1
|
Çeliktopuz E, Sarıdaş MA, Kapur B, Ağçam E, Koyuncu HC. The impact of irrigation levels and abscisic acid application on the biochemical profiles of strawberries. Food Chem 2025; 482:144077. [PMID: 40203699 DOI: 10.1016/j.foodchem.2025.144077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025]
Abstract
This study comprehensively examined the effects of irrigation levels and foliar ABA (absisic acid) applications on the biochemical structure of strawberries. ABA treatments significantly increased the levels of total acid (TA), chlorogenic acid, caffeic acid, ellagic acid, ascorbic acid, sucrose, glucose, fructose, and total soluble solids (TSS), all of which are important for fruit quality. Additionally, 50 % deficit irrigation level (Ir50) increased TSS content by 17 %, fructose and glucose by 18 %, sucrose by 11 %, total phenolic content by 27 %, and total antioxidant content by 7 % compared to the full irrigation (Ir100). ABA treatments with Ir50 practices significantly enhanced the concentrations of TA, syringrid acid, ellagic acid, caffeic acid, chlorogenic acid, TSS, fructose, and glucose, which may contribute to the health consciousness of consumers. This study, therefore, highlights the intricate interactions of ABA treatments and irrigation regarding the biochemical profiles of fruits.
Collapse
Affiliation(s)
- Eser Çeliktopuz
- University of Çukurova, Faculty of Agriculture, Agricultural Structures and Irrigation Department, 01330 Adana, Turkiye; EC AgriTech Academy, Çukurova Teknocity, Balcalı District, South Campus / 5th Street, No: 4 / 1, Inner Door No: 22, Sarıçam / Adana, Turkiye.
| | - Mehmet Ali Sarıdaş
- University of Çukurova, Faculty of Agriculture, Horticultural Science Department, 01330 Adana, Turkiye
| | - Burçak Kapur
- University of Çukurova, Faculty of Agriculture, Agricultural Structures and Irrigation Department, 01330 Adana, Turkiye
| | - Erdal Ağçam
- Department of Food Engineering, Faculty of Engineering, University of Cukurova, Balcali, Adana 01330, Turkiye
| | - Hilal Can Koyuncu
- Department of Food Engineering, Faculty of Engineering, University of Cukurova, Balcali, Adana 01330, Turkiye
| |
Collapse
|
2
|
Du Q, Yu H, Zhang Y, Qiao Q, Wang J, Zhang T, Xue L, Lei J. Uncovering fruit flavor and genetic diversity across diploid wild Fragaria species via comparative metabolomics profiling. Food Chem 2024; 456:140013. [PMID: 38878536 DOI: 10.1016/j.foodchem.2024.140013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024]
Abstract
Wild Fragaria resources exhibit extensive genetic diversity and desirable edible traits, such as high soluble solid content and flavor compounds. However, specific metabolites in different wild strawberry fruits remain unknown. In this study, we characterized 1008 metabolites covering 11 subclasses among 13 wild diploid resources representing eight species, including F. vesca, F. nilgerrensis, F. viridis, F. nubicola, F. pentaphylla, F. mandschurica, F. chinensis, and F. emeiensis. Fifteen potential metabolite biomarkers were identified to distinguish fruit flavors among the 13 diploid wild Fragaria accessions. A total of nine distinct modules were employed to explore key metabolites related to fruit quality through weighted gene co-expression module analysis, with significant enrichment in amino acid biosynthesis pathway. Notably, the identified significantly different key metabolites highlighted the close association of amino acids, sugars, and anthocyanins with flavor formation. These findings offer valuable resources for improving fruit quality through metabolome-assisted breeding.
Collapse
Affiliation(s)
- Qiuling Du
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Haoming Yu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanyuan Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Qin Qiao
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| | - Jian Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ticao Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Li Xue
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jiajun Lei
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
3
|
Ei E, Park HH, Kuk YI. Effects of Plant Extracts on Growth Promotion, Antioxidant Enzymes, and Secondary Metabolites in Rice ( Oryza sativa) Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:2727. [PMID: 39409599 PMCID: PMC11479174 DOI: 10.3390/plants13192727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Plant extracts are widely used in sustainable agriculture practices to enhance crop production and reduce chemical usage in agriculture. This study employed several extraction solutions of various plant extracts to synthesize planting and spraying strategies, assess the persistence efficacy of rice, and investigate the influence of selected water extracts on secondary chemicals at different rice planting stages. Among 17 water extracts that were evaluated on rice seeds, 7 were enhanced to align with the lengths of rice roots 50-70% and shoots 40-50%. The analysis of extraction, spraying, and planting experiments revealed that water extracts, soil application, and transplanting were the most efficient methods for stimulating rice growth, especially 0.1 and 0.5% concentrations. The efficacy of the extracts remained intact also after 14 days of treatment. This study showed that photosynthesis and antioxidant activities may play crucial roles in plant growth. Rice growth stimulation has been linked to photosynthesis, flavonoid contents, and antioxidant enzymes, providing a balanced supply of nutrients for plant growth. Among all tested water extracts, Psidium guajava, Aloe vera, Allium sativum, and Medicago sativa extracts can be used to promote plant growth in organic farming.
Collapse
Affiliation(s)
| | | | - Yong In Kuk
- Department of Oriental Medicine Resources, Sunchon National University, Suncheon 57922, Republic of Korea; (E.E.); (H.H.P.)
| |
Collapse
|
4
|
Kee PE, Phang SM, Lan JCW, Tan JS, Khoo KS, Chang JS, Ng HS. Tropical Seaweeds as a Sustainable Resource Towards Circular Bioeconomy: Insights and Way Forward. Mol Biotechnol 2023:10.1007/s12033-023-00940-7. [PMID: 37938536 DOI: 10.1007/s12033-023-00940-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/21/2023] [Indexed: 11/09/2023]
Abstract
Seaweeds are photosynthetic marine macroalgae known for their rapid biomass growth and their significant contributions to global food and feed production. Seaweeds play a crucial role in mitigating various environmental issues, including greenhouse gases, ocean acidification, hypoxia, and eutrophication. Tropical seaweeds are typically found in tropical and subtropical coastal zones with warmer water temperatures and abundant sunlight. These tropical seaweeds are rich sources of proteins, vitamins, minerals, fibers, polysaccharides, and bioactive compounds, contributing to their health-promoting properties and their diverse applications across a range of industries. The productivity, cultivability, nutritional quality, and edibility of tropical seaweeds have been well-documented. This review article begins with an introduction to the growth conditions of selected tropical seaweeds. Subsequently, the multifunctional properties of tropical seaweeds including antioxidant and anti-inflammatory, anti-coagulant, anti-carcinogenic and anti-proliferative, anti-viral, therapeutic and preventive properties were comprehensively evaluated. The potential application of tropical seaweeds as functional foods and feeds, as well as their contributions to sustainable cosmetics, bioenergy, and biofertilizer production were also highlighted. This review serves as a valuable resource for researchers involved in seaweed farming as it provides current knowledge and insights into the cultivation and utilization of seaweeds.
Collapse
Affiliation(s)
- Phei Er Kee
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor, Malaysia
| | - Siew Moi Phang
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia
- Institute Ocean and Earth Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan, 32003, Taiwan.
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chungli, Taoyuan, 320, Taiwan.
| | - Joo Shun Tan
- School of Industrial Technology, Universiti Sains Malaysia, 11800, Gelugor, Pulau Pinang, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan, 320, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor, Malaysia.
| |
Collapse
|
5
|
Sujata, Goyal V, Baliyan V, Avtar R, Mehrotra S. Alleviating Drought Stress in Brassica juncea (L.) Czern & Coss. by Foliar Application of Biostimulants-Orthosilicic Acid and Seaweed Extract. Appl Biochem Biotechnol 2023; 195:693-721. [PMID: 35986841 DOI: 10.1007/s12010-022-04085-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 01/13/2023]
Abstract
Agricultural productivity is negatively impacted by drought stress. Brassica is an important oilseed crop, and its productivity is often limited by drought. Biostimulants are known for their role in plant growth promotion, increased yields, and tolerance to environmental stresses. Silicon in its soluble form of orthosilicic acid (OSA) has been established to alleviate deteriorative effects of drought. Seaweed extract (SWE) also positively influence plant survival and provide dehydration tolerance under stressed environments. The present study was conducted to evaluate the efficacy of OSA and SWE on mitigating adverse effects of drought stress on Brassica genotype RH-725. Foliar application of OSA (2 ml/L and 4 ml/L) and SWE of Ascophyllum nodosum (3 ml/L and 4 ml/L) in vegetative stages in Brassica variety RH 725 under irrigated and rainfed condition revealed an increase in photosynthetic rate, stomatal conductance, transpirational rate, relative water content, water potential, osmotic potential, chlorophyll fluorescence, chlorophyll stability index, total soluble sugars, total protein content, and antioxidant enzyme activity; and a decrease in canopy temperature depression, proline, glycine-betaine, H2O2, and MDA content. Application of 2 ml/L OSA and 3 ml/L SWE at vegetative stage presented superior morpho-physiological and biochemical characteristics and higher yields. The findings of the present study will contribute to developing a sustainable cropping system by harnessing the benefits of OSA and seaweed extract as stress mitigators.
Collapse
Affiliation(s)
- Sujata
- CCS Haryana Agricultural University, Hisar-125004, India
| | - Vinod Goyal
- CCS Haryana Agricultural University, Hisar-125004, India.
| | - Vaibhav Baliyan
- Indian Council of Agricultural Research, New Delhi-110012, India
| | - Ram Avtar
- CCS Haryana Agricultural University, Hisar-125004, India
| | - Shweta Mehrotra
- Indian Council of Agricultural Research, New Delhi-110012, India.
| |
Collapse
|
6
|
Garza-Alonso CA, Olivares-Sáenz E, González-Morales S, Cabrera-De la Fuente M, Juárez-Maldonado A, González-Fuentes JA, Tortella G, Valdés-Caballero MV, Benavides-Mendoza A. Strawberry Biostimulation: From Mechanisms of Action to Plant Growth and Fruit Quality. PLANTS (BASEL, SWITZERLAND) 2022; 11:3463. [PMID: 36559576 PMCID: PMC9784621 DOI: 10.3390/plants11243463] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The objective of this review is to present a compilation of the application of various biostimulants in strawberry plants. Strawberry cultivation is of great importance worldwide, and, there is currently no review on this topic in the literature. Plant biostimulation consists of using or applying physical, chemical, or biological stimuli that trigger a response-called induction or elicitation-with a positive effect on crop growth, development, and quality. Biostimulation provides tolerance to biotic and abiotic stress, and more absorption and accumulation of nutrients, favoring the metabolism of the plants. The strawberry is a highly appreciated fruit for its high organoleptic and nutraceutical qualities since it is rich in phenolic compounds, vitamins, and minerals, in addition to being a product with high commercial value. This review aims to present an overview of the information on using different biostimulation techniques in strawberries. The information obtained from publications from 2000-2022 is organized according to the biostimulant's physical, chemical, or biological nature. The biochemical or physiological impact on plant productivity, yield, fruit quality, and postharvest life is described for each class of biostimulant. Information gaps are also pointed out, highlighting the topics in which more significant research effort is necessary.
Collapse
Affiliation(s)
| | - Emilio Olivares-Sáenz
- Protected Agriculture Center, Faculty of Agronomy, Universidad Autónoma de Nuevo León, General Escobedo 66050, Mexico
| | - Susana González-Morales
- National Council of Science and Technology (CONACYT), Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico
| | | | | | | | - Gonzalo Tortella
- Center of Excellence in Biotechnological Research Applied to the Environment, CIBAMA-BIOREN, Universidad de La Frontera, Temuco 4811230, Chile
| | | | | |
Collapse
|
7
|
Computational Metabolomics Tools Reveal Metabolic Reconfigurations Underlying the Effects of Biostimulant Seaweed Extracts on Maize Plants under Drought Stress Conditions. Metabolites 2022; 12:metabo12060487. [PMID: 35736420 PMCID: PMC9231236 DOI: 10.3390/metabo12060487] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
Drought is one of the major abiotic stresses causing severe damage and losses in economically important crops worldwide. Drought decreases the plant water status, leading to a disruptive metabolic reprogramming that negatively affects plant growth and yield. Seaweed extract-based biostimulants show potential as a sustainable strategy for improved crop health and stress resilience. However, cellular, biochemical, and molecular mechanisms governing the agronomically observed benefits of the seaweed extracts on plants are still poorly understood. In this study, a liquid chromatography–mass spectrometry-based untargeted metabolomics approach combined with computational metabolomics strategies was applied to unravel the molecular ‘stamps’ that define the effects of seaweed extracts on greenhouse-grown maize (Zea mays) under drought conditions. We applied mass spectral networking, substructure discovery, chemometrics, and metabolic pathway analyses to mine and interpret the generated mass spectral data. The results showed that the application of seaweed extracts induced alterations in the different pathways of primary and secondary metabolism, such as phenylpropanoid, flavonoid biosynthesis, fatty acid metabolism, and amino acids pathways. These metabolic changes involved increasing levels of phenylalanine, tryptophan, coumaroylquinic acid, and linolenic acid metabolites. These metabolic alterations are known to define some of the various biochemical and physiological events that lead to enhanced drought resistance traits. The latter include root growth, alleviation of oxidative stress, improved water, and nutrient uptake. Moreover, this study demonstrates the use of molecular networking in annotating maize metabolome. Furthermore, the results reveal that seaweed extract-based biostimulants induced a remodeling of maize metabolism, subsequently readjusting the plant towards stress alleviation, for example, by increasing the plant height and diameter through foliar application. Such insights add to ongoing efforts in elucidating the modes of action of biostimulants, such as seaweed extracts. Altogether, our study contributes to the fundamental scientific knowledge that is necessary for the development of a biostimulants industry aiming for a sustainable food security.
Collapse
|
8
|
Sarıdaş MA. Seasonal variation of strawberry fruit quality in widely grown cultivars under Mediterranean climate condition. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Ali O, Ramsubhag A, Jayaraman J. Biostimulant Properties of Seaweed Extracts in Plants: Implications towards Sustainable Crop Production. PLANTS (BASEL, SWITZERLAND) 2021; 10:531. [PMID: 33808954 PMCID: PMC8000310 DOI: 10.3390/plants10030531] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 02/01/2023]
Abstract
The use of seaweed-based bioproducts has been gaining momentum in crop production systems owing to their unique bioactive components and effects. They have phytostimulatory properties that result in increased plant growth and yield parameters in several important crop plants. They have phytoelicitor activity as their components evoke defense responses in plants that contribute to resistance to several pests, diseases, and abiotic stresses including drought, salinity, and cold. This is often linked to the upregulation of important defense-related genes and pathways in the plant system, priming the plant defenses against future attacks. They also evoke phytohormonal responses due to their specific components and interaction with plant growth regulation. Treatment by seaweed extracts and products also causes significant changes in the microbiome components of soil and plant in support of sustainable plant growth. Seaweed extracts contain a plethora of substances which are mostly organic, but trace levels of inorganic nutrient elements are also present. Fractionation of seaweed extracts into their components and their respective bioassays, however, has not yielded favorable growth effects. Only the whole seaweed extracts have been consistently proven to be very effective, which highlights the role of multiple components and their complex interactive effects on plant growth processes. Since seaweed extracts are highly organic, they are ideally suited for organic farming and environmentally sensitive crop production. They are also very compatible with other crop inputs, paving the way for an integrated management approach geared towards sustainability. The current review discusses the growth and functional effects evoked by seaweed extracts and their modes and mechanisms of action in crop plants which are responsible for elicitor and phytostimulatory activities. The review further analyses the potential value of seaweed extracts in integrated crop management systems towards sustainable crop production.
Collapse
Affiliation(s)
| | | | - Jayaraj Jayaraman
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago; (O.A.); (A.R.)
| |
Collapse
|
10
|
Glendinning JI. What Does the Taste System Tell Us About the Nutritional Composition and Toxicity of Foods? Handb Exp Pharmacol 2021; 275:321-351. [PMID: 33782771 DOI: 10.1007/164_2021_451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
One of the distinctive features of the human taste system is that it categorizes food into a few taste qualities - e.g., sweet, salty, sour, bitter, and umami. Here, I examined the functional significance of these taste qualities by asking what they tell us about the nutritional composition and toxicity of foods. I collected published data on the composition of raw and unprocessed foods - i.e., fruits, endosperm tissues, starchy foods, mushrooms, and meats. Sweet taste is thought to help identify foods with a high caloric or micronutrient density. However, the sweetest foods (fruits) had a relatively modest caloric density and low micronutrient density, whereas the blandest foods (endosperm tissues and meats) had a relatively high caloric and high micronutrient density. Salty taste is thought to be a proxy for foods high in sodium. Sodium levels were higher in meats than in most plant materials, but raw meats lack a salient salty taste. Sour taste (a measure of acidity) is thought to signify dangerous or spoiled foods. While this may be the case, it is notable that most ripe fruits are acidic. Umami taste is thought to reflect the protein content of food. I found that free L-glutamate (the prototypical umami tastant) concentration varies independently of protein content in foods. Bitter taste is thought to help identify poisonous foods, but many nutritious plant materials taste bitter. Fat taste is thought to help identify triglyceride-rich foods, but the role of taste versus mouthfeel in the attraction to fatty foods is unresolved. These findings indicate that the taste system provides incomplete or, in some cases, misleading information about the nutritional content and toxicity of foods. This may explain why inputs from the taste system are merged with inputs from the other cephalic senses and intestinal nutrient-sensing systems. By doing so, we create a more complete sensory representation and nutritional evaluation of foods.
Collapse
Affiliation(s)
- John I Glendinning
- Departments of Biology and Neuroscience and Behavior, Barnard College, Columbia University, New York, NY, USA.
| |
Collapse
|
11
|
Trends in Seaweed Extract Based Biostimulants: Manufacturing Process and Beneficial Effect on Soil-Plant Systems. PLANTS 2020; 9:plants9030359. [PMID: 32178418 PMCID: PMC7154814 DOI: 10.3390/plants9030359] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/31/2022]
Abstract
The time when plant biostimulants were considered as "snake oil" is erstwhile and the skepticism regarding their agricultural benefits has significantly faded, as solid scientific evidences of their positive effects are continuously provided. Currently plant biostimulants are considered as a full-fledged class of agri-inputs and highly attractive business opportunity for major actors of the agroindustry. As the dominant category of the biostimulant segment, seaweed extracts were key in this growing renown. They are widely known as substances with the function of mitigating abiotic stress and enhancing plant productivity. Seaweed extracts are derived from the extraction of several macroalgae species, which depending on the extraction methodology lead to the production of complex mixtures of biologically active compounds. Consequently, plant responses are often inconsistent, and precisely deciphering the involved mechanism of action remains highly intricate. Recently, scientists all over the world have been interested to exploring hidden mechanism of action of these resources through the employment of multidisciplinary and high-throughput approaches, combining plant physiology, molecular biology, agronomy, and multi-omics techniques. The aim of this review is to provide fresh insights into the concept of seaweed extract (SE), through addressing the subject in newfangled standpoints based on current scientific knowledge, and taking into consideration both academic and industrial claims in concomitance with market's requirements. The crucial extraction process as well as the effect of such products on nutrient uptake and their role in abiotic and biotic stress tolerance are scrutinized with emphasizing the involved mechanisms at the metabolic and genetic level. Additionally, some often overlooked and indirect effects of seaweed extracts, such as their influence on plant microbiome are discussed. Finally, the plausible impact of the recently approved plant biostimulant regulation on seaweed extract industry is addressed.
Collapse
|
12
|
Jia W, Shi L, Zhang F, Chang J, Chu X. High-throughput mass spectrometry scheme for screening and quantification of flavonoids in antioxidant nutraceuticals. J Chromatogr A 2019; 1608:460408. [PMID: 31378531 DOI: 10.1016/j.chroma.2019.460408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/12/2019] [Accepted: 07/26/2019] [Indexed: 01/03/2023]
Abstract
Antioxidant nutraceuticals functional characteristic science is a challenging field for combining sensitivity and comprehensiveness. A untargeted screening and quantification method based on ultra-high performance liquid chromatography coupled to Quadrupole-Orbitrap high resolution mass spectrometry has been developed for determination of multiple classes of flavonoids in eight-three nutraceuticals samples. The data acquisition is based on a non-target approach of sequential full scan and variable data independent acquisition of twenty consecutive fragmentation events. The flavonoids include flavanols, flavones, flavanones, anthocyanidins, flavonols and isoflavones. A processing strategy is introduced to implementing filtering methods based on data feature extraction, common ion selection, shoulder peak removal, response threshold adjustment, mass shift and characteristic structural fragments evaluation. Confirmation is based on both accurate mass and isotopic assignment of standards, and further quantification is achieved by fragmentation. This scheme allows in depth characterization of flavonoids with the entire fragments.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China; Chinese Academy of Inspection and Quarantine, Beijing, 100123, China.
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Feng Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, 100123, China.
| | - James Chang
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, CA, United States.
| | - Xiaogang Chu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China; Chinese Academy of Inspection and Quarantine, Beijing, 100123, China.
| |
Collapse
|
13
|
Aly AA, Ali HGM, Eliwa NER. Phytochemical screening, anthocyanins and antimicrobial activities in some berries fruits. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-0005-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|