNA-seq) was employed to identify genes associated with floral scent biosynthesis mechanisms in 'Annabelle' flowers at three developmental stages (F1, F2, and F3). The floral volatile data revealed that the 'Annabelle' volatile profile includes a total of 33 volatile organic compounds (VOCs), and VOCs were abundant during the F2 stage of flower development, followed by the F1 and F3 stages, respectively. Terpenoids and benzenoids/phenylpropanoids were abundant during the F2 and F1 stages, with the latter being the most abundant, whereas fatty acid derivatives and other compounds were found in large amount during the F3 stage. According to ultra performance liquid chromatography - tandem mass spectrometer (UPLC-MS/MS) analysis, benzene and substituted derivatives, carboxylic acids and derivatives, and fatty acyls play a significant role in the floral metabolite profile. The transcriptome data revealed a total of 17,461 differentially expressed genes (DEGs), with 7,585, 12,795, and 9,044 DEGs discovered between the F2 and F1, F3 and F1, and F2 and F3 stages, respectively. Several terpenoids and benzenoids/phenylpropanoids biosynthesis-related DEGs were identified, and GRAS/bHLH/MYB/AP2/WRKY were more abundant among transcription factors (TFs). Finally, DEGs interlinked with VOCs compounds were determined using cytoscape and k-means analysis. Our results paves the way for the discovery of new genes, critical data for future genetic studies, and a platform for the metabolic engineering of genes involved in the production of Hydrangea's signature floral fragrance.
Collapse
Affiliation(s)
- Yanguo Ke
- College of Economics and Management, Kunming University, Kunming, China
- Yunnan Urban Agricultural Engineering and Technological Research Center, College of Agronomy, Kunming University, Kunming, China
| | - Yiwei Zhou
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yiying Lv
- Yunnan Urban Agricultural Engineering and Technological Research Center, College of Agronomy, Kunming University, Kunming, China
| | - Ying Qi
- Yunnan Urban Agricultural Engineering and Technological Research Center, College of Agronomy, Kunming University, Kunming, China
| | - Huanyu Wei
- Yunnan Urban Agricultural Engineering and Technological Research Center, College of Agronomy, Kunming University, Kunming, China
| | - Yu Lei
- Yunnan Urban Agricultural Engineering and Technological Research Center, College of Agronomy, Kunming University, Kunming, China
| | - Feiyan Huang
- Yunnan Urban Agricultural Engineering and Technological Research Center, College of Agronomy, Kunming University, Kunming, China
| | - Farhat Abbas
- College of Economics and Management, Kunming University, Kunming, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Zhou Y, He Y, Zhu Z. Understanding of formation and change of chiral aroma compounds from tea leaf to tea cup provides essential information for tea quality improvement. Food Res Int 2023; 167:112703. [PMID: 37087269 DOI: 10.1016/j.foodres.2023.112703] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Abundant secondary metabolites endow tea with unique quality characteristics, among which aroma is the core component of tea quality. The ratio of chiral isomers of aroma compounds greatly affects the flavor of tea leaves. In this paper, we review the progress of research on chiral aroma compounds in tea. With the well-established GC-MS methods, the formation of, and changes in, the chiral configuration of tea aroma compounds during the whole cycle of tea leaves from the plant to the tea cup has been studied in detail. The ratio of aroma chiral isomers varies among different tea varieties and finished teas. Enzymatic reactions involving tea aroma synthases and glycoside hydrolases participate the formation of aroma compound chiral isomers during tea tree growth and tea processing. Non-enzymatic reactions including environmental factors such as high temperature and microbial fermentation involve in the change of aroma compound chiral isomers during tea processing and storage. In the future, it will be interesting to determine how changes in the proportions of chiral isomers of aroma compounds affect the environmental adaptability of tea trees; and to determine how to improve tea flavor by modifying processing methods or targeting specific genes to alter the ratio of chiral isomers of aroma compounds.
Collapse
Affiliation(s)
- Ying Zhou
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China.
| | - Yunchuan He
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China; College of Agriculture and Biotechnology, Zhejiang University, Xihu District, Hangzhou 310030, China
| | - Zengrong Zhu
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China; College of Agriculture and Biotechnology, Zhejiang University, Xihu District, Hangzhou 310030, China
| |
Collapse
|
8
|
Skaliter O, Livneh Y, Agron S, Shafir S, Vainstein A. A whiff of the future: functions of phenylalanine-derived aroma compounds and advances in their industrial production. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1651-1669. [PMID: 35638340 PMCID: PMC9398379 DOI: 10.1111/pbi.13863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/15/2022] [Accepted: 05/25/2022] [Indexed: 05/19/2023]
Abstract
Plants produce myriad aroma compounds-odorous molecules that are key factors in countless aspects of the plant's life cycle, including pollinator attraction and communication within and between plants. For humans, aroma compounds convey accurate information on food type, and are vital for assessing the environment. The phenylpropanoid pathway is the origin of notable aroma compounds, such as raspberry ketone and vanillin. In the last decade, great strides have been made in elucidating this pathway with the identification of numerous aroma-related biosynthetic enzymes and factors regulating metabolic shunts. These scientific achievements, together with public acknowledgment of aroma compounds' medicinal benefits and growing consumer demand for natural products, are driving the development of novel biological sources for wide-scale, eco-friendly, and inexpensive production. Microbes and plants that are readily amenable to metabolic engineering are garnering attention as suitable platforms for achieving this goal. In this review, we discuss the importance of aroma compounds from the perspectives of humans, pollinators and plant-plant interactions. Focusing on vanillin and raspberry ketone, which are of high interest to the industry, we present key knowledge on the biosynthesis and regulation of phenylalanine-derived aroma compounds, describe advances in the adoption of microbes and plants as platforms for their production, and propose routes for improvement.
Collapse
Affiliation(s)
- Oded Skaliter
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Yarin Livneh
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Shani Agron
- Department of NeurobiologyThe Weizmann Institute of ScienceRehovotIsrael
| | - Sharoni Shafir
- B. Triwaks Bee Research Center, Department of Entomology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| |
Collapse
|
9
|
Molecular and Metabolic Changes under Environmental Stresses: The Biosynthesis of Quality Components in Preharvest Tea Shoots. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Severe environments impose various abiotic stresses on tea plants. Although much is known about the physiological and biochemical responses of tea (Camellia sinensis L.) shoots under environmental stresses, little is known about how these stresses impact the biosynthesis of quality components. This review summarizes and analyzes the changes in molecular and quality components in tea shoots subjected to major environmental stresses during the past 20 years, including light (shade, blue light, green light, and UV-B), drought, high/low temperature, CO2, and salinity. These studies reveal that carbon and nitrogen metabolism is critical to the downstream biosynthesis of quality components. Based on the molecular responses of tea plants to stresses, a series of artificial methods have been suggested to treat the pre-harvest tea plants that are exposed to inhospitable environments to improve the quality components in shoots. Furthermore, many pleiotropic genes that are up- or down-regulated under both single and concurrent stresses were analyzed as the most effective genes for regulating multi-resistance and quality components. These findings deepen our understanding of how environmental stresses affect the quality components of tea, providing novel insights into strategies for balancing plant resistance, growth, and quality components in field-based cultivation and for breeding plants using pleiotropic genes.
Collapse
|
10
|
Chen Q, Zhang M, Chen M, Li M, Zhang H, Song P, An T, Yue P, Gao X. Influence of Eurotium cristatum and Aspergillus niger individual and collaborative inoculation on volatile profile in liquid-state fermentation of instant dark teas. Food Chem 2021; 350:129234. [PMID: 33588283 DOI: 10.1016/j.foodchem.2021.129234] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/29/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022]
Abstract
The three instant dark teas were produced from instant green tea (IGT) by liquid-state fermentations using the microorganisms Eurotium cristatum (EFT), Aspergillus niger (AFT), and sequential inoculation of E. cristatum/A. niger (EAFT), respectively. The volatile compounds of four tea samples were extracted by headspace-solid phase microextraction (HS-SPME) and analyzed using gas chromatography-mass spectrometry (GC-MS) coupled with chemometrics. A total of 97 volatile compounds were tentatively identified to distinguish three fermented instant dark from IGT. Alcohols, acids, esters, ketones, aldehydes, and heterocyclics could be clearly distinguished by principal component analysis (PCA), venn diagram, heatmap analysis and hierarchical cluster analysis (HCA). Descriptive sensory analysis revealed that AFT had a moldy, woody and herbal aroma; EFT showed woody and herbal aroma; and EAFT smelled an herbal, sweet, minty and floral aroma. This study indicates that fermentation using different microorganisms is critical in forming unique aroma characteristics of instant dark teas.
Collapse
Affiliation(s)
- Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, Anhui Engineering Laboratory for Agro-products Processing, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mingyue Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, Anhui Engineering Laboratory for Agro-products Processing, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mengxue Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, Anhui Engineering Laboratory for Agro-products Processing, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mengru Li
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, Anhui Engineering Laboratory for Agro-products Processing, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Haiwei Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, Anhui Engineering Laboratory for Agro-products Processing, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Pengpeng Song
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, Anhui Engineering Laboratory for Agro-products Processing, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Tingting An
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, Anhui Engineering Laboratory for Agro-products Processing, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Pengxiang Yue
- Food and Biological Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000, China
| | - Xueling Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, Anhui Engineering Laboratory for Agro-products Processing, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
11
|
Liao Y, Fu X, Zeng L, Yang Z. Strategies for studying in vivo biochemical formation pathways and multilevel distributions of quality or function-related specialized metabolites in tea (Camellia sinensis). Crit Rev Food Sci Nutr 2020; 62:429-442. [DOI: 10.1080/10408398.2020.1819195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yinyin Liao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiumin Fu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
12
|
Chen D, Chen G, Sun Y, Zeng X, Ye H. Physiological genetics, chemical composition, health benefits and toxicology of tea (Camellia sinensis L.) flower: A review. Food Res Int 2020; 137:109584. [PMID: 33233193 DOI: 10.1016/j.foodres.2020.109584] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
The flower of tea (Camellia sinensis L.) plant has been paid an increasing attention in the last twenty years, since it was found that tea flowers contained representative constituents similar to those of tea leaves, such as catechins, caffeine and amino acids. Tea flower is theoretically valuable although it has been considered as an industrial waste over a long period of time. This review summarizes the research findings conducted until now on physiological genetics, chemical composition, health benefits and toxicology of tea flowers, aiming to foresee their future applications. A lot of genes are involved in flower development and the synthesis and transmission of various chemicals in tea flowers. The chemical composition of tea flower consists mainly of catechins, polysaccharides, proteins, amino acids and saponins and thus tea flower possesses various health benefits such as antioxidant, anti-inflammatory, immunostimulating, antitumor, hypoglycemic, anti-obesity and anti-allergic activities. Moreover, tea flower contains a protease that can elevate the free amino acids content in the tea infusion by almost two folds. More importantly, the enzymatic activity of the protease is much higher than that of the commercially available proteases. Additionally, aqueous extracts of tea flower are demonstrated to safe to animals. Thus, the potential uses of tea flowers in food and medical fields are warranted.
Collapse
Affiliation(s)
- Dan Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | - Hong Ye
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
13
|
Zeng L, Wang X, Tan H, Liao Y, Xu P, Kang M, Dong F, Yang Z. Alternative Pathway to the Formation of trans-Cinnamic Acid Derived from l-Phenylalanine in Tea ( Camellia sinensis) Plants and Other Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3415-3424. [PMID: 32078319 DOI: 10.1021/acs.jafc.9b07467] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
trans-Cinnamic acid (CA) is a precursor of many phenylpropanoid compounds, including catechins and aroma compounds, in tea (Camellia sinensis) leaves and is derived from l-phenylalanine (l-Phe) deamination. We have discovered an alternative CA formation pathway from l-Phe via phenylpyruvic acid (PPA) and phenyllactic acid (PAA) in tea leaves through stable isotope-labeled precursor tracing and enzyme reaction evidence. Both PPA reductase genes (CsPPARs) involved in the PPA-to-PAA pathway were isolated from tea leaves and functionally characterized in vitro and in vivo. CsPPAR1 and CsPPAR2 transformed PPA into PAA and were both localized in the leaf cell cytoplasm. Rosa hybrida flowers (economic crop flower), Lycopersicon esculentum Mill. fruits (economic crop fruit), and Arabidopsis thaliana leaves (leaf model plant) also contained this alternative CA formation pathway, suggesting that it occurred in most plants, regardless of different tissues and species. These results improve our understanding of CA biosynthesis in tea plants and other plants.
Collapse
Affiliation(s)
- Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, Guangdong 510650, People's Republic of China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, Guangdong 510650, People's Republic of China
| | - Xiaoqin Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, Guangdong 510650, People's Republic of China
| | - Haibo Tan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, Guangdong 510650, People's Republic of China
| | - Yinyin Liao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, Guangdong 510650, People's Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Ping Xu
- Department of Tea Science, Zhejiang University, 388 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Ming Kang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, Guangdong 510650, People's Republic of China
| | - Fang Dong
- Guangdong Food and Drug Vocational College, 321 Longdongbei Road, Tianhe District, Guangzhou, Guangdong 510520, People's Republic of China
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, Guangdong 510650, People's Republic of China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, Guangdong 510650, People's Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
| |
Collapse
|
14
|
Chen D, Ding Y, Chen G, Sun Y, Zeng X, Ye H. Components identification and nutritional value exploration of tea (Camellia sinensis L.) flower extract: Evidence for functional food. Food Res Int 2020; 132:109100. [PMID: 32331644 DOI: 10.1016/j.foodres.2020.109100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/08/2020] [Accepted: 02/13/2020] [Indexed: 12/30/2022]
Abstract
Camellia sinensis L., its fresh leaves and buds are used to make tea, is an important industrial crop with a long history. However, less attention has been paid to tea flowers. Indeed, tea flower extract (TFE) is a rich source of functional molecules, but its nutritional value remains unclear. This study, from the perspective of "whole food", aimed to investigate the composition of TFE and further explore its possible health-promoting effects on cyclophosphamide-induced mice. It was found that TFE was mainly composed of carbohydrates (34.02 ± 1.42%), phenolic compounds (11.57 ± 0.14%), crude proteins (27.72 ± 3.07%) and saponins (2.81 ± 0.00%). Supplementation of TFE at 200 mg/kg·BW/d regulated intestinal homeostasis by improving the intestinal barrier, alleviating dysbacteriosis (reverse 44 of 68 disordered genera), stimulated immunoreactions with significant enhancement of serum TNF-α, IFN-γ, IL-1β, IL-2 and IL-6. Furthermore, TFE could improve the liver function through decreasing the hepatic malondialdehyde and aminotransferase levels and increasing the levels of catalase, myeloperoxidase, superoxide dismutase and reduced glutathione. Notably, the ameliorating effects of TFE on cyclophosphamide-induced immunosuppression and the hepatic injury were associated with its modulation of gut microbiota. The results provide the evidence for the application of tea flower as potential functional food.
Collapse
Affiliation(s)
- Dan Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yu Ding
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | - Hong Ye
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
15
|
Zhang Y, Shi J, Ni Y, Liu Y, Zhao Z, Zhao X, Gao Z. Tracing the mass flow from glucose and phenylalanine to pinoresinol and its glycosides in Phomopsis sp. XP-8 using stable isotope assisted TOF-MS. Sci Rep 2019; 9:18495. [PMID: 31811180 PMCID: PMC6897942 DOI: 10.1038/s41598-019-54836-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 11/19/2019] [Indexed: 11/26/2022] Open
Abstract
Phomopsis sp. XP-8, an endophytic fungus from the bark of Tu-Chung (Eucommia ulmoides Oliv) showed capability to biosynthesize pinoresinol (Pin) and pinoresinol diglucoside (PDG) from glucose (glu) and phenylalanine (Phe). To verify the mass flow in the biosynthesis pathway, [13C6]-labeled glu and [13C6]-labeled Phe were separately fed to the strain as sole substrates and [13C6]-labeled products were detected by ultra-high-performance liquid chromatography-quadrupole time of flight mass spectrometry. As results, [13C6]-labeled Phe was incorporated into [13C6]-cinnamylic acid (Ca) and p-coumaric acid (p-Co), and [13C12]-labeled Pin, which revealed that the Pin benzene ring came from Phe via the phenylpropane pathway. [13C6]-Labeled Ca and p-Co, [13C12]-labeled Pin, [13C18]-labeled pinoresinol monoglucoside (PMG), and [13C18]-labeled PDG products were found when [13C6]-labeled glu was used, demonstrating that the benzene ring and glucoside of PDG originated from glu. It was also determined that PMG was not the direct precursor of PDG in the biosynthetic pathway. The study identified the occurrence of phenylalanine- lignan biosynthesis pathway in fungi at the level of mass flow.
Collapse
Affiliation(s)
- Yan Zhang
- College of Food, Shihezi University, Road Beisi, Shihezi, Xinjiang Province, 832003, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China.
| | - Yongqing Ni
- College of Food, Shihezi University, Road Beisi, Shihezi, Xinjiang Province, 832003, China
| | - Yanlin Liu
- College of Enology, Northwest A & F University, Yangling, Shaanxi Province, 712100, China
| | - Zhixia Zhao
- College of Food, Shihezi University, Road Beisi, Shihezi, Xinjiang Province, 832003, China
| | - Xixi Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China
| | - Zhenhong Gao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China
| |
Collapse
|
16
|
Bouwmeester H, Schuurink RC, Bleeker PM, Schiestl F. The role of volatiles in plant communication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:892-907. [PMID: 31410886 PMCID: PMC6899487 DOI: 10.1111/tpj.14496] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/31/2019] [Accepted: 06/17/2019] [Indexed: 05/08/2023]
Abstract
Volatiles mediate the interaction of plants with pollinators, herbivores and their natural enemies, other plants and micro-organisms. With increasing knowledge about these interactions the underlying mechanisms turn out to be increasingly complex. The mechanisms of biosynthesis and perception of volatiles are slowly being uncovered. The increasing scientific knowledge can be used to design and apply volatile-based agricultural strategies.
Collapse
Affiliation(s)
- Harro Bouwmeester
- University of AmsterdamSwammerdam Institute for Life SciencesGreen Life Science research clusterScience Park 9041098 XHAmsterdamThe Netherlands
| | - Robert C. Schuurink
- University of AmsterdamSwammerdam Institute for Life SciencesGreen Life Science research clusterScience Park 9041098 XHAmsterdamThe Netherlands
| | - Petra M. Bleeker
- University of AmsterdamSwammerdam Institute for Life SciencesGreen Life Science research clusterScience Park 9041098 XHAmsterdamThe Netherlands
| | - Florian Schiestl
- Department of Systematic and Evolutionary BotanyUniversity of ZürichZollikerstrasse 107CH‐8008ZürichSwitzerland
| |
Collapse
|
17
|
Zeng L, Tan H, Liao Y, Jian G, Kang M, Dong F, Watanabe N, Yang Z. Increasing Temperature Changes Flux into Multiple Biosynthetic Pathways for 2-Phenylethanol in Model Systems of Tea ( Camellia sinensis) and Other Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10145-10154. [PMID: 31418564 DOI: 10.1021/acs.jafc.9b03749] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
2-Phenylethanol (2PE) is a representative aromatic aroma compound in tea (Camellia sinensis) leaves. However, its formation in tea remains unexplored. In our study, feeding experiments of [2H8]L-phenylalanine (Phe), [2H5]phenylpyruvic acid (PPA), or (E/Z)-phenylacetaldoxime (PAOx) showed that three biosynthesis pathways for 2PE derived from L-Phe occurred in tea leaves, namely, pathway I (via phenylacetaldehyde (PAld)), pathway II (via PPA and PAld), and pathway III (via (E/Z)-PAOx and PAld). Furthermore, increasing temperature resulted in increased flux into the pathway for 2PE from L-Phe via PPA and PAld. In addition, tomato fruits and petunia flowers also contained the 2PE biosynthetic pathway from L-Phe via PPA and PAld and increasing temperatures led to increased flux into this pathway, suggesting that such a phenomenon might be common among most plants containing 2PE. This represents a characteristic example of changes in flux into the biosynthesis pathways of volatile compounds in plants in response to stresses.
Collapse
Affiliation(s)
- Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , No. 723 Xingke Road , Tianhe District , Guangzhou 510650 , China
- Center of Economic Botany, Core Botanical Gardens , Chinese Academy of Sciences , No. 723 Xingke Road , Tianhe District , Guangzhou 510650 , China
| | - Haibo Tan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , No. 723 Xingke Road , Tianhe District , Guangzhou 510650 , China
- Center of Economic Botany, Core Botanical Gardens , Chinese Academy of Sciences , No. 723 Xingke Road , Tianhe District , Guangzhou 510650 , China
| | - Yinyin Liao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , No. 723 Xingke Road , Tianhe District , Guangzhou 510650 , China
- University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing 100049 , China
| | - Guotai Jian
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , No. 723 Xingke Road , Tianhe District , Guangzhou 510650 , China
- University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing 100049 , China
| | - Ming Kang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , No. 723 Xingke Road , Tianhe District , Guangzhou 510650 , China
| | - Fang Dong
- Guangdong Food and Drug Vocational College , No. 321 Longdongbei Road , Tianhe District , Guangzhou 510520 , China
| | - Naoharu Watanabe
- Graduate School of Science and Technology, Shizuoka University , No. 3-5-1 Johoku , Naka-ku, Hamamatsu 432-8561 , Japan
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , No. 723 Xingke Road , Tianhe District , Guangzhou 510650 , China
- Center of Economic Botany, Core Botanical Gardens , Chinese Academy of Sciences , No. 723 Xingke Road , Tianhe District , Guangzhou 510650 , China
- University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing 100049 , China
| |
Collapse
|
18
|
Zhou Y, Peng Q, Zhang L, Cheng S, Zeng L, Dong F, Yang Z. Characterization of enzymes specifically producing chiral flavor compounds (R)- and (S)-1-phenylethanol from tea (Camellia sinensis) flowers. Food Chem 2018; 280:27-33. [PMID: 30642496 DOI: 10.1016/j.foodchem.2018.12.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/12/2018] [Accepted: 12/09/2018] [Indexed: 12/30/2022]
Abstract
1-Phenylethanol is a chiral flavor compound that has enantiomers, (R)- and (S)-1-phenylethanol, with different flavor properties. Given that isolating these enantiomers from plants is low yielding and costly, enzymatic synthesis presents an alternative approach. However, the genes/enzymes that specifically produce (R)- and (S)-1-phenylethanol in plants are unknown. To identify these enzymes in tea (Camellia sinensis) flowers, 21 short chain dehydrogenase (SDR) genes were isolated from tea flowers, cloned, and functionally characterized. Several recombinant SDRs in Escherichia coli exhibited activity for converting acetophenone to (S)-1-phenylethanol (CsSPESs, >99.0%), while only one SDR produced (R)-1-phenylethanol (CsRPES, 98.6%). A pair of homologue enzymes (CsSPES and CsRPES) showed a strong preference for NADPH cofactor, with optimal enzymatic reaction conditions of 45-55 °C and pH 8.0. Identification of the tea flower-derived gene responsible for specific synthesis of (R)- and (S)-1-phenylethanolsuggests enzymatic synthesis of enantiopure 1-phenylethanol is possible using a plant-derived gene.
Collapse
Affiliation(s)
- Ying Zhou
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Qiyuan Peng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ling Zhang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
| | - Sihua Cheng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Fang Dong
- Guangdong Food and Drug Vocational College, Longdongbei Road 321, Tianhe District, Guangzhou 510520, China
| | - Ziyin Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
19
|
Zeng L, Watanabe N, Yang Z. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea ( Camellia sinensis) to safely and effectively improve tea aroma. Crit Rev Food Sci Nutr 2018; 59:2321-2334. [PMID: 30277806 DOI: 10.1080/10408398.2018.1506907] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metabolite formation is a biochemical and physiological feature of plants developed as an environmental response during the evolutionary process. These metabolites help defend plants against environmental stresses, but are also important quality components in crops. Utilizing the stress response to improve natural quality components in plants has attracted increasing research interest. Tea, which is processed by the tender shoots or leaves of tea plant (Camellia sinensis (L.) O. Kuntze), is the second most popular beverage worldwide after water. Aroma is an important factor affecting tea character and quality. The defense responses of tea leaves against various stresses during preharvest (tea growth process) and postharvest (tea manufacturing) processing can result in aroma formation. Herein, we summarize recent investigations into the biosyntheses of several characteristic aroma compounds prevalent in teas and derived from volatile fatty acid derivatives, terpenes, and phenylpropanoids/benzenoids. Several key aroma synthetic genes from tea leaves have been isolated, cloned, sequenced, and functionally characterized. Biotic stress (such as tea green leafhopper attack) and abiotic stress (such as light, temperature, and wounding) could enhance the expression of aroma synthetic genes, resulting in the abundant accumulation of characteristic aroma compounds in tea leaves. Understanding the specific relationships between characteristic aroma compounds and stresses is key to improving tea quality safely and effectively.
Collapse
Affiliation(s)
- Lanting Zeng
- a Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences , Guangzhou , China.,b College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences , Beijing , China
| | - Naoharu Watanabe
- c Graduate School of Science and Technology, Shizuoka University , Naka-ku, Hamamatsu , Japan
| | - Ziyin Yang
- a Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences , Guangzhou , China.,b College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
20
|
Peng Q, Zhou Y, Liao Y, Zeng L, Xu X, Jia Y, Dong F, Li J, Tang J, Yang Z. Functional Characterization of An Allene Oxide Synthase Involved in Biosynthesis of Jasmonic Acid and Its Influence on Metabolite Profiles and Ethylene Formation in Tea ( Camellia sinensis) Flowers. Int J Mol Sci 2018; 19:E2440. [PMID: 30126188 PMCID: PMC6121675 DOI: 10.3390/ijms19082440] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 12/27/2022] Open
Abstract
Jasmonic acid (JA) is reportedly involved in the interaction between insects and the vegetative parts of horticultural crops; less attention has, however, been paid to its involvement in the interaction between insects and the floral parts of horticultural crops. Previously, we investigated the allene oxide synthase 2 (AOS2) gene that was found to be the only JA synthesis gene upregulated in tea (Camellia sinensis) flowers exposed to insect (Thrips hawaiiensis (Morgan)) attacks. In our present study, transient expression analysis in Nicotiana benthamiana plants confirmed that CsAOS2 functioned in JA synthesis and was located in the chloroplast membrane. In contrast to tea leaves, the metabolite profiles of tea flowers were not significantly affected by 10 h JA (2.5 mM) treatment as determined using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry, and gas chromatography-mass spectrometry. Moreover, JA treatment did not significantly influence ethylene formation in tea flowers. These results suggest that JA in tea flowers may have different functions from JA in tea leaves and other flowers.
Collapse
Affiliation(s)
- Qiyuan Peng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Ying Zhou
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
| | - Yinyin Liao
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Xinlan Xu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
| | - Yongxia Jia
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
| | - Fang Dong
- Guangdong Food and Drug Vocational College, Longdongbei Road 321, Tianhe District, Guangzhou 510520, China.
| | - Jianlong Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Dafeng Road 6, Tianhe District, Guangzhou 510640, China.
| | - Jinchi Tang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Dafeng Road 6, Tianhe District, Guangzhou 510640, China.
| | - Ziyin Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|