1
|
Hong H, Habib A, Bi L, Qais DS, Wen L. Hollow Cathode Discharge Ionization Mass Spectrometry: Detection, Quantification and Gas Phase Ion-Molecule Reactions of Explosives and Related Compounds. Crit Rev Anal Chem 2024; 54:148-174. [PMID: 35467991 DOI: 10.1080/10408347.2022.2067467] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mass spectrometry (MS) has become an essential analytical method in every sector of science and technology. Because of its unique ability to provide direct molecular structure information on analytes, an extra method is rarely required. This review describes fabrication of a variable-pressure hollow cathode discharge (HCD) ion source for MS in detection, quantification and investigation of gas-phase ion molecule reactions of explosives and related compounds using air as a carrier gas. The HCD ion source has been designed in such a way that by altering the ion source pressures, the system can generate both HCD and conventional GD. This design enables for the selective detection and quantification of explosives at trace to ultra-trace levels. The pressure-dependent HCD ion source has also been used to investigate ion-molecule reactions in the gas phase of explosives and related compounds. The mechanism of ion formation in explosive reactions is also discussed.
Collapse
Affiliation(s)
- Huanhuan Hong
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Ahsan Habib
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Lei Bi
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | | | - Luhong Wen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Ishibashi M, Zaitsu K, Yoshikawa I, Otagaki S, Matsumoto S, Oikawa A, Shiratake K. High-throughput analysis of anthocyanins in horticultural crops using probe electrospray ionization tandem mass spectrometry (PESI/MS/MS). HORTICULTURE RESEARCH 2023; 10:uhad039. [PMID: 37082655 PMCID: PMC10111199 DOI: 10.1093/hr/uhad039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/23/2023] [Indexed: 05/03/2023]
Abstract
Plant secondary metabolites exhibit various horticultural traits. Simple and rapid analysis methods for evaluating these metabolites are in demand in breeding and consumer markets dealing with horticultural crops. We applied probe electrospray ionization (PESI) to evaluate secondary metabolite levels in horticultural crops. PESI does not require pre-treatment and separation of samples, which makes it suitable for high-throughput analysis. In this study, we targeted anthocyanins, one of the primary pigments in horticultural crops. Eighty-one anthocyanins were detected in approximately 3 minutes in the selected reaction-monitoring mode. Tandem mass spectrometry (MS/MS) could adequately distinguish between the fragments of anthocyanins and flavonols. Probe sampling, an intuitive method of sticking a probe directly to the sample, could detect anthocyanins qualitatively on a micro-area scale, such as achenes and receptacles in strawberry fruit. Our results suggest that PESI/MS/MS can be a powerful tool to characterize the profile of anthocyanins and compare their content among cultivars.
Collapse
Affiliation(s)
| | - Kei Zaitsu
- Faculty of Biology-Oriented Science and Technology, Kindai University, Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Ikue Yoshikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Shungo Otagaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
- Faculty of Agriculture, Meijo University, Tenpaku, Nagoya, Aichi 468-8502, Japan
| | - Shogo Matsumoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Akira Oikawa
- Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | | |
Collapse
|
3
|
Mou B, Zuo C, Chen L, Xie H, Zhang W, Wang Q, Wen L, Gan N. On-site Simultaneous Determination of Neonicotinoids, Carbamates, and Phenyl Pyrazole Insecticides in Vegetables by QuEChERS Extraction on Nitrogen and Sulfur co-doped Carbon Dots and Portable Mass Spectrometry. J Chromatogr A 2023; 1689:463744. [PMID: 36610187 DOI: 10.1016/j.chroma.2022.463744] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
In food safety monitoring, on-site and simultaneous detection of a variety of insecticides with different concentrations in the same matrix is necessary. However, the task remains challenging. In this study, a novel nitrogen and sulfur co-doped carbon dot (N, S-CD) was synthesized and used as a QuEChERS clean-up reagent to reduce matrix interferences in the determination of insecticides in vegetables. In addition, a portable mass spectrometer (µ-MS) was employed, without chromatography separation, to directly determine neonicotinoids, carbamates, and benzopyrazole insecticides (with acetamiprid, imidacloprid, thiamethoxam, fipronil, and carbofuran as models) in the pretreated samples. The N,S-CD µ-MS method exhibited effective clean-up performance with satisfactory matrix effects between -15.2% and 15.7%. The recoveries of spiked vegetable samples ranged from 82.2% to 109.7% for the five target insecticides, and the relative standard deviations (RSDs) ranged from 3.8% to 16.5%. The linear ranges were from 2.0 to 5.0 ng/g, with low detection limits (LOD) from 0.5 to 1.0 ng/g. Moreover, the total pretreatment and detection time was within 20 min. Thus, the incorporation of N,S-CD with QuEChERS extraction, together with the portable µ-MS system, could be a promising and feasible strategy for on-site, rapid, and simultaneous detection of various insecticides in vegetables.
Collapse
Affiliation(s)
- Binglin Mou
- Faculty of material science and chemical engineering, Ningbo University, Ningbo, 315211, China; College of food and pharmaceutical science, Ningbo University, Ningbo, 315211,China
| | - Chengyi Zuo
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - La Chen
- The research institute of advanced technologies, Ningbo University, Ningbo, 315211,China; China Innovation Instrument Co., Ltd, Ningbo, 315000, China
| | - Hongzhen Xie
- Faculty of material science and chemical engineering, Ningbo University, Ningbo, 315211, China
| | - Wentian Zhang
- China Innovation Instrument Co., Ltd, Ningbo, 315000, China
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Luhong Wen
- The research institute of advanced technologies, Ningbo University, Ningbo, 315211,China; China Innovation Instrument Co., Ltd, Ningbo, 315000, China; Guangzhou Hua Yue Hang Instrument Co., Ltd, Guangzhou, 510000, China.
| | - Ning Gan
- Faculty of material science and chemical engineering, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
4
|
Shi L, Habib A, Bi L, Hong H, Begum R, Wen L. Ambient Ionization Mass Spectrometry: Application and Prospective. Crit Rev Anal Chem 2022; 54:1584-1633. [PMID: 36206159 DOI: 10.1080/10408347.2022.2124840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Mass spectrometry (MS) is a formidable analytical tool for the analysis of non-polar to polar compounds individually and/or from mixtures, providing information on the molecular weights and chemical structures of the analytes. During the last more than one-decade, ambient ionization mass spectrometry (AIMS) has developed quickly, producing a wide range of platforms and proving scientific improvements in a variety of domains, from biological imaging to quick quality control. These methods have made it possible to detect target analytes in real time without sample preparation in an open environment, and they can be connected to any MS system with an atmospheric pressure interface. They also have the ability to analyze explosives, illicit drugs, disease diagnostics, drugs in biological samples, adulterants in food and agricultural products, reaction progress, and environmental monitoring. The development of novel ambient ionization techniques, such as probe electrospray ionization, paper spray ionization, and fiber spray ionization, employed even at picolitre to femtolitre solution levels to provide femtogram to attogram levels of the target analytes. The special characteristic of this ambient ion source, which has been extensively used, is the noninvasive property of PESI of examination of biological real samples. The results in the current review supports the idea that AIMS has emerged as a pioneer in MS-based approaches and that methods will continue to be developed along with improvements to existing ones in the near future.
Collapse
Affiliation(s)
- Lulu Shi
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Ahsan Habib
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Lei Bi
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
| | - Huanhuan Hong
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
| | - Rockshana Begum
- Department of Chemistry, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Luhong Wen
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
5
|
te Brinke E, Arrizabalaga-Larrañaga A, Blokland MH. Insights of ion mobility spectrometry and its application on food safety and authenticity: A review. Anal Chim Acta 2022; 1222:340039. [DOI: 10.1016/j.aca.2022.340039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/01/2022]
|
6
|
Habib A, Bi L, Hong H, Wen L. Challenges and Strategies of Chemical Analysis of Drugs of Abuse and Explosives by Mass Spectrometry. Front Chem 2021; 8:598487. [PMID: 33537286 PMCID: PMC7847941 DOI: 10.3389/fchem.2020.598487] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/04/2020] [Indexed: 01/25/2023] Open
Abstract
In analytical science, mass spectrometry (MS) is known as a "gold analytical tool" because of its unique character of providing the direct molecular structural information of the relevant analyte molecules. Therefore, MS technique has widely been used in all branches of chemistry along with in proteomics, metabolomics, genomics, lipidomics, environmental monitoring etc. Mass spectrometry-based methods are very much needed for fast and reliable detection and quantification of drugs of abuse and explosives in order to provide fingerprint information for criminal investigation as well as for public security and safety at public places, respectively. Most of the compounds exist as their neutral form in nature except proteins, peptides, nucleic acids that are in ionic forms intrinsically. In MS, ion source is the heart of the MS that is used for ionizing the electrically neutral molecules. Performance of MS in terms of sensitivity and selectivity depends mainly on the efficiency of the ionization source. Accordingly, much attention has been paid to develop efficient ion sources for a wide range of compounds. Unfortunately, none of the commercial ion sources can be used for ionization of different types of compounds. Moreover, in MS, analyte molecules must be released into the gaseous phase and then ionize by using a suitable ion source for detection/quantification. Under these circumstances, fabrication of new ambient ion source and ultrasonic cutter blade-based non-thermal and thermal desorption methods have been taken into account. In this paper, challenges and strategies of mass spectrometry analysis of the drugs of abuse and explosives through fabrication of ambient ionization sources and new desorption methods for non-volatile compounds have been described. We will focus the literature progress mostly in the last decade and present our views for the future study.
Collapse
Affiliation(s)
- Ahsan Habib
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, China
- Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Lei Bi
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, China
- China Innovation Instrument Co., Ltd., Ningbo, China
| | - Huanhuan Hong
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, China
- China Innovation Instrument Co., Ltd., Ningbo, China
| | - Luhong Wen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, China
- China Innovation Instrument Co., Ltd., Ningbo, China
| |
Collapse
|
7
|
Hiraoka K, Ariyada O, Usmanov DT, Chen LC, Ninomiya S, Yoshimura K, Takeda S, Yu Z, Mandal MK, Wada H, Rankin-Turner S, Nonami H. Probe Electrospray Ionization (PESI) and Its Modified Versions: Dipping PESI (dPESI), Sheath-Flow PESI (sfPESI) and Adjustable sfPESI (ad-sfPESI). Mass Spectrom (Tokyo) 2020; 9:A0092. [PMID: 33299735 PMCID: PMC7708747 DOI: 10.5702/massspectrometry.a0092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/21/2020] [Indexed: 11/23/2022] Open
Abstract
In 2007, probe electrospray ionization/mass spectrometry (PESI/MS) was developed. In this technique, the needle is moved down along a vertical axis and the tip of the needle touched to the sample. After capturing the sample at the needle tip, the needle is then moved up and a high voltage is applied to the needle at the highest position to generate electrospray. Due to the discontinuous sampling followed by the generation of spontaneous electrospray, sequential and exhaustive electrospray takes place depending on the surface activity of the analytes. As modified versions of PESI, dipping PESI (dPESI), sheath-flow PESI (sfPESI) and adjustable sfPESI (ad-sfPESI) have been developed. These methods are complementary to each other and they can be applicable to surface and bulk analysis of various biological samples. In this article, the characteristics of these methods and their applications to real samples will be reviewed.
Collapse
Affiliation(s)
- Kenzo Hiraoka
- Clean Energy Research Center, University of Yamanashi, 4–3–11 Takeda, Kofu 400–8511, Japan
| | - Osamu Ariyada
- ARIOS INC., 3–2–20 Musashino, Akishima, Tokyo 196–0021, Japan
| | - Dilshadbek T. Usmanov
- Clean Energy Research Center, University of Yamanashi, 4–3–11 Takeda, Kofu 400–8511, Japan
| | - Lee C. Chen
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4–3–11 Takeda, Kofu 400–8511, Japan
| | - Satoshi Ninomiya
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4–3–11 Takeda, Kofu 400–8511, Japan
| | - Kentaro Yoshimura
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, 1110 Shimo-Kateau, Chuo, Yamanashi 409–3898, Japan
| | - Sen Takeda
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, 1110 Shimo-Kateau, Chuo, Yamanashi 409–3898, Japan
| | - Zhang Yu
- Clean Energy Research Center, University of Yamanashi, 4–3–11 Takeda, Kofu 400–8511, Japan
| | - Mridul K. Mandal
- Clean Energy Research Center, University of Yamanashi, 4–3–11 Takeda, Kofu 400–8511, Japan
| | - Hiroshi Wada
- Kyushu Okinawa Agricultural Research Center, National Agricultural and Food Research Organization, 496 Izumi, Chikugo, Fukuoka 833–0041, Japan
| | - Stephanie Rankin-Turner
- Clean Energy Research Center, University of Yamanashi, 4–3–11 Takeda, Kofu 400–8511, Japan
- Department of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| | - Hiroshi Nonami
- Plant Biophysics/Biochemistry Research Laboratory, Faculty of Agriculture, Ehime University, Matsuyama 790–8566, Japan
| |
Collapse
|
8
|
Hiraoka K, Ariyada O, Sekine R, Ninomiya S, Usmanov DT, Wada H, Nonami H. Robotic sheath-flow probe electrospray ionization/mass spectrometry (sfPESI/MS): development of a touch sensor for samples in a multiwell plastic plate. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2812-2819. [PMID: 32930203 DOI: 10.1039/d0ay00778a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the previous work, sheath-flow probe electrospray ionization (sfPESI) equipped with a touch sensor was developed for conducting samples. In this work, a capacitiance-sensitive touch sensor that can be applicable to samples prepared in a nonconducting plastic multiwell plate was developed. The radiofrequency with 5 kHz and 4.5 Vpp was applied to the metal substrate on which the plastic plate was placed. The probe tip stopped at the position where it touched the surface of the liquid solution prepared in the plastic multiwell plate by detecting the displacement current flowing through the capacitance of the circuit. By coupling a nondisposable sfPESI probe with a table-top 3-axis robot, consecutive analysis of peptides, proteins, drugs, and real samples was performed. The carry-over by the consecutive analyses was suppressed to minimal by cleansing the probe tip using the solvent of water/methanol/acetonitrile (1/1/1).
Collapse
Affiliation(s)
- Kenzo Hiraoka
- Clean Energy Research Center, University of Yamanashi, 4-3-11, Takeda, Kofu, Yamanashi 400-8511, Japan.
| | - Osamu Ariyada
- ARIOS INC., 3-2-20 Musashino, Akishima, Tokyo 196-0021, Japan
| | - Ryo Sekine
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11, Takeda, Kofu 400-8511, Japan
| | - Satoshi Ninomiya
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11, Takeda, Kofu 400-8511, Japan
| | - Dilshadbek T Usmanov
- Clean Energy Research Center, University of Yamanashi, 4-3-11, Takeda, Kofu, Yamanashi 400-8511, Japan.
- Institute of Ion-Plasma and Laser Technologies, Durmon Yoli Street 33, Tashkent, 100125, Uzbekistan
| | - Hiroshi Wada
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, 496 Izumi, Chikugo, Fukuoka 833-0041, Japan
| | - Hiroshi Nonami
- Plant Biophysics/Biochemistry Research Laboratory, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| |
Collapse
|
9
|
Hiraoka K, Rankin-Turner S, Ninomiya S, Sekine R, Wada H, Matsumura M, Sanada-Morimura S, Tanaka F, Nonami H, Ariyada O. Point Analysis of Foods by Sheath-Flow Probe Electrospray Ionization/Mass Spectrometry (sfPESI/MS) Coupled with a Touch Sensor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:418-425. [PMID: 31829625 DOI: 10.1021/acs.jafc.9b06489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
For quick, noninvasive, and high-sensitivity surface analysis of foods and agricultural products, a touch sensor was developed and applied to sheath-flow probe electrospray ionization/mass spectrometry (sfPESI/MS). Upon making contact with the sample, the probe stopped by detecting the current flowing through the circuit and analytes on the sample surface were extracted in the solvent preloaded in the plastic capillary. By lifting up the probe to the default position, an electrospray ionization mass spectrum of the sample was obtained. By scanning the sample stage using a programming tool, a point analysis of targeted positions of biological samples with a spot diameter of ≤0.3 mm was achieved. It took less than 10 s for one sample spot. This method was applied to various plants and animal tissues.
Collapse
Affiliation(s)
- Kenzo Hiraoka
- Clean Energy Research Center , University of Yamanashi , 4-3-11, Takeda , Kofu , Yamanashi 400-8511 , Japan
| | - Stephanie Rankin-Turner
- Clean Energy Research Center , University of Yamanashi , 4-3-11, Takeda , Kofu , Yamanashi 400-8511 , Japan
- Department of Chemistry , Loughborough University , Loughborough , Leicestershire LE11 3TU , United Kingdom
| | - Satoshi Ninomiya
- Graduate Faculty of Interdisciplinary Research , University of Yamanashi , 4-3-11, Takeda , Kofu 400-8511 , Japan
| | - Ryo Sekine
- Graduate Faculty of Interdisciplinary Research , University of Yamanashi , 4-3-11, Takeda , Kofu 400-8511 , Japan
| | - Hiroshi Wada
- Kyushu Okinawa Agricultural Research Center , National Agriculture and Food Research Organization , 496 Izumi , Chikugo , Fukuoka 833-0041 , Japan
| | - Masaya Matsumura
- Kyushu Okinawa Agricultural Research Center , National Agriculture and Food Research Organization , 2421, Suya , Goshi , Kumamoto 861-1192 , Japan
| | - Sachiyo Sanada-Morimura
- Kyushu Okinawa Agricultural Research Center , National Agriculture and Food Research Organization , 2421, Suya , Goshi , Kumamoto 861-1192 , Japan
| | - Fukuyo Tanaka
- NARO Central Region Agriculture Research Center , Division of Soil Science and Plant Nutrition , 2-1-18, Kannodai , Tsukuba , Ibaraki 305-8666 , Japan
| | - Hiroshi Nonami
- Plant Biophysics/Biochemistry Research Laboratory, Faculty of Agriculture , Ehime University , Matsuyama 790-8566 , Japan
| | - Osamu Ariyada
- ARIOS INC. , 3-2-20 Musashino , Akishima, Tokyo 196-0021 , Japan
| |
Collapse
|
10
|
da Silva LC, de Carvalho TC, Pereira I, Marana JC, Laviola BG, Abdelnur PV, Vaz BG. Molecularly Imprinted Polymer-Coated Probe Electrospray Ionization Mass Spectrometry Determines Phorbol Esters and Deoxyphorbol Metabolites in Jatropha curcas Leaves. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2051-2059. [PMID: 31342263 DOI: 10.1007/s13361-019-02269-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/07/2019] [Accepted: 06/09/2019] [Indexed: 06/10/2023]
Abstract
In this study, a molecularly imprinted polymer-coated probe electrospray ionization mass spectrometry (MIPCPESI-MS) method was developed for detection of phorbol esters (PEs) and deoxyphorbol metabolites in Jatropha curcas leaves. Such an approach was established by sticking on a metallic needle a molecularly imprinted polymer to particularly design a MIP-coated probe for selective sampling and ionization of PEs and deoxyphorbol metabolites. By a subsequent application of a high voltage and methanol, as spray solvent, ESI was generated for direct and rapid analysis under ambient and open-air conditions. MIP-coated probe exhibited a high sampling capacity of the PEs and its metabolites in methanolic extracts of J. curcas leaves compared with the non-imprinted polymer (NIP)-coated probe. MIPCPESI-MS allowed the detection of phorbol 12,13-diacetate (PDA) from J. curcas leaves with minimal sample preparation, and with detection limit and quantification reaching 0.28 μg/mL and 0.92 μg/mL, respectively. Also, good linearity was obtained with R2 > 0.99 and precision and accuracy values between 4.06-13.49% and - 1.60 to - 15.26%, respectively. The current method was successfully applied to screening methanolic extracts of six different J. curcas leaf genotypes (three toxic and three non-toxic). PDA and three PE deoxyphorbol metabolites were identified only from toxic genotypes, in which PDA was determined with concentration ranging from 222.19 ± 23.55 to 528.23 ± 19.72 μg/g. All these findings support that the MIPCPESI-MS method developed here has a high potential for the analysis of PEs in plant extracts enabling differentiation of toxic and non-toxic genotypes earlier in the leaves.
Collapse
Affiliation(s)
- Lidya C da Silva
- Laboratory of Chromatography and Mass Spectrometry (LaCEM), Chemistry Institute, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | - Thays C de Carvalho
- Laboratory of Chromatography and Mass Spectrometry (LaCEM), Chemistry Institute, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | - Igor Pereira
- Laboratory of Chromatography and Mass Spectrometry (LaCEM), Chemistry Institute, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | - Julio Cesar Marana
- Embrapa Agroenergy, Brazilian Agricultural Research Company, Brasília, DF, 70770-901, Brazil
| | - Bruno G Laviola
- Embrapa Agroenergy, Brazilian Agricultural Research Company, Brasília, DF, 70770-901, Brazil
| | - Patricia V Abdelnur
- Embrapa Agroenergy, Brazilian Agricultural Research Company, Brasília, DF, 70770-901, Brazil
| | - Boniek G Vaz
- Laboratory of Chromatography and Mass Spectrometry (LaCEM), Chemistry Institute, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
11
|
Rahman M, Wu D, Chingin K. Direct Analysis of Aqueous Solutions and Untreated Biological Samples Using Nanoelectrospray Ionization Mass Spectrometry with Pipette Tip in Series with High-Ohmic Resistor as Ion Source. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:814-823. [PMID: 30834507 DOI: 10.1007/s13361-019-02142-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/28/2018] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Commercially available disposable plastic pipette tip with the inner diameter of ca. 120 μm in series with a high-ohmic resistor (10 GΩ) was adapted as a low-cost alternative ion source for high-throughput nanoelectrospray mass spectrometry (nESI-MS) analysis of a variety of samples, especially aqueous solutions, without sample pretreatment. The use of high-ohmic resistor enabled the formation of stable electrospray of aqueous solutions at ambient conditions. In addition, corona discharge was avoided even with a high voltage applied. Quantitative analysis of vitamin B in water was successfully conducted by tip-ESI. The results exhibited a good linearity (R ˃ 0.9983), a low detection limit (0.25 ng/mL), and a wide dynamic response range (0.25-1000 ng/mL). Our study revealed that tip-ESI not only performed equally well to capillary nESI in terms of flow rate (˂ 100 nL/min), signal sensitivity, and sample consumption, but also offered a number of additional advantages, including better signal duration, tolerance to high analyte concentration (> 100 μg/mL) and high ionizing voltage (up to 6 kV), and obviation of tip clogging and corona discharge. High compatibility of tip-ESI with various kinds of samples (aqueous, viscous, solid, or bulk biological samples) makes it a promising tool for direct MS analysis.
Collapse
Affiliation(s)
- Matiur Rahman
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, People's Republic of China
| | - Debo Wu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, People's Republic of China.
| | - Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, People's Republic of China
| |
Collapse
|