1
|
Martins VDC, da Silva MAE, da Veiga VF, Pereira HMG, de Rezende CM. Ent-Kaurane Diterpenoids from Coffea Genus: An Update of Chemical Diversity and Biological Aspects. Molecules 2024; 30:59. [PMID: 39795116 PMCID: PMC11722336 DOI: 10.3390/molecules30010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Coffee is one of the most important beverages in the world and is produced from Coffea spp. beans. Diterpenes with ent-kaurane backbones have been described in this genus, and substances such as cafestol and kahweol have been widely investigated, along with their derivatives and biological properties. Other coffee ent-kaurane diterpenoids have been reported with new perspectives on their biological activities. The aim of this review is to update the chemical diversity of ent-kaurane diterpenoids in green and roasted coffee, detailing each new compound and reporting its biological potential. A systematic review was performed using the bibliographic databases (SciFinder, Web of Science, ScienceDirect) and specific keywords such as "coffea diterpenes", "coffee diterpenes", "coffee ent-kaurane diterpenes" and "coffee diterpenoids". Only articles related to the isolation of coffee ent-kaurane compounds were considered. A total of 146 compounds were related to Coffea spp. since the first report in 1932. Different chemical skeletons were observed, and these compounds were grouped as furan-type, oxidation-type, rearrangement-type, lacton-type, and lactam-type, among others. In general, the new coffee diterpenoids showed potential as antidiabetic, antidiapogenic, α-glucosidade inhibition, antiplatelet activity, and Cav.3 inhibitors agents, revealing the possibilities for the design, discovery, and development of new drugs.
Collapse
Affiliation(s)
- Víctor de C. Martins
- Aroma Analysis Laboratory (LAROMA), Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (M.A.E.d.S.); (C.M.d.R.)
- Brazilian Doping Control Laboratory (LBCD), Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
| | - Maria Alice E. da Silva
- Aroma Analysis Laboratory (LAROMA), Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (M.A.E.d.S.); (C.M.d.R.)
| | - Valdir F. da Veiga
- Chemistry Section, Military Institute of Engineering, Rio de Janeiro 22290-270, Brazil;
| | - Henrique M. G. Pereira
- Brazilian Doping Control Laboratory (LBCD), Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
| | - Claudia M. de Rezende
- Aroma Analysis Laboratory (LAROMA), Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (M.A.E.d.S.); (C.M.d.R.)
| |
Collapse
|
2
|
Zhao ZZ, Zhang F, He HJ, Wang Y, Du JH, Wang ZZ, Chen H, Liu JK. Stereuins A-F: Isopentenyl benzene congeners with antibacterial and neurotrophic activities from Stereum hirsutum HFG27. PHYTOCHEMISTRY 2024; 228:114253. [PMID: 39168425 DOI: 10.1016/j.phytochem.2024.114253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Cultivation and extraction of the fungus Stereum hirsutum (Willd.) Pers. yielded 12 isopentenyl benzene derivatives, including six previously undescribed derivatives, named stereuins A-F. Their structures were established based on NMR and mass spectroscopy analyses, supplemented by comparison with previously reported data. Stereuins A-C are unique benzoate derivatives containing fatty acid subunits. Stereuins D and E feature a valylene group and a 6/6/6 ring system. In vitro, stereuin A significantly promoted neurite outgrowth. Several compounds exhibited antibacterial activity against Staphylococcus aureus. Stereuin F has an IC50 value of 5.2 μg/mL against S. aureus, comparable to the positive control, penicillin G sodium (1.4 μg/mL).
Collapse
Affiliation(s)
- Zhen-Zhu Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Fei Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Hong-Juan He
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yan Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jia-Hui Du
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhen-Zhen Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Hui Chen
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
3
|
Jeon YA, Natraj P, Kim SC, Moon JK, Lee YJ. Comparative Analysis of Phytochemical and Functional Profiles of Arabica Coffee Leaves and Green Beans Across Different Cultivars. Foods 2024; 13:3744. [PMID: 39682816 DOI: 10.3390/foods13233744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
This study analyzed the phytochemical composition and functional properties of leaves and green beans from seven Arabica coffee cultivars. The total phenolic and flavonoid contents were measured using spectrophotometric methods, while caffeine, chlorogenic acid (CGA), and mangiferin levels were quantified via High-Performance Liquid Chromatography (HPLC). Volatile compounds were identified using Gas Chromatography-Mass Spectrometry (GC-MS). Antioxidant activity was assessed using 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging assays, and anti-inflammatory effects were evaluated by measuring reactive oxygen species (ROS), nitric oxide (NO) levels, and nuclear factor kappa B (NF-κB) activation in lipopolysaccharide (LPS)-stimulated macrophages. The results revealed that coffee leaves had significantly higher levels of total phenols, flavonoids, and CGAs, and exhibited stronger antioxidant activities compared to green beans. Notably, Geisha leaves exhibited the highest concentrations of phenolics and flavonoids, along with potent anti-inflammatory properties. Among green beans, the Marsellesa cultivar exhibited a significant flavonoid content and strong ABTS scavenging and anti-inflammatory effects. GC-MS analysis highlighted distinct volatile compound profiles between leaves and green beans, underscoring the phytochemical diversity among cultivars. Multivariate 3D principal component analysis (PCA) demonstrated clear chemical differentiation between coffee leaves and beans across cultivars, driven by key compounds such as caffeine, CGAs, and pentadecanoic acid. Hierarchical clustering further supported these findings, with dendrograms revealing distinct grouping patterns for leaves and beans, indicating cultivar-specific chemical profiles. These results underscore the significant chemical and functional diversity across Arabica cultivars, positioning coffee leaves as a promising functional alternative to green beans due to their rich phytochemical content and bioactive properties.
Collapse
Affiliation(s)
- Yoon A Jeon
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Premkumar Natraj
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Seong Cheol Kim
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeju 63240, Republic of Korea
| | - Joon-Kwan Moon
- Department of Plant Life and Environmental Sciences, Hankyong National University, Anseong 17579, Republic of Korea
| | - Young Jae Lee
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
- Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
4
|
Hernández-Ayala LF, Guzmán-López EG, Pérez-González A, Reina M, Galano A. Molecular Insights on Coffee Components as Chemical Antioxidants. J MEX CHEM SOC 2024; 68:888-969. [DOI: 10.29356/jmcs.v68i4.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in a world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in many ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their mechanisms of action, trends in activity, and the influence of media and pH in aqueous solutions, are analyzed. Structure-activity relationships are discussed, and the protective roles of these compounds are examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. The data used in the analysis come from theoretical and computational protocols, which have been proven to be very useful in this context. Hopefully, the information provided here will pro-mote further investigations into the amazing chemistry contained in our morning coffee cup.
Resumen. El café no solo es una bebida deliciosa, sino también una importante fuente dietética de antioxidantes naturales. Vivimos en un mundo donde es imposible evitar la contaminación, el estrés, los aditivos alimentarios, la radiación y otras fuentes de oxidantes que eventualmente conducen a trastornos de salud graves. Afortunadamente, existen sustancias químicas en nuestra dieta que contrarrestan los peligros planteados por las especies reactivas que desencadenan el estrés oxidativo. Por lo general, se les denomina antioxidantes; algunos de ellos pueden ser compuestos versátiles que ejercen dicho papel de muchas maneras. Este artículo de revisión resume, desde un punto de vista químico, los efectos antioxidantes de moléculas relevantes encontradas en el café. Se analizan sus mecanismos de acción, tendencias en la actividad y la influencia del medio y el pH en soluciones acuosas. Se discuten las relaciones estructura-actividad, y se examinan los roles protectores de estos compuestos. Se dedica una sección particular a los derivados de algunos componentes del café, y otra a su bioactividad. Los datos utilizados en el análisis provienen de protocolos teóricos y computacionales, que han demostrado ser muy útiles en este contexto. Se espera que la información proporcionada aquí promueva investigaciones futuras sobre la química contenida en nuestra taza de café matutina.
Collapse
|
5
|
Hernández-Montesinos IY, Carreón-Delgado DF, Lazo-Zamalloa O, Tapia-López L, Rosas-Morales M, Ochoa-Velasco CE, Hernández-Carranza P, Cruz-Narváez Y, Ramírez-López C. Exploring Agro-Industrial By-Products: Phenolic Content, Antioxidant Capacity, and Phytochemical Profiling via FI-ESI-FTICR-MS Untargeted Analysis. Antioxidants (Basel) 2024; 13:925. [PMID: 39199171 PMCID: PMC11351152 DOI: 10.3390/antiox13080925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/27/2024] [Accepted: 07/27/2024] [Indexed: 09/01/2024] Open
Abstract
This study investigates agro-industrial by-products as sources of bioactive compounds, particularly focusing on phenolic compounds known for their antioxidant properties. With growing interest in natural alternatives to synthetic antioxidants due to safety concerns, this study highlights the health benefits of plant-derived phenolic compounds in food preservation and healthcare products. Traditional and advanced analytical techniques were used to obtain phytochemical profiles of various residue extracts, including espresso (SCG) and cold-brew spent coffee grounds (CBCG), pineapple peel (PP), beetroot pomace (BP), apple pomace (AP), black carrot pomace (BCP), and garlic peel (GP). Assessments of total phenolic content (TPC), total flavonoid content (TFC), and antioxidant capacity (AC) supported their revalorization. CBCG showed the highest TPC, TFC, and AC. TPC content in by-products decreased in the order CBCG > SCG > GP > BCP > PP > AP > BP, with a similar trend for TFC and AC. Phytochemical profiling via FI-ESI-FTICR-MS enabled the preliminary putative identification of a range of compounds, with polyphenols and terpenes being the most abundant. Univariate and multivariate analyses revealed key patterns among samples. Strong positive correlations (Pearson's R > 0.8) indicated significant contribution of polyphenols to antioxidant capacities. These findings highlight the potential of agro-industrial residues as natural antioxidants, advocating for their sustainable utilization.
Collapse
Affiliation(s)
- Itzel Yoali Hernández-Montesinos
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| | - David Fernando Carreón-Delgado
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| | - Oxana Lazo-Zamalloa
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| | - Lilia Tapia-López
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| | - Minerva Rosas-Morales
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| | - Carlos Enrique Ochoa-Velasco
- Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias Químicas, 4 Sur 104, Centro Histórico, Puebla 72000, Mexico
| | - Paola Hernández-Carranza
- Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias Químicas, 4 Sur 104, Centro Histórico, Puebla 72000, Mexico
| | - Yair Cruz-Narváez
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, Av. Instituto Politécnico Nacional, Lindavista, Gustavo A. Madero, Ciudad de México 07700, Mexico
| | - Carolina Ramírez-López
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| |
Collapse
|
6
|
He M, Dai H, Xu J, Peng X, Al-Romaima A, Qiu M. Generation, degradation mechanism, and toxicity evaluation of pigmented compounds in Leucosceptrum canum nectar. Food Chem 2024; 446:138894. [PMID: 38442679 DOI: 10.1016/j.foodchem.2024.138894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
Leucosceptrum canum nectar (LCN) emerges as a novel food resource, distinguished by its unique dark brown hue. This study delves into the composition and toxicity assessment of novel pigments within LCN. Through liquid chromatography-tandem mass spectrometry (LC-MS/MS) and chemical synthesis, seventeen 2,5-di-(N-(-)-prolyl)-para-benzoquinone (DPBQ) analogs in LCN were identified. These compounds are synthesized in LCN via the Michael addition reaction, utilizing p-benzoquinone (BQ), derived from phenol metabolism, and amino acids as substrates in an alkaline environment (pH = 8.47 ± 0.06) facilitated by dissolved ammonia and the presence of alkaloids. Analytical techniques, including principal component analysis (PCA), orthogonal partial least squares discrimination analysis (OPLS-DA), and volcano plot analysis, were employed to investigate DPBQ analog degradation within the nectar and honey's unique environments. Toxicity assays revealed that DPBQ analogs exhibited no toxicity, displaying a significant difference in toxicity compared to the precursor compound BQ at concentrations exceeding 25 μM.
Collapse
Affiliation(s)
- Min He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Haopeng Dai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jiaxin Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xingrong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Abdulbaset Al-Romaima
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
7
|
Yulianti Y, Adawiyah DR, Herawati D, Indrasti D, Andarwulan N. Identification of antioxidant and flavour marker compounds in Kalosi-Enrekang Arabica brewed coffee processed using different postharvest treatment methods. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1165-1179. [PMID: 38562591 PMCID: PMC10981654 DOI: 10.1007/s13197-024-05948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/01/2023] [Accepted: 02/15/2024] [Indexed: 04/04/2024]
Abstract
This research aims to predict the presence of marker compounds that differentiate tubruk brew from coffee beans with different postharvest processing. This research also aims to predict compounds correlating with antioxidant activity and sensory flavour attributes. This research used Kalosi-Enrekang Arabica coffee beans, which were processed with three different postharvest processing (honey, full-washed and natural), roasted at medium level, and brewed using the tubruk method. Each brew was analyzed for chemical profiles using LC-MS and GC-MS, antioxidant analysis using the DPPH IC50 and FRAP methods, and sensory analysis for flavour using the QDA and SCAA methods for cupping scores. OPLS-DA analysis revealed the presence of marker compounds from each brew, and the dried fruit flavour attribute was to be an inter-process marker. After that, OPLS analysis showed marker compounds that correlate to antioxidant activity and flavour attributes. Rhaponticin is thought to be one of the marker compounds in natural coffee brews and is one of the compounds that correlates to the antioxidant activity of the DPPH method (IC50); prunin is thought to be one of the marker compounds for full-washed coffee brews and is one of the compounds that correlates to the activity antioxidants of FRAP method. Triacetin, which is thought to be a marker compound in natural brewed coffee, correlates with fruity flavour. 3-acetylpyridine, as a marker in honey-brewed coffee, correlates with nutty flavour. Even though there are differences in dominant flavours, the cupping score shows the brew is categorized as a specialty. This research shows that different post-harvest processing processes influence the compound profile, antioxidant activity and flavour attributes of Tubruk brewed coffee. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05948-8.
Collapse
Affiliation(s)
- Yulianti Yulianti
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, IPB Dramaga Campus, Bogor, 16680 Indonesia
- South-East Asia Food and Agricultural Science and Technology (SEAFAST) Center, IPB University, Jl. Ulin No.1 IPB Dramaga Campus, Bogor, 16680 Indonesia
- Department of Agricultural Technology, Faculty of Agriculture, Gorontalo University, Gorontalo, 96211 Indonesia
| | - Dede Robiatul Adawiyah
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, IPB Dramaga Campus, Bogor, 16680 Indonesia
- South-East Asia Food and Agricultural Science and Technology (SEAFAST) Center, IPB University, Jl. Ulin No.1 IPB Dramaga Campus, Bogor, 16680 Indonesia
| | - Dian Herawati
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, IPB Dramaga Campus, Bogor, 16680 Indonesia
- South-East Asia Food and Agricultural Science and Technology (SEAFAST) Center, IPB University, Jl. Ulin No.1 IPB Dramaga Campus, Bogor, 16680 Indonesia
| | - Dias Indrasti
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, IPB Dramaga Campus, Bogor, 16680 Indonesia
- South-East Asia Food and Agricultural Science and Technology (SEAFAST) Center, IPB University, Jl. Ulin No.1 IPB Dramaga Campus, Bogor, 16680 Indonesia
| | - Nuri Andarwulan
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, IPB Dramaga Campus, Bogor, 16680 Indonesia
- South-East Asia Food and Agricultural Science and Technology (SEAFAST) Center, IPB University, Jl. Ulin No.1 IPB Dramaga Campus, Bogor, 16680 Indonesia
| |
Collapse
|
8
|
Al-Romaima A, Hu G, Wang Y, Quan C, Dai H, Qiu M. Identification of New Diterpenoids from the Pulp of Coffea arabica and Their α-Glucosidase Inhibition Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1683-1694. [PMID: 38157425 DOI: 10.1021/acs.jafc.3c05619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Six new (1, 2, 3, 5, 6, and 8) and seven known (4, 7, 9, 10, 11, 12, and 13) diterpenoids have been identified in the pulp of Coffea arabica. The structures of new diterpenoids were elucidated by extensive spectroscopic analysis, including 1D, 2D NMR (HSQC, HMBC, 1H-1H COSY, and ROESY), HRESIMS, IR, DP4+, electronic circular dichroism, and X-ray crystallography analysis. Compound 1 is ent-labdane-type diterpenoid, whereas compounds (2-13) are ent-kaurane diterpenoids. The result of α-glucosidase inhibitory assay demonstrated that compounds (1, 3, 5, 7, and 10) have moderate inhibitory activity with IC50 values of 55.23 ± 0.84, 74.02 ± 0.89, 66.46 ± 1.05, 49.70 ± 1.02, and 76.34 ± 0.46 μM, respectively, compared to the positive control (acarbose, 51.62 ± 0.21 μM). Furthermore, molecular docking analysis has been conducted to investigate the interaction between the compounds and the receptors of α-glucosidase to interpret their mechanism of activity. This study is the first investigation that successfully discovered the presence of diterpenoids within the coffee pulp.
Collapse
Affiliation(s)
- Abdulbaset Al-Romaima
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan , China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Guilin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan , China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yanbing Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan , China
| | - Chenxi Quan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan , China
| | - Haopeng Dai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan , China
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan , China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
9
|
Dai H, He M, Hu G, Li Z, Al-Romaima A, Wu Z, Liu X, Qiu M. Discovery of ACE Inhibitory Peptides Derived from Green Coffee Using In Silico and In Vitro Methods. Foods 2023; 12:3480. [PMID: 37761189 PMCID: PMC10529643 DOI: 10.3390/foods12183480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/04/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Inhibition of angiotensin-I converting enzyme (ACE) is an important means of treating hypertension since it plays an important regulatory function in the renin-angiotensin system. The aim of this study was to investigate the ACE inhibitory effect of bioactive peptides from green coffee beans using in silico and in vitro methods. Alcalase and thermolysin were employed to hydrolyze protein extract from coffee beans. Bioactive peptides were identified by LC-MS/MS analysis coupled with database searching. The potential bioactivities of peptides were predicted by in silico screening, among which five novel peptides may have ACE inhibitory activity. In vitro assay was carried out to determine the ACE inhibitory degree. Two peptides (IIPNEVY, ITPPVMLPP) were obtained with IC50 values of 57.54 and 40.37 μM, respectively. Furthermore, it was found that two inhibitors bound to the receptor protein on similar sites near the S1 active pocket of ACE to form stable enzyme-peptide complexes through molecular docking, and the Lineweaver-Burk plot showed that IIPNEVY was a noncompetitive inhibitor, and ITPPVMLPP was suggested to be a mixed-type inhibitor. Our study demonstrated that two peptides isolated from coffee have potential applications as antihypertensive agents.
Collapse
Affiliation(s)
- Haopeng Dai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (H.D.); (M.H.); (G.H.); (Z.L.); (A.A.-R.); (Z.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (H.D.); (M.H.); (G.H.); (Z.L.); (A.A.-R.); (Z.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guilin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (H.D.); (M.H.); (G.H.); (Z.L.); (A.A.-R.); (Z.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongrong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (H.D.); (M.H.); (G.H.); (Z.L.); (A.A.-R.); (Z.W.)
| | - Abdulbaset Al-Romaima
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (H.D.); (M.H.); (G.H.); (Z.L.); (A.A.-R.); (Z.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhouwei Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (H.D.); (M.H.); (G.H.); (Z.L.); (A.A.-R.); (Z.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaocui Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (H.D.); (M.H.); (G.H.); (Z.L.); (A.A.-R.); (Z.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (H.D.); (M.H.); (G.H.); (Z.L.); (A.A.-R.); (Z.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Nguyen TAT, Hoang MH, Luc TT, Dang TKN, Nguyen TMT, Vo TN. Two new ent-kaurane-type diterpene diastereomers isolated from Coffea canephora. Nat Prod Res 2023; 37:1241-1248. [PMID: 34736370 DOI: 10.1080/14786419.2021.2000412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Phytochemical investigation of the trunks of Coffea canephora yielded two new ent-kaurane diterpene diastereomers, which have been named coffecanepholide A, ent-3β,16β,17-trihydroxykauran-18-al (1) and coffecanepholide B, ent-3β,16β,17-trihydroxykauran-19-al (2). Structural elucidation and configurational assignment were deduced from extensive spectroscopic NMR/HRESIMS analysis and by comparison with the spectral data of the literature relevant structures. The isolated compounds were assayed for in vitro inhibitory activities against α-glucosidase. Structure 2 showed the α-glucosidase inhibitory activity with an IC50 value of 294.7 ± 0.9 μM, while compound 1 exhibited inactivity. In addition, the docking results revealed that structure 2 can form more interactions with amino acid residues at the active site of α-glucosidase, which gave a more negative binding energy (-9.56 kcal/mol) compared with 1 (-8.60 kcal/mol). This observation might be responsible for a better activity of 2 against α-glucosidase.
Collapse
Affiliation(s)
- Thi Anh Tuyet Nguyen
- Department of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam
| | - Minh Hao Hoang
- Department of Chemical Technology, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, Vietnam
| | - Thi Tuyen Luc
- Department of Chemical Technology, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, Vietnam
| | - Thi Kim Ngan Dang
- Department of Chemical Technology, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, Vietnam
| | - Thi My Tang Nguyen
- Department of Chemical Technology, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, Vietnam
| | - Thi Nga Vo
- Department of Chemical Technology, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, Vietnam
| |
Collapse
|
11
|
Mewaba Goulefack S, Nguefa Happi E, Dongmo Tékapi Tsopgni W, Nangmou Nkouayeb BM, Popwo Tameye SC, Azebaze AGB. Bioactive constituents from Coffea canephora Pierre ex A. Froehner (Rubiaceae). BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
12
|
Hong DF, Hu GL, Peng XR, Wang XY, Wang YB, Al-Romaima A, Li ZR, Qiu MH. Unusual ent-Kaurane Diterpenes from the Coffea Cultivar S288 Coffee Beans and Molecular Docking to α-Glucosidase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:615-625. [PMID: 35005957 DOI: 10.1021/acs.jafc.1c06524] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A total of 11 new (1-11) and 2 known (12 and 13) ent-kaurane diterpene derivatives were identified from the roasted beans of Coffea cultivar S288. Their structures were established by extensive spectroscopic analysis, including one- and two-dimensional nuclear magnetic resonance (heteronuclear single-quantum correlation, heteronuclear multiple-bond correlation, correlation spectroscopy, and rotating-frame Overhauser enhancement spectroscopy), high-resolution electrospray ionization mass spectrometry, and X-ray analyses. Cafespirone acid A (1) represents the first example of diterpene featuring a spirocyclic skeleton constructed from a 6/6/5 tricyclic system. Cafeane acid A (2) possesses a 6/6/6/5 tetracyclic system as a result of the C/D ring rearrangement. Furthermore, compounds 1-12 were evaluated for their α-glucosidase inhibitory activity. The results showed that compounds 2, 4, 5, 6, 7, 10, and 11 had a moderate inhibitory effect on α-glucosidase, and half-maximal inhibitory concentration values of compounds 4, 6, 7, and 10 were 18.76 ± 1.46, 4.88 ± 0.03, 12.35 ± 0.91, and 12.64 ± 0.59 μM, respectively, compared to the positive control acarbose (60.71 ± 16.45 μM). Additionally, the molecular docking experiments showed that the carbonyl group at C-19 of compounds 4, 6, and 7 formed strong hydrogen bonds with ARG315, which may make them have moderate inhibitory activity.
Collapse
Affiliation(s)
- De-Fu Hong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Gui-Lin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
| | - Xiao-Yuan Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
| | - Yan-Bing Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
| | - Abdulbaset Al-Romaima
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhong-Rong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
13
|
Hu G, Dong D, Du S, Peng X, Wu M, Shi Q, Hu K, Hong D, Wang X, Zhou L, Nian Y, Qiu M. Discovery of novel coffee diterpenoids with inhibitions on Ca v3.1 low voltage-gated Ca 2+ channel. Food Chem 2021; 376:131923. [PMID: 34968905 DOI: 10.1016/j.foodchem.2021.131923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/09/2021] [Accepted: 12/19/2021] [Indexed: 12/20/2022]
Abstract
Seven new (1-4, 6-8) diterpenoids with rare skeletons and seven known ones (9, 12, 17, 18 and 23-25) were isolated from roasted beans of Coffea arabica L. Together with previously obtained diterpenoids, a total of 26 molecules (1-25, 4a) were evaluated their activities on Cav3.1 low voltage-gated Ca2+ channel. Compounds 1, 3, 6, 7, 12, 13, 17, 19 and 24 exhibited noticeable Cav3.1 inhibitions (41.2%-96.1%) at 10 μM. The IC50 values of 1, 6, 7, 12, 13, 17 and 24 are 2.9, 2.3, 0.68, 14.8, 11.6, 6.1 and 6.8 μM, respectively. The ring moiety at C-18 and C-19, and esterification of OH-17 with long-chain fatty acids seem important for their activities. Further studies indicated that 1 and cafestol may act on different binding sits with the Cav3.1 blocker Z944, which is in clinical trial. Significantly, the present study initially shows that coffee diterpenoids are potential natural resources for Cav3.1 inhibitors.
Collapse
Affiliation(s)
- Guilin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ding Dong
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; Key Laboratory of Animal Models and Human Disease Mechanisms, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People's Republic of China
| | - Shuzong Du
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; Key Laboratory of Animal Models and Human Disease Mechanisms, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People's Republic of China
| | - Xingrong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Mingkun Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qiangqiang Shi
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Kun Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Defu Hong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiaoyuan Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Lin Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Yin Nian
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
14
|
Saud S, Salamatullah AM. Relationship between the Chemical Composition and the Biological Functions of Coffee. Molecules 2021; 26:molecules26247634. [PMID: 34946716 PMCID: PMC8704863 DOI: 10.3390/molecules26247634] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023] Open
Abstract
Coffee is a Rubiaceae coffee plant ranked as the first of the three most important beverages in the world, with effects including lowering blood sugar, protecting the liver, and protecting the nerves. Coffee contains many chemical components, including alkaloids, phenolic acids, flavonoids, terpenoids, and so on. Chemical components in coffee are the basis of its biological function and taste. The chemical components are the basis of biological activities and form the characteristic aroma of coffee. The main chemical components and biological activities of coffee have been extensively studied, which would provide a relevant basis and theoretical support for the further development of the coffee industry.
Collapse
Affiliation(s)
- Shah Saud
- College of Life Sciences, Linyi University, Linyi 276012, China;
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| |
Collapse
|
15
|
Coffee beyond the cup: analytical techniques used in chemical composition research—a review. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-020-03679-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Hu G, Peng X, Dong D, Nian Y, Gao Y, Wang X, Hong D, Qiu M. New ent-kaurane diterpenes from the roasted arabica coffee beans and molecular docking to α-glucosidase. Food Chem 2020; 345:128823. [PMID: 33341560 DOI: 10.1016/j.foodchem.2020.128823] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 11/20/2022]
Abstract
Ten new (1-10) and five known (11-15) ent-kaurane diterpene derivatives were identified from the roasted beans of coffea arabica. Their structures were established by extensive spectroscopic analysis including 1D, 2D NMR (HSQC, HMBC, COSY, and ROESY), HRESIMS, and X-ray diffraction analysis. Compounds 1-3 were three types of rearranged ent-kaurane diterpenes, and compounds 4 and 5 were diterpene esters with a rare 6-hydroxyhexanoyl at C-17. Compounds 6, 8, 14, and 15 showed moderate inhibitory effect on α-glucosidase with IC50 values of 149.92 ± 2.52, 23.23 ± 1.03, 54.58 ± 4.21, 54.16 ± 3.95 μM, respectively, compared to the positive control (60.71 ± 16.45 μM). The results of activity assay showed that diterpenes with the double bond between C-15 and C-16 exhibited stronger α-glucosidase inhibitory activity. Further molecular docking experiments were adopted to discuss the mechanism of activity.
Collapse
Affiliation(s)
- GuiLin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - XingRong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
| | - Ding Dong
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; Key Laboratory of Animal Models and Human Disease Mechanisms, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People's Republic of China
| | - Yin Nian
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ya Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - XiaoYuan Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
| | - DeFu Hong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - MingHua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
17
|
Cao R, Liu X, Liu Y, Zhai X, Cao T, Wang A, Qiu J. Applications of nuclear magnetic resonance spectroscopy to the evaluation of complex food constituents. Food Chem 2020; 342:128258. [PMID: 33508899 DOI: 10.1016/j.foodchem.2020.128258] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/10/2020] [Accepted: 09/27/2020] [Indexed: 11/18/2022]
Abstract
Due to a number of unparalleled advantages such as fastness, accuracy, intactness, nuclear magnetic resonance spectroscopy (NMR) has fulfilled a significant role in determining structures and dynamics of various physical, chemical and biological systems in the field of food analysis. This study introduced the principle of NMR, key NMR techniques such as 1H NMR, DOSY, NOESY, HSQC, etc., and the knowledge of NMR applications on the evaluation of complex food system, especially the interactions of food components. The reviewed research work provides sufficient evidence that NMR spectroscopy has been an invaluable tool and will play an increasingly important role in specific technical support for food assessment. In addition, NMR combined with various other technologies could give a complete picture of the mechanism of the performance of functional food compounds, which are vital for human health and influence the intrinsic food properties during processing, storage and transportation at the molecular level.
Collapse
Affiliation(s)
- Ruge Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China; State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xinru Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuqian Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuqing Zhai
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tianya Cao
- Institute of Food Science and Technology, Henan Agricultural University, Zhengzhou 450000, China
| | - Aili Wang
- Key laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ju Qiu
- Institute of Food and Nutrition Development, Ministry of Agriculture, Haidian, Beijing 100081, China.
| |
Collapse
|
18
|
Hu GL, Gao Y, Peng XR, Liu JH, Su HG, Huang YJ, Qiu MH. Lactam ent-Kaurane Diterpene: A New Class of Diterpenoids Present in Roasted Beans of Coffea arabica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6112-6121. [PMID: 32348136 DOI: 10.1021/acs.jafc.9b08149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Seven new lactam ent-kaurane diterpenoids, cafemides A-G (1-7), were isolated from roasted beans of Coffea arabica. Their structures were elucidated by extensive spectroscopic analysis including 1D, 2D NMR (heteronuclear single quantum correlation (HSQC), heteronuclear multiple bond correlation (HMBC), 1H-1H correlation spectroscopy (COSY), and rotating frame Overhauser effect spectroscopy (ROESY)), high-resolution electrospray ionization mass spectrometry (HRESIMS), and IR spectra. They were divided into subtype I-III according to the structure. Further, with the aid of liquid chromatography-tandem mass spectrometry (LC-MS/MS) based molecular network, seven (8-14) subtype II diterpenoids were successfully identified. In addition, a variety of other subtypes of N-containing diterpenoids have been proven in roasted coffee. Compounds 1, 2, 3, 5, and 7 showed a moderate inhibitory effect on α-glucosidase with an IC50 value of 8.28 ± 0.62 μM, 38.23 ± 8.87 μM, 28.94 ± 1.42 μM, 12.44 ± 1.37 μM, and 22.2 ± 5.34 μM, respectively. To the best of our knowledge, this is the first time that N-containing diterpenoids have been reported in coffee.
Collapse
Affiliation(s)
- Gui-Lin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ya Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
| | - Jun-Hong Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hai-Guo Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yan-Jie Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
19
|
Mutlu C, Candal‐Uslu C, Kılıç‐Büyükkurt Ö, Erbaş M. Sorption isotherms of coffee in different stages for producing Turkish coffee. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ceren Mutlu
- Department of Food Engineering Faculty of Engineering Akdeniz University Antalya Turkey
- Department of Food Engineering Faculty of Engineering Balikesir University Balikesir Turkey
| | - Cihadiye Candal‐Uslu
- Department of Food Engineering Faculty of Engineering Akdeniz University Antalya Turkey
- Department of Nutrition and Dietetics Faculty of Health Sciences Artvin Coruh University Artvin Turkey
| | - Özlem Kılıç‐Büyükkurt
- Department of Food Technology Applied Science School of Kadirli Osmaniye Korkut Ata University Osmaniye Turkey
| | - Mustafa Erbaş
- Department of Food Engineering Faculty of Engineering Akdeniz University Antalya Turkey
| |
Collapse
|
20
|
Moeenfard M, Alves A. New trends in coffee diterpenes research from technological to health aspects. Food Res Int 2020; 134:109207. [PMID: 32517949 DOI: 10.1016/j.foodres.2020.109207] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/09/2020] [Accepted: 03/28/2020] [Indexed: 01/03/2023]
Abstract
The coffee oil is rich in diterpenes, mainly cafestol and kahweol, which are predominantly present in the esterified form with different fatty acids. Despite their beneficial effects including anti-angiogenic and anti-carcinogenic properties, they have been also associated with negative consequences such as elevation of blood cholesterol. Considering the coffee, it is an important human beverage with biological effects, including potentially health benefits or risks. Therefore, it may have important public health implications due to its widespread massive consumption, with major incidence in the varieties Arabica and Robusta. According to literatures, cafestol (182-1308 mg/100 g), kahweol (0-1265 mg/100 g) and 16-O-methycafestol (0-223 mg/100 g) are the main diterpenes in green and roasted coffee beans. Nevertheless, the coffee species, genetic background, and technological parameters like roasting and brewing have a clear effect on coffee diterpene content. Besides that, bibliographic data indicated that limited studies have specifically addressed the recent analytical techniques used for determination of this class of compounds, being HPLC and GC the most common approaches. For these reasons, this review aimed to actualize the occurrence and the profile of diterpenes in coffee matrices, focusing on the effect of species, roasting and brewing and on the other hand, introduce the current state on knowledge regarding coffee diterpenes determination which are nowadays highly regarded and widely used. In general, since diterpenes exhibit different health effects depending on their consumption dosage, several parameters needs to be carefully analyzed and considered when comparing the results.
Collapse
Affiliation(s)
- Marzieh Moeenfard
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Azadi Square, PO Box: 9177948944, Mashhad, Iran.
| | - Arminda Alves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
21
|
Skalski B, Stochmal A, Żuchowski J, Grabarczyk Ł, Olas B. Response of blood platelets to phenolic fraction and non-polar fraction from the leaves and twigs of Elaeagnus rhamnoides (L.) A. Nelson in vitro. Biomed Pharmacother 2020; 124:109897. [PMID: 31991385 DOI: 10.1016/j.biopha.2020.109897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/28/2019] [Accepted: 12/29/2019] [Indexed: 12/23/2022] Open
Abstract
Sea buckthorn (Elaeagnus rhamnoides (L.) A. Nelson) is a shrub with lanceolate leaves and orange fruits. In traditional Chinese medicine, sea buckthorn organs, especially fruits have been used to treat different diseases, for example cardiovascular disorders. In vitro studies indicate that the phenolic-rich fraction of sea buckthorn fruits demonstrates anti-platelet activity. The aim of the present study was therefore to determine the influence of phenolic and non-polar fractions isolated from the leaves and twigs of sea buckthorn on various parameters of human blood platelets in vitro. Plant material consisted of four different fractions: (1) the phenolic fraction isolated from the leaves, (2) the phenolic fraction isolated from the twigs, (3) the non-polar fraction isolated from leaves and (4) the non-polar fraction from twigs. The chemical composition of the tested fractions was determined using reversed phase UHPLC-HRMS/MS. The fractions from twigs were found to have stronger anti-platelet properties than those from leaves, and all tested fractions were found to be safe for the blood platelets. The tested fractions from the sea buckthorn, especially the non-polar fraction from the twigs, may potentially be a source of compounds with antiplatelet activity.
Collapse
Affiliation(s)
- Bartosz Skalski
- Univeristy of Lodz, Department of General Biochemistry, Faculty of Biology and Environmental Protection, 90-236 Łódź, Poland.
| | - Anna Stochmal
- State Research Institute, Department of Biochemistry, Institute of Soil Science and Plant Cultivation, 24-100 Puławy, Poland.
| | - Jerzy Żuchowski
- State Research Institute, Department of Biochemistry, Institute of Soil Science and Plant Cultivation, 24-100 Puławy, Poland.
| | - Łukasz Grabarczyk
- University of Warmia and Mazury, Department of Neurosurgery, Faculty of Medical Sciences, 10-082, Olsztyn, Poland.
| | - Beata Olas
- Univeristy of Lodz, Department of General Biochemistry, Faculty of Biology and Environmental Protection, 90-236 Łódź, Poland.
| |
Collapse
|
22
|
Styrczewska M, Zuk M, Boba A, Zalewski I, Kulma A. Use of Natural Components Derived from Oil Seed Plants for Treatment of Inflammatory Skin Diseases. Curr Pharm Des 2019; 25:2241-2263. [PMID: 31333096 DOI: 10.2174/1381612825666190716111700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/01/2019] [Indexed: 12/28/2022]
Abstract
The incidence of inflammatory skin diseases is increasing, so the search for relevant therapeutics is of major concern. Plants are rich in phytochemicals which can alleviate many symptoms. In this review, we concentrate on compounds found in the seeds of widely cultivated plants, regularly used for oil production. The oils from these plants are often used to alleviate the symptoms of inflammatory diseases through synergetic action of unsaturated fatty acids and other phytochemicals most commonly derived from the terpenoid pathway. The knowledge of the chemical composition of oil seeds and the understanding of the mechanisms of action of single components should allow for a more tailored approach for the treatment for many diseases. In many cases, these seeds could serve as an efficient material for the isolation of pure phytochemicals. Here we present the content of phytochemicals, assumed to be responsible for healing properties of plant oils in a widely cultivated oil seed plants and review the proposed mechanism of action for fatty acids, selected mono-, sesqui-, di- and triterpenes, carotenoids, tocopherol and polyphenols.
Collapse
Affiliation(s)
- Monika Styrczewska
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Wroclaw, Poland
| | - Magdalena Zuk
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Wroclaw, Poland
| | - Aleksandra Boba
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Wroclaw, Poland
| | - Iwan Zalewski
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Wroclaw, Poland
| | - Anna Kulma
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Wroclaw, Poland
| |
Collapse
|