1
|
Zhao W, Huang C, Guo X, Zhu Y, Li Y, Duan Y, Gao J. A Fluorescence Biosensor Based on Carbon Quantum Dots Prepared from Pomegranate Peel and T-Hg 2+-T Mismatch for Hg 2+ Detection. J Fluoresc 2025; 35:1651-1659. [PMID: 38427224 DOI: 10.1007/s10895-024-03645-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Mercury ions (Hg2+) can cause damage to human health, and thus, the study of the detection of Hg2+ is extraordinarily important in daily life. This work reported a fluorescence biosensor for the detection of Hg2+. The key point of this strategy was that the fluorescence of carbon quantum dots made from pomegranate peel (P-CQDs) was quenched by hemin, and restored after G-quadruplex binding with hemin. The presence of Hg2+ caused thymine (T)-rich DNA fragments to form T-Hg2+-T mismatches, and this change allowed the release of G-quadruplex. G-quadruplex could change the fluorescence of hemin/P-CQDs. P-CQDs exhibited excellent properties through characterization analysis, such as transmission electron microscope, X-ray photoelectron spectroscopy and Fourier transform infrared. This proposed fluorescence detection strategy established the linear ranges of Hg2+ from 1 nM to 50 nM. In conclusion, this simple biosensor had the advantages of strong sensitivity, high selectivity, and low cost for Hg2+ detection in environmental water samples.
Collapse
Affiliation(s)
- Weiqin Zhao
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China.
| | - Chun Huang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Xiyu Guo
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Youyu Zhu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Yuangang Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Yingfeng Duan
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Jie Gao
- Department of Stomatology, Xi'an International Medical Center Hospital Affiliated to Northwest University, Xi'an, 710061, P. R. China
| |
Collapse
|
2
|
Liu Y, Yu L, She Z, Li L, Ji T, Li Y, Wang Y. Rhodamine 6G-PAH probes for heavy metal: Fluorescence detection, bioimaging, and solid-phase sensing application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125070. [PMID: 39232313 DOI: 10.1016/j.saa.2024.125070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Four rhodamine 6G-PAH probes with pyrene (R6G-Pyr), anthracene (R6G-Ant), acenaphthene (R6G-Acp) or phenanthrene (R6G-PA) as fluorophore were designed and synthesized for Hg(II) detection. Probe R6G-PA, which had the lowest detection limit of 0.84 nmol/L, displayed the best fluorescence performance as compared to the other three probes. This type of probe had good anti-interference properties against most common metal ions except Cu(II). Metal Cu(II) had a certain quenching effect on the fluorescence generated by Hg(II), with a minimum detection limit of 0.31 nmol/L (for R6G-Acp), indicating its potential practicability for Cu(II) detection. The structure-fluorescence relationship was discussed based on density functional theory (DFT) calculations, and R6G-PA + Hg(II), which had the minimum dihedral angle between polycyclic aromatic rings and rhodamine spiro ring, produced the strongest π-π accumulation and provided the brightest fluorescence. Probe R6G-PA was successfully employed for fluorescence detection of Hg(II) in biological samples. Its solid-phase sensor PS@R6G-PA was developed by immobilizing R6G-PA on PS microspheres for the determination of Hg(II) in water and food samples, with excellent reproducibility and fluorescence "on/off" response. The relative error of the spiked recovery rate was less than 10 %.
Collapse
Affiliation(s)
- Yuanyuan Liu
- School of Pharmaceutical and Chemical Engineering, ChengXian College, Southeast University, Nanjing 210088, PR China
| | - Lili Yu
- School of Pharmaceutical and Chemical Engineering, ChengXian College, Southeast University, Nanjing 210088, PR China
| | - Zhuxin She
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Ling Li
- School of Pharmaceutical and Chemical Engineering, ChengXian College, Southeast University, Nanjing 210088, PR China
| | - Tailong Ji
- School of Pharmaceutical and Chemical Engineering, ChengXian College, Southeast University, Nanjing 210088, PR China
| | - Yi Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China.
| | - Yuqiao Wang
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
3
|
Abdelmonem BH, Kamal LT, Elbaz RM, Khalifa MR, Abdelnaser A. From contamination to detection: The growing threat of heavy metals. Heliyon 2025; 11:e41713. [PMID: 39866496 PMCID: PMC11760309 DOI: 10.1016/j.heliyon.2025.e41713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025] Open
Abstract
Heavy metals like lead, mercury, cadmium, and arsenic are environmental pollutants that accumulate in ecosystems and pose significant health risks to humans and wildlife, primarily through food chain contamination where plants absorb heavy metals, affecting their growth and threatening consumer health. Cognitive and cardiovascular functions are particularly affected by exposure to heavy metals even at low concentrations through the induction of oxidative stress. Various analytical techniques are used in measuring heavy metals in different environmental and biological samples. The atomic absorption spectroscopy (AAS) offers low cost, simplicity, and portability but lacks sensitivity for certain metals. Although more sensitive, the high cost of inductively coupled plasma mass spectrometry (ICP-MS) may limit laboratory accessibility. The inductively coupled plasma with atomic emission spectrometry (ICP-AES) is known for its broad dynamic linear range and ability to identify minute variations in concentration. Atomic fluorescence spectrometry (AFS) is considered a powerful tool for quantifying heavy metals due to its high sensitivity, low detection limits, and wide linear range. The current article reviews heavy metal pollution's impact on health and spectrometric techniques for the detection of these contaminants. This may help efforts of international, and regional policies towards preventing this health hazard problem.
Collapse
Affiliation(s)
- Basma Hossam Abdelmonem
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo, 11835, Egypt
- Basic Sciences Department, Faculty of Physical Therapy, October University for Modern Sciences and Arts (MSA), PO 12566, 6th of October City, Giza, Egypt
| | - Lereen T. Kamal
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo, 11835, Egypt
| | - Rana M. Elbaz
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo, 11835, Egypt
| | - Mohamed R. Khalifa
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo, 11835, Egypt
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo, 11835, Egypt
| |
Collapse
|
4
|
Chen L, Wu R, Xu B, Gong Z, Yuan D. Multielement electrochemical vapor generation system coupled with atomic fluorescence spectrometer for simultaneous measurement of trace levels of As and Hg in coastal seawater samples. Anal Chim Acta 2024; 1330:343301. [PMID: 39489980 DOI: 10.1016/j.aca.2024.343301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/07/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Toxic elements As and Hg in coastal waters affect human health through the food chain even at trace levels. The simultaneous determination of As and Hg in seawater using electrochemical vapor generation (ECVG) with atomic fluorescence spectrometer (AFS) currently has technical bottlenecks. One is the need for a simple and efficient chemical reaction cell and corresponding parameters to generate both AsH3 and Hg vapors, and the other is a suitable preservation method of the mixed standard solutions. RESULTS A novel, efficient, online ECVG device was developed and interfaced with a laboratory-built multichannel AFS. The electrolytic cell adopted Sn-Pb alloy as the cathode material to generate both AsH3 and Hg vapors by electrolysis, replacing the unstable reagent tetrahydroborate (THB) usually used in most traditional vapor generation methods. The AFS was equipped with a built-in H2 generator for fuel supply, instead of the conventional acid-THB system. A mixed standard solution of As and Hg was prepared and preserved using thiourea-ascorbic acid as a fixing agent for Hg and a prereduction agent for As(V). The method detection limits (LOD, 3σ) were 0.005 and 0.003 μg/L for As and Hg, respectively. The relative standard deviations (RSD, n = 8) of the spiked samples were 2.8 % (0.50 μg/L As) and 3.1 % (0.05 μg/L Hg), respectively. The recoveries of standard spiked seawater samples with different salinities ranged from 86.1 % to 115.3 %. SIGNIFICANCE The system has been successfully applied to the simultaneous analysis of As and Hg in the seawater samples collected from the Xiamen coastal area. The study results provide a sensitive, accurate, and efficient method to promote the development and utilization of simultaneous analysis of multielement in seawaters.
Collapse
Affiliation(s)
- Luodan Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, PR China; Center for Marine Environmental Chemistry and Toxicology, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, PR China
| | - Rongkun Wu
- Tairui Science and Technology Co., Ltd., Quanzhou, 362000, PR China
| | - Biqing Xu
- Tairui Science and Technology Co., Ltd., Quanzhou, 362000, PR China
| | - Zhenbin Gong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, PR China; Center for Marine Environmental Chemistry and Toxicology, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, PR China.
| | - Dongxing Yuan
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, PR China.
| |
Collapse
|
5
|
Jia H, Lan G, Li X, Chen L, Feng L, Mao X. Rapid and simultaneous detection of cadmium and mercury in foods based on solid sampling integrated electrothermal vaporization technique. Food Chem 2024; 457:140087. [PMID: 38917568 DOI: 10.1016/j.foodchem.2024.140087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
This work presents an innovative solid sampling (SS) integrated electrothermal vaporization (ETV) approach for simultaneous determination of Cd and Hg based on differentiated elemental vaporization and transportation behavior characteristics. A miniature N2/H2 generator, only consuming electricity and H2O, was utilized to yield reducing atmosphere for Cd vaporization; MgO filler was modified to absorb matrix interferent and keep Hg and Cd transportation via 1st catalytic pyrolysis furnace (CPF); and a gearing was employed to move 2nd CPF to receive and trap (amalgamation) the vaporized Hg from ETV and then thermo-release them for simultaneous detection. Under optimized conditions, the limits of detection of Cd and Hg reached 0.02-0.04 ng/g using 0.4 g sample size. The linearities (R2) exceeded 0.998 and recoveries were 85.0-111.9%, indicating favorable analysis precision and accuracy within ∼3 min without sample digestion process. The proposed HgCd analyzer is suitable for rapid monitoring food with simplicity, green and safety.
Collapse
Affiliation(s)
- Hongyu Jia
- Institute of Quality Standard and Testing Technology for Agro-products of Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Guanyu Lan
- Institute of Quality Standard and Testing Technology for Agro-products of Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xue Li
- Institute of Quality Standard and Testing Technology for Agro-products of Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Lin Chen
- Institute of Quality Standard and Testing Technology for Agro-products of Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Li Feng
- R&D Department, Changsha Kaiyuan Hongsheng Technology Co., Ltd., Changsha 410000, China.
| | - Xuefei Mao
- Institute of Quality Standard and Testing Technology for Agro-products of Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
6
|
Wu X, Tong X, Huang B, Huang S. Novel Pseudo-Two-Dimensional 19F NMR Spectroscopy for Rapid Simultaneous Detection of Amines in Complex Mixture. Anal Chem 2024; 96:16818-16824. [PMID: 39385498 DOI: 10.1021/acs.analchem.4c03521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Rapid detection of amines in complex mixtures presents a significant challenge. Here, we introduce a novel nuclear magnetic resonance (NMR) method for amine detection utilizing a probe with two fluorine atoms in distinct chemical environments. Upon interaction with an amine, the probe generates two atomic resonance peaks, which are used to create coordinates, revealing fluorine chemical shifts on the 19F NMR spectroscopy. This innovative approach allows for the clear distinction of amine signals in a two-dimensional plane. This method has been effectively employed in analyzing amines in pharmaceuticals and amino acids in Ophiopogon japonicus and dry white wine, providing a robust and general approach for amine analysis.
Collapse
Affiliation(s)
- Xijian Wu
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Xin Tong
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Biling Huang
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Shaohua Huang
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
7
|
Ma BC, Guo Y, Lin YR, Zhang J, Wang XQ, Zhang WQ, Luo JG, Chen YT, Zhang NX, Lu Q, Hui CY. High-throughput screening of human mercury exposure based on a low-cost naked eye-recognized biosensing platform. Biosens Bioelectron 2024; 248:115961. [PMID: 38150800 DOI: 10.1016/j.bios.2023.115961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Whole-cell biosensors could be helpful for in situ disease diagnosis. However, their use in analyzing biological samples has been hindered by unstable responses, low signal enhancement, and growth inhibition in complex media. Here, we offered a solution by building a visual whole-cell biosensor for urinary mercury determination. With deoxyviolacein as the preferred signal for the mercury biosensor for the first time, it enabled the quantitative detection of urinary mercury with a favorable linear range from 1.57 to 100 nM. The biosensor can accurately diagnose urine mercury levels exceeding the biological exposure index with 95.8% accuracy. Thus, our study provided a biosensing platform with great potential to serve as a stable, user-friendly, and high-throughput alternative for the daily monitoring or estimating of urinary mercury.
Collapse
Affiliation(s)
- Bing-Chan Ma
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China; Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China
| | - Yan Guo
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China
| | - Yi-Ran Lin
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China
| | - Juan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 828 Xinmin Street, Changchun, 130021, China
| | - Xiao-Qiang Wang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China
| | - Wen-Qi Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China
| | - Jin-Gan Luo
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China
| | - Yu-Ting Chen
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China
| | - Nai-Xing Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China.
| | - Qing Lu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| | - Chang-Ye Hui
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China.
| |
Collapse
|
8
|
Jiao H, Bi R, Li F, Chao J, Zhang G, Zhai L, Hu L, Wang Z, Dai C, Li B. Rapid, easy and catalyst-free preparation of magnetic thiourea-based covalent organic frameworks at room temperature for enrichment and speciation of mercury with HPLC-ICP-MS. J Chromatogr A 2024; 1717:464683. [PMID: 38295741 DOI: 10.1016/j.chroma.2024.464683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/14/2024] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
The complex and cumbersome preparation of magnetic covalent organic frameworks (COFs) nanocomposites on a small scale limits their application. Herein, a rapid and easy route was employed for the preparation of magnetic thiourea-based COFs nanocomposites. COFs were coated on Fe3O4 nanoparticles at room temperature without a catalyst within approximately 30 min. This method is suitable for the large-scale preparation of magnetic adsorbent. Using the as-prepared magnetic adsorbent (Fe3O4@COF-TpTU), we developed a simple, efficient, and sensitive magnetic solid-phase extraction-high performance liquid chromatography-inductively coupled plasma-mass spectrometry (MSPE-HPLC-ICP-MS) for the enrichment and determination of mercury species, including Hg2+, methylmercury (MeHg), and ethylmercury (EtHg). The effects of the experimental parameters on the extraction efficiency, including solution pH, adsorption and desorption time, composition and volume of the elution solvent, salinity, coexisting ions, and dissolved organic matter, were comprehensively investigated. Under optimised conditions, the limits of detection in the developed method were 0.56, 0.34, and 0.47 ng L-1 with enrichment factors of 190, 195, and 180-fold for Hg2+, MeHg, and EtHg, respectively. The satisfactory spiked recoveries (97.0-103%) in real water samples and high consistency between the certified and determined values in a certified reference material demonstrate the high accuracy and reproducibility of the developed method. The as-proposed method with simple operation, high sensitivity, and excellent anti-matrix interference performance was successfully applied to the enrichment and determination of trace levels of mercury species in the natural samples with complicated matrices, such as underground water, surface water, seawater and biological samples.
Collapse
Affiliation(s)
- Heping Jiao
- Shandong Analysis and Tester Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Ruixiang Bi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Fangli Li
- Shandong Public Health Clinic Center, Jinan 266075, China
| | - Jingbo Chao
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Guimin Zhang
- National Engineering and Technology Research Centre of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi 276005, China
| | - Lihai Zhai
- National Engineering and Technology Research Centre of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi 276005, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhenhua Wang
- Shandong Analysis and Tester Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Caifeng Dai
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| | - Bing Li
- Shandong Analysis and Tester Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Shandong Key Laboratory for Adhesive Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| |
Collapse
|
9
|
He X, Huangfu K, Zhao J, Lei H, Li X, Liu W, Gu X. An efficient and low-cost method for the determination of selenium in selenium-enriched tea by high-performance liquid chromatography coupled with 3,3'-Diaminobenzidine derivatization. Talanta 2023; 268:125335. [PMID: 39491849 DOI: 10.1016/j.talanta.2023.125335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
In this study, a novel analytical method was developed and validated for the quantification of selenium in selenium-enriched tea. The various valence states of selenium present in tea were converted to Se(IV) through oxidation and reduction reactions. To chemically react with Se(IV), 3,3'-Diaminobenzidine (DAB) was employed to produce Se-DAB derivatives. These derivatives were then analyzed and quantified using high-performance liquid chromatography (HPLC) with a NH2 column specifically designed for the target compound. The peak area of Se-DAB exhibited excellent linearity within the concentration range of 0.01-50 μgmL-1 (R2 = 0.9999). The method demonstrated a limit of detection (LOD) of 0.01 mgkg-1 and a limit of quantification (LOQ) of 0.03 mgkg-1. Moreover, the recoveries of Se-DAB spiked at different concentrations ranged from 81.2 % to 96.7 %, with relative deviations (RSDs) of 0.72 %-4.23 % (n = 6). Additionally, the RSDs under different batches varied from 3.42 % to 8.57 % (n = 9). The method exhibits good stability and repeatability. The results obtained by applying the method to 24 samples of selenium-rich tea show high consistency with the AFS method. The difference range between the two methods is 0.017-0.027 mg/kg, with an average difference of 0.005 mg/kg. Furthermore, this method offers the advantage of flexibility in analyzing large quantities of green tea samples, while utilizing lower instrument and reagent costs. Therefore, it can be considered as a new and cost-effective method for detecting selenium content in selenium-rich tea.
Collapse
Affiliation(s)
- Xiwen He
- Shaanxi Qin Yun Agricultural Science Research Institute, 714000, Weinan, China; Shaanxi Qin Yun Agricultural Products Inspection and Testing Co., 714000, Weinan, China.
| | - Kai Huangfu
- Shaanxi Qin Yun Agricultural Products Inspection and Testing Co., 714000, Weinan, China
| | - Juan Zhao
- Shaanxi Qin Yun Agricultural Products Inspection and Testing Co., 714000, Weinan, China
| | - Hao Lei
- Shaanxi Qin Yun Agricultural Products Inspection and Testing Co., 714000, Weinan, China
| | - Xiang Li
- Shaanxi Qin Yun Agricultural Products Inspection and Testing Co., 714000, Weinan, China
| | - Wuyan Liu
- Shaanxi Qin Yun Agricultural Products Inspection and Testing Co., 714000, Weinan, China
| | - Xu Gu
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Agriculture and Rural Ministry Quality and Safety Risk Evaluation Laboratory of Feed and Feed Additives for Animal Husbandry, 100081, Beijing, China.
| |
Collapse
|
10
|
Zheng Y, Wan Y, Wei Y, Yu Y. One-Pot Synthesis of Dual-Emissive Carbon Dots for Ratiometric Fluorescent Determination of Hg 2. J Fluoresc 2023; 33:1941-1948. [PMID: 36917347 DOI: 10.1007/s10895-023-03154-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/23/2023] [Indexed: 03/16/2023]
Abstract
Mercury ion is a global toxic and hazardous environmental pollutant. In this work, a facile and selective ratiometric fluorescent probe was constructed for the detection of mercury ion. The dual-emissive carbon dots (BYCDs) were fabricated by a one-pot hydrothermal method utilizing o-phenylenediamine and glycine as raw materials, and the prepared BYCDs had two independent fluorescence emission peaks at 426 nm and 543 nm under a single excitation wavelength. Based on the change of the intensity ratio of the two fluorescence emission peaks after the addition of Hg2+, a sensitive and selective ratiometric fluorescent probe based on BYCDs was constructed for the detection of Hg2+ with good linearity ranging from 0.95-50 μM and a detection limit of 0.27 μM. In addition, the recovery of this probe was satisfactory in the standard addition experiments of real water samples, and it could be applied to the analysis of Hg2+ in real water samples.
Collapse
Affiliation(s)
- Yabin Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3rd Ring North East Road, Chaoyang District, Beijing, 100029, China
| | - Yudong Wan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3rd Ring North East Road, Chaoyang District, Beijing, 100029, China
| | - Yun Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3rd Ring North East Road, Chaoyang District, Beijing, 100029, China.
| | - Yingchun Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3rd Ring North East Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
11
|
P V A, Deivasigamani P. Structurally engineered ion-receptor probe immobilized porous polymer platform as reusable solid-state chromogenic sensor for the ultra-trace sensing and recovery of mercury ions. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131431. [PMID: 37099907 DOI: 10.1016/j.jhazmat.2023.131431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/05/2023] [Accepted: 04/15/2023] [Indexed: 05/19/2023]
Abstract
This study reports an efficacious solid-state optical sensor through the synergistic coalescences of an original chromoionophoric probe and a structurally engineered porous polymer monolith for the selective and sensitive colorimetric spotting of ultra-trace toxic mercury ions. The unique properties of the bimodal macro-/meso-pore structured polymer, i.e., poly(AAm-co-EGDMA) monolith, offer voluminous and uniform anchoring of probe molecules, i.e., (Z)-N-phenyl-2-(quinoline-4-yl-methylene)hydrazine-1-carbothioamide (PQMHC). The structure/surface features of the sensory system, i.e., surface area, pore dimensions, monolith framework, elemental mapping, and phase composition, were examined by p-XRD, XPS, FT-IR, HR-TEM-SAED, FE-SEM-EDAX, and BET/BJH analysis. The sensor's ion-capturing ability was established through naked eye color transition and UV-Vis-DRS response. The sensor exhibits a strong binding affinity for Hg2+, with a linear signal response in the concentration range of 0-200 μg/L (r2 >0.999), with a detection limit of 0.33 μg/L. The analytical parameters were optimized to facilitate pH-dependent visual sensing of ultra-trace Hg2+ in ≤ 30 s. The sensor exhibits high chemical/physical stability characteristics, with reliable data reproducibility (RSD ≤1.94 %), while testing with natural/synthetic water and cigarette samples. The proposed work offers a cost-effective and reusable naked-eye sensory system for the selective sensing of ultra-trace Hg2+, with potential prospects of commercialization considering their simplicity, viability, and reliability.
Collapse
Affiliation(s)
- Anju P V
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Prabhakaran Deivasigamani
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
12
|
Fluorescent and Colorimetric Dual-Mode Strategy Based on Rhodamine 6G Hydrazide for Qualitative and Quantitative Detection of Hg 2+ in Seafoods. Foods 2023; 12:foods12051085. [PMID: 36900600 PMCID: PMC10001036 DOI: 10.3390/foods12051085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
In this study, a rapid fluorescent and colorimetric dual-mode detection strategy for Hg2+ in seafoods was developed based on the cyclic binding of the organic fluorescent dye rhodamine 6G hydrazide (R6GH) to Hg2+. The luminescence properties of the fluorescent R6GH probe in different systems were investigated in detail. Based on the UV and fluorescence spectra, it was determined that the R6GH has good fluorescence intensity in acetonitrile and good selective recognition of Hg2+. Under optimal conditions, the R6GH fluorescent probe showed a good linear response to Hg2+ (R2 = 0.9888) in the range of 0-5 μM with a low detection limit of 2.5 × 10-2 μM (S/N = 3). A paper-based sensing strategy based on fluorescence and colorimetric analysis was developed for the visualization and semiquantitative analysis of Hg2+ in seafoods. The LAB values of the paper-based sensor impregnated with the R6GH probe solution showed good linearity (R2 = 0.9875) with Hg2+ concentration in the range of 0-50 μM, which means that the sensing paper can be combined with smart devices to provide reliable and efficient Hg2+ detection.
Collapse
|
13
|
Atasoy M, Yildiz D, Kula İ, Vaizoğullar Aİ. Determination and speciation of methyl mercury and total mercury in fish tissue samples by gold-coated W-coil atom trap cold vapor atomic absorption spectrometry. Food Chem 2023; 401:134152. [DOI: 10.1016/j.foodchem.2022.134152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
|
14
|
Yang F, Dias ACP, Zhang X. Monoclonal antibody based immunoassay: An alternative way for aquatic environmental selenium detection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159909. [PMID: 36336056 DOI: 10.1016/j.scitotenv.2022.159909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Environmental concerns about human health encouraged increasing methodological interest in selenium (Se), which is an essential non-metal trace element and varies within a narrow concentration range between essential and toxic. In this study, two types of long-armed Se haptens (Se-hapten-lc-NHS) were synthesized for the first time using active ester formalization. In producing monoclonal antibodies (mAbs), the derivatization of haptenized Se at para- (meta-) and ortho-sites showed different properties. Finally, a mAb derived from hybridoma 5A52 was confirmed to be capable of establishing an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA). There was a successful quantitative determination of Se4+ with a detection range of 17 to 207 pmol mL-1 and a limit of detection of approximately 3.9 pmol mL-1. The mAb was found to be remarkably sensitive and specific, with no evidence of cross-reactivity with other ions. The assay was validated for four kinds of Se forms in water samples and showed satisfactory recoveries between 80 % and 108 %, with coefficients of variation of 2.1 %-11 %. The method proposed in our study offers a useful protocol for the rapid screening of Se and provides an alternative solution for the analysis of Se in aquatic environments.
Collapse
Affiliation(s)
- Fanfan Yang
- Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Alberto C P Dias
- Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Xiaoying Zhang
- Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China.
| |
Collapse
|
15
|
Khan M, Soylak M. Deep Eutectic Solvent Based Liquid-Liquid Microextraction of Mercury in Water, Hair and Fish with Spectrophotometric Determination: A Green Protocol. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2121406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Mansoor Khan
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
- Technology Research & Application Center (TAUM), Erciyes University, Kayseri, Turkey
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
- Technology Research & Application Center (TAUM), Erciyes University, Kayseri, Turkey
- Turkish Academy of Sciences (TUBA), Ankara, Turkey
| |
Collapse
|
16
|
Cheng R, Zhang J, He Y, Liao C, Wang L, Zhang X. Parental exposure to waterborne selenite induces transgenerational development toxicity in zebrafish offspring. CHEMOSPHERE 2022; 303:134838. [PMID: 35561769 DOI: 10.1016/j.chemosphere.2022.134838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Excessive selenium (Se), especially selenite form exerts great toxicity to fish. Most studies have attached considerable attention to the adverse effects of Se on parental fish. However, the transgenerational toxicity of Se on fish has been rarely reported. In the present study, zebrafish embryos were exposed to environmentally relevant concentrations of Na₂SeO₃ (0, 12.5, 25, 50, and 100 μg/L) for 120 days. And the exposed zebrafish (F0) were allowed to spawn with normal zebrafish after sexual maturity. Subsequently, the offspring (F1) were cultured in clean water for 5 days. In the F0 generation, exposure to 100 μg/L Na₂SeO₃ significantly increased the Se content in the tissues (liver, brain and gonad) and decreased the body length and weight. After parental exposure to 100 μg/L Na₂SeO₃, the increased mortality, elevated malformation rate and reduced body length were measured in F1 zebrafish. The Se content was only significantly increased in F1 larvae derived from exposed females in the 100 μg/L exposure group. The contents of thyroid hormones (THs), growth hormone (GH) and insulin-like growth factor (IGF) significantly decreased in F0 and F1 zebrafish. The transcriptional levels of genes along the hypothalamic-pituitary-thyroid (HPT) axis and growth hormone/insulin-like growth factor (GH/IGF) axis were detected to further explore the possible mechanisms of Se-induced thyroid and growth hormone disruption. The results suggest that the toxicity of Se in zebrafish can be markedly transmitted to offspring. And the transgenerational development toxicity might be different due to the differences in gender of exposed parents.
Collapse
Affiliation(s)
- Rui Cheng
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, People's Republic of China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Jinying Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Ya He
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Chenlei Liao
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Li Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, People's Republic of China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, People's Republic of China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
17
|
Lv S, Xu X, Song S, Xu L, Liu L, Xu C, Kuang H. An Immunochromatographic Assay for the Rapid and Qualitative Detection of Mercury in Rice. BIOSENSORS 2022; 12:bios12090694. [PMID: 36140079 PMCID: PMC9496535 DOI: 10.3390/bios12090694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022]
Abstract
Mercury is a major pollutant in food crops. In this study, we synthesized an anti-mercury monoclonal antibody (mAb; IC50 was 0.606 ng mL−1) with high sensitivity and specificity and different immunogens and coating antigens and developed an immuno-chromatographic assay (ICA) for the detection of mercury in rice. The ICA strip had a visible detection limit of 20 ng g−1 and a cut-off value of 500 ng g−1 in rice. The performance of the ICA strip was consistent with that of ICP-MS and ic-ELISA. The recoveries of mercury in rice ranged from 94.5% to 113.7% with ic-ELISA and from 93.6% to 116.45% with ICP-MS. Qualitative analysis by ICA can be obtained with the naked eye. The ICA strip is an effective and practical method for the rapid and high-throughput determination of mercury in rice.
Collapse
Affiliation(s)
- Shuai Lv
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xinxin Xu
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shanshan Song
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liqiang Liu
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel./Fax: +86-510-85329077
| |
Collapse
|
18
|
He Y, Xu W, Qu M, Zhang C, Wang W, Cheng F. Recent advances in the application of Raman spectroscopy for fish quality and safety analysis. Compr Rev Food Sci Food Saf 2022; 21:3647-3672. [PMID: 35794726 DOI: 10.1111/1541-4337.12968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/29/2022] [Accepted: 04/14/2022] [Indexed: 11/27/2022]
Abstract
Fish is one of the highly demanded aquatic products, and its quality and safety play a pivotal role in daily diet. However, the possible hazardous substance in perishable fish both in pre- and postharvest periods may decrease their values and pose a threat to public health. Laborious and expensive traditional methods drive the need of developing effective tools for detecting fish quality and safety properties in a rapid, nondestructive, and effective manner. Recent advances in Raman spectroscopy (RS) and surface-enhanced Raman scattering (SERS) have shown enormous potential in various aspects, which largely boost their applications in fish quality and safety evaluation. They have incomparable merits such as providing molecule fingerprint information and allowing for rapid, sensitive, and noninvasive detection with simple sample preparation. This review provides a comprehensive overview focusing on the applications of RS and SERS for fish quality assessment and safety inspection, highlighting the hazardous substance and illegal behavior both in preharvest (veterinary drug residues and environmental pollutants) and postharvest (freshness and illegal behavior) particularly. Moreover, challenges and prospects are also proposed to facilitate the vigorous development of RS and SERS. This review is aimed to emphasize potential opportunities for applying RS and SERS as promising techniques for routine food quality and safety detection. PRACTICAL APPLICATION: With these applications, it can be clearly indicated that RS and SERS are promising and powerful in fish quality and safety surveillance, thereby reducing the occurrence of commercial fraud and food safety issues. More efforts still should be concentrated on exploiting the high-performance Raman instruments, establishing a universal Raman database, developing reproducible SERS substrates and combing RS with other versatile spectral techniques to promote these technologies from laboratory to practice. It is hoped that this review should arouse more research interests in RS and SERS technologies for fish quality and safety surveillance, as well as provide more insights to make a breakthrough.
Collapse
Affiliation(s)
- Yingchao He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Key Laboratory of On Site Processing Equipment for Agricultural Products of Ministry of Agriculture and Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, China
| | - Weidong Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Maozhen Qu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Key Laboratory of On Site Processing Equipment for Agricultural Products of Ministry of Agriculture and Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, China
| | - Chao Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Key Laboratory of On Site Processing Equipment for Agricultural Products of Ministry of Agriculture and Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou, China
| | - Fang Cheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Key Laboratory of On Site Processing Equipment for Agricultural Products of Ministry of Agriculture and Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, China
| |
Collapse
|
19
|
Ferreira SL, Cerda V, Portugal LA, Gonçalves LB, Santos Neto JH, Pereira Junior JB, Palacio E. State of the art of the methods proposed for selenium speciation analysis by CVG-AFS. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Rapid detection of mercury in food via rhodamine 6G signal using surface-enhanced Raman scattering coupled multivariate calibration. Food Chem 2021; 358:129844. [PMID: 33940287 DOI: 10.1016/j.foodchem.2021.129844] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/18/2021] [Accepted: 04/07/2021] [Indexed: 11/22/2022]
Abstract
Considering food safety and limitations of biorecognition elements, this study focused on the development of a novel method for predicting mercury (Hg2+) in fish and water samples using surface-enhanced Raman scattering (SERS) coupled wavenumber selection chemometric method. Herein, core-shell Au@Ag nanoparticles (Au@Ag NPs) were synthesized as SERS substrate, and rhodamine 6G (R6G) was used as signaling probe for Hg2+. In the presence of Hg2+, citrate ion of Au@Ag NPs induced complexation and become amalgam causes desorption of R6G occurred, resulted in decreased SERS signal intensity. Compared to surface Plasmon resonance method, SERS coupled genetic algorithm-partial least squares realized good correlation coefficient (0.9745 and 0.9773) in their prediction over the concentration ranges 1.0 × 102 to 1.0 × 10-3 µg/g. The recovery (88.45 - 94.73%) and precision (coefficient of variations, 3.28 - 5.76%) exhibiting satisfactory results suggested that the proposed method could be employed to predict Hg2+ in fish and water samples towards quality and safety monitoring.
Collapse
|
21
|
Mo A, Wang X, Yuan Y, Liu C, Wang J. Effects of waterborne exposure to environmentally relevant concentrations of selenite on reproductive function of female zebrafish: A life cycle assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116237. [PMID: 33412467 DOI: 10.1016/j.envpol.2020.116237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/12/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Recently, bioaccumulation of dietary organic selenium (Se) in the ovaries and inhibition of reproduction in female aquatic animals have been reported. However, there is limited data on the subtle reproductive impacts of waterborne exposure to inorganic Se in fish. Here, zebrafish embryos (2 h post-fertilization) were exposed to solutions with environmentally relevant levels of Na2SeO3 with concentrations of 0 (control), 7.98 ± 0.31, 25.14 ± 0.15, and 79.60 ± 0.81 μg Se/L for 120 d until they reached sexual maturity. Female zebrafish were selected for reproductive toxicity assessment. In the early embryonic stage, whole-mount in situ hybridization of zebrafish embryos showed that waterborne Na2SeO3 exposure did not affect the observed location of vasa expression in primordial germ cells at 24, 48, and 72 h post-fertilization. Life-cycle exposure to 25.14 ± 0.15 and 79.60 ± 0.81 μg Se/L Na2SeO3 did not change the testosterone and 17β-estradiol contents in female zebrafish at the endpoint of exposure, but significantly reduced the proportion of early vitellogenic oocytes and mature oocytes. Follicle maturity retardation was accompanied by changes in transcriptional levels of the genes related to the hypothalamus-pituitary-gonad-liver (HPGL) axis. Transcriptional levels of cyp19a and lhr in the ovary were down-regulated, while the transcriptional level of fshr in the ovaries was up-regulated. In the 21-day cumulative spawning experiment, Na2SeO3 (25.14 ± 0.15 and 79.60 ± 0.81 μg Se/L) caused fewer eggs to be produced. Additionally, the malformation of zebrafish offspring significantly increased in the group exposed to 79.60 ± 0.81 μg Se/L. In conclusion, for the first time, this study shows that life-cycle exposure to environmentally relevant concentrations of waterborne Na2SeO3 significantly delays ovarian maturation and reduces the fertility of the female zebrafish.
Collapse
Affiliation(s)
- Aijie Mo
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiaolin Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yongchao Yuan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Shuangshui Shuanglv Institute, Huazhong Agricultural University, Wuhan, 430070, China; National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunsheng Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jianghua Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
22
|
Abstract
The anodic stripping voltammetry (ASV) was investigated to determine total mercury in solid samples using a gold electrode. The mercury was deposited on the gold electrode in a preconcentration step. The oxidation peak of mercury was irreversible. The optimal conditions of the procedure were found to be as follows: 0.05 mol L−1 HCl solution, deposition potential −0.5 V vs. Ag/AgCl/KCls, deposition time 40 s, and sweep rate 0.04 V s−1. Under the optimal conditions, the peak current showed a linear dependence on Hg2+ concentration in the range from 0.01 to 0.1 mg l−1. The detection limit and quantification limit were 4.28 µg L−1 and 12.98 µg L−1, respectively. The mean recovery and relative standard deviation were 91.2% and 2.4% (n = 9). The procedure was successfully applied for determining total mercury in samples collected from Hanoi light bulb warehouse—The Rang Dong Light Source and Vacuum Flask JSC. The results were compared with cold vapor atomic absorption spectrometry (CV-AAS).
Collapse
|
23
|
Fan P, He S, Cheng J, Hu C, Liu C, Yang S, Liu J. l-Cysteine modified silver nanoparticles-based colorimetric sensing for the sensitive determination of Hg 2+ in aqueous solutions. LUMINESCENCE 2020; 36:698-704. [PMID: 33270343 DOI: 10.1002/bio.3990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 12/28/2022]
Abstract
A simple and sensitive colorimetric sensing method was constructed for detection of Hg2+ in aqueous solutions and based on silver nanoparticles functionalized with l-cysteine (l-Cys-Ag NPs). In this method, adenosine triphosphate (ATP) induced aggregation of l-Cys-Ag NPs. Simultaneously, the solution colour changed from bright yellow to brown. In the presence of Hg2+ , Hg2+ chelated ATP to form a complex and reduce the degree of aggregation of l-Cys-Ag NPs and was accompanied by a colour change from brown to bright yellow. The changing values of absorbance at 390 nm were linearly correlated with concentration of Hg2+ over the 4.00 × 10-8 to 1.04 × 10-6 mol·L-1 range, with a detection limit of 8 nM. This method was used successfully for detection of Hg2+ in real water samples and performed good selectivity and sensitivity. The recovery range was 91.5-109.1%, indicating that the method has vast application potential for determination of Hg2+ in the environment.
Collapse
Affiliation(s)
- Pengfei Fan
- College of Public Health, University of South China, Hengyang, People's Republic of China.,Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, Hengyang, People's Republic of China
| | - Shunzhen He
- College of Public Health, University of South China, Hengyang, People's Republic of China.,Jinnan Center for Disease Control And Prevention, Tianjin, China
| | - Jianlin Cheng
- College of Public Health, University of South China, Hengyang, People's Republic of China.,Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, Hengyang, People's Republic of China
| | - Congcong Hu
- College of Public Health, University of South China, Hengyang, People's Republic of China.,Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, Hengyang, People's Republic of China
| | - Can Liu
- College of Public Health, University of South China, Hengyang, People's Republic of China.,Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, Hengyang, People's Republic of China
| | - Shengyuan Yang
- College of Public Health, University of South China, Hengyang, People's Republic of China.,Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, Hengyang, People's Republic of China
| | - Jinquan Liu
- College of Public Health, University of South China, Hengyang, People's Republic of China.,Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, Hengyang, People's Republic of China
| |
Collapse
|
24
|
Tan Z, Wu W, Yin N, Jia M, Chen X, Bai Y, Wu H, Zhang Z, Li P. Determination of selenium in food and environmental samples using a gold nanocages/fluorinated graphene nanocomposite modified electrode. J Food Compost Anal 2020; 94:103628. [DOI: 10.1016/j.jfca.2020.103628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Song C, Zhang Y, Li X, Ouyang G, Cui J, Zhang L, Yu A, Zhang S, Cui Y. Morphology-maintaining synthesis of copper hydroxy phosphate@metal-organic framework composite for extraction and determination of trace mercury in rice. Food Chem 2020; 343:128508. [PMID: 33248840 DOI: 10.1016/j.foodchem.2020.128508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/24/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
A novel copper hydroxy phosphate@MOF composite DMP-Cu decorated by 2, 5-dimercapto-1, 3, 4-thiadiazol was facilely prepared and characterized. A dispersive SPE strategy using DMP-Cu as adsorbent combined with atomic fluorescence spectroscopy was developed for the selective capture of trace total mercury in rice sample. The adsorption mechanism showed that the Hg2+ removal process was fitted with pseudo second-order kinetics and the Langmuir adsorption model. The adsorbent was easy to be regenerated and the maximum adsorption capacity for the removal of Hg2+ was 249.5 mg g-1 at the optimal pH of 4. X-ray photoelectron spectroscopy and Raman spectra verified the selective and strong interaction between Hg2+ and thiol/nitrogen-containing functional groups of DMTZ on DMP-Cu. The trace total mercury in rice samples was determined with detection limit of 0.0125 ng mL-1 and relative standard deviation below 6%. The high recoveries were obtained in range of 98.8-109% for the spiked rice samples.
Collapse
Affiliation(s)
- Chenchen Song
- College of Chemistry, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, PR China
| | - Xinglin Li
- College of Chemistry, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Gangfeng Ouyang
- Center of Advanced Analysis and Computational Science, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Jiting Cui
- College of Chemistry, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Ling Zhang
- College of Chemistry, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Ajuan Yu
- College of Chemistry, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China.
| | - Shusheng Zhang
- Center of Advanced Analysis and Computational Science, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | | |
Collapse
|
26
|
Ahmad H, Sharfan IIB, Khan RA, Alsalme A. Effective Enrichment and Quantitative Determination of Trace Hg 2+ Ions Using CdS-Decorated Cellulose Nanofibrils. NANOMATERIALS 2020; 10:nano10112218. [PMID: 33171741 PMCID: PMC7694963 DOI: 10.3390/nano10112218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/03/2022]
Abstract
Water pollution caused by metal contamination is of serious concern. Direct determination of trace metal ions in real water samples remains challenging. A sample preparation technique is a prerequisite before analysis. Herein, we report the facile water-based hydrothermal synthesis of cadmium sulfide nanoparticles on a cellulose nanofiber surface to prepare a new adsorbent material. Field emission scanning electron microscopy, high-resolution tunneling electron microscopy, elemental mapping and X-ray photoelectron microscopy were used to characterize the surface morphology, structural determination, elemental composition and nature of bonding. The nanoadsorbent (cadmium-sulfide-decorated cellulose nanofibrils (CNFs@CdS)) was employed for the solid-phase extraction and determination of trace Hg(II) from aqueous media. The experimental conditions were optimized systematically and the data show a good Hg(II) adsorption capacity of 126.0 mg g−1. The CNFs@CdS adsorbent shows the selective removal of Hg(II) accordingly to the hard and soft acid–base theory of metal–ligand interaction. A high preconcentration limit of 0.36 µg L−1 was obtained with a preconcentration factor of 580. The lowest level of trace Hg(II) concentration, which was quantitatively analyzed by the proposed method, was found to be 0.06 µg L−1. No significant interferences from the sample matrix were observed in the extraction of Hg(II). Analysis of the standard reference material (SRM 1641d) was carried out to validate the proposed methodology. Good agreement between the certified and observed values indicates the applicability of the developed methodology for the analysis of Hg(II) in tap water, river water and industrial wastewater samples.
Collapse
Affiliation(s)
- Hilal Ahmad
- Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Ibtisam I. Bin Sharfan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (I.I.B.S.); (R.A.K.)
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (I.I.B.S.); (R.A.K.)
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (I.I.B.S.); (R.A.K.)
- Correspondence: ; Tel.: +96-654-051-8430
| |
Collapse
|
27
|
Frois CF, Boschetti W, dos Passos AS, Potes ML, Vale MGR, Silva MM. A comparison between chemical and photochemical vapor generation techniques for mercury determination using univariate and multivariate optimization. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Optimization of a Digestion Method to Determine Total Mercury in Fish Tissue by Cold Vapor Atomic Fluorescence Spectrophotometry. Methods Protoc 2020; 3:mps3020045. [PMID: 32585795 PMCID: PMC7359707 DOI: 10.3390/mps3020045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 02/03/2023] Open
Abstract
Several microwave-assisted digestion methods were tested at the Centro de Estudios Aplicados en Química laboratory in Quito, Ecuador, to determine the accuracy and performance efficiency of the mineralization process for the determination of total mercury in fish tissue by cold vapor atomic fluorescence spectrophotometry. The use of MARSEasyPrep high-pressure vessels, low amounts of reagents (1 cm3 HNO3, 1 cm3 H2O2, and 1 cm3 HClO4), an irradiation temperature of 210 °C, and 35 min of mineralization time resulted in accurate performance, with recoveries of certified reference material DORM-4 between 90.1% and 105.8%. This is better than the Association of Official Analytical Chemists 2015.01 method, which has a reported accuracy of 81%. The repeatability precision and intermediate precision were established at three concentration levels (0.167, 0.500, and 0.833 mg·kg−1) and expressed as the percentage of the relative standard deviation ranging from 1.5% to 3.0% and 1.7% to 4.2%, respectively. Further, the method was satisfactorily applied to analyze fortified samples of tilapia (Oreochromis niloticus), with recoveries ranging from 98.3% to 104.3%. The instrumental limits of detection and quantification were 0.118 µg·dm−3 and 0.394 µg·dm−3, respectively.
Collapse
|
29
|
Determination of the Total Content of Arsenic, Antimony, Selenium and Mercury in Chinese Herbal Food by Chemical Vapor Generation-Four-Channel Non-dispersive Atomic Fluorescence Spectrometry. J Fluoresc 2020; 30:949-954. [PMID: 32548704 DOI: 10.1007/s10895-020-02569-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022]
Abstract
Food security is related to safe and nutritious food which meets people's dietary needs and food preferences for an active and healthy life. A simple and feasible method was proposed for the simultaneous analysis of trace arsenic (As), antimony (Sb), selenium (Se) and mercury (Hg) in Chinese herbal food by chemical vapor generation coupled non-dispersive atomic fluorescence spectrometry (CVG-NDAFS) in this paper. The operating parameters, such as observation height, carrier and shield gas flow rate, were optimized. The detection limits were obtained under optimal conditions, which were 0.051, 0.034, 0.050 and 0.0058 ng mL-1, respectively for As, Sb, Se and Hg. The relative standard deviations were 0.42%, 0.74%, 0.97% and 1.0% (n = 7), respectively (10 ng mL-1of As, Sb, Se and 1 ng ml-1of Hg). The proposed method is verified to simultaneously determine As, Sb, Se and Hg for Chinese herbal food.
Collapse
|
30
|
Li N, Wu X, Zhuang W, Xia L, Chen Y, Wu C, Rao Z, Du L, Zhao R, Yi M, Wan Q, Zhou Y. Fish consumption and multiple health outcomes: Umbrella review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Interference-free, green microanalytical method for total mercury and methylmercury determination in biological and environmental samples using small-sized electrothermal vaporization capacitively coupled plasma microtorch optical emission spectrometry. Talanta 2020; 217:121067. [PMID: 32498880 DOI: 10.1016/j.talanta.2020.121067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/04/2023]
Abstract
An analytical method for the quantification of total Hg and CH3Hg+ in biological tissues (fish, mushroom) and water sediment was developed based on small-sized electrothermal vaporization capacitively coupled plasma microtorch optical emission spectrometry using a low-resolution microspectrometer as detector. Sample preparation was carried out according to the procedure recommended by JRC Technical Report of European Commission for the determination of CH3Hg+ in seafood and adapted by us for lower consumption of reagents. Amounts of 0.1 - 0.5 g sample were subjected to extraction in 5 ml of 47% HBr then CH3Hg+ was extracted in 2 × 1 ml toluene and back-extracted in 2 ml aqueous solution of 1% l-cysteine. Total Hg/CH3Hg+ were quantified in 10 μl of acidic extract/l-cysteine solution after electrothermal vaporization and measurement of 253.652 nm Hg signal in the episodic emission spectra. Under the optimal working conditions of system (70 °C sample drying, 1300 °C sample vaporization, 10 W plasma power and 150 ml min-1 Ar flow) the limits of detection were 7.0 μg kg-1 total Hg and 3.5 μg kg-1 CH3Hg+. Comparison of slopes in external calibration and standard addition procedure revealed the lack of non-spectral interferences of multimineral matrix, so that the calibration against Hg2+ standards was adopted. Pooled recovery of total mercury/methylmercury was 101 ± 7%/100 ± 7%, while precision assessed from measurements of real samples was in the range 1.6-9.6%/2.7-12.8%. The proposed method validated according to Eurachem Guide 2014 is selective and complies with demands in European legislation (Decisions 657/2002; 333/2007; 836/2011) and Association of Official Analytical Chemists Guide in terms of performances for food control. The method displays a high degree of greenness by circumventing cold vapor generation, use of small amounts of reagents and full-miniaturized instrumentation resulting in low analytical costs without reducing results quality. Besides, the method is simple and rapid, since it uses external calibration curves prepared from Hg2+standard solutions both for total Hg and CH3Hg+ determination.
Collapse
|
32
|
Xu L, Suo XY, Zhang Q, Li XP, Chen C, Zhang XY. ELISA and Chemiluminescent Enzyme Immunoassay for Sensitive and Specific Determination of Lead (II) in Water, Food and Feed Samples. Foods 2020; 9:foods9030305. [PMID: 32182696 PMCID: PMC7143091 DOI: 10.3390/foods9030305] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 11/21/2022] Open
Abstract
Lead is a heavy metal with increasing public health concerns on its accumulation in the food chain and environment. Immunoassays for the quantitative measurement of environmental heavy metals offer numerous advantages over other traditional methods. ELISA and chemiluminescent enzyme immunoassay (CLEIA), based on the mAb we generated, were developed for the detection of lead (II). In total, 50% inhibitory concentrations (IC50) of lead (II) were 9.4 ng/mL (ELISA) and 1.4 ng/mL (CLEIA); the limits of detection (LOD) were 0.7 ng/mL (ic-ELISA) and 0.1 ng/mL (ic-CLEIA), respectively. Cross-reactivities of the mAb toward other metal ions were less than 0.943%, indicating that the obtained mAb has high sensitivity and specificity. The recovery rates were 82.1%–108.3% (ic-ELISA) and 80.1%–98.8% (ic-CLEIA), respectively. The developed methods are feasible for the determination of trace lead (II) in various samples with high sensitivity, specificity, fastness, simplicity and accuracy.
Collapse
Affiliation(s)
- Long Xu
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (L.X.); (Q.Z.); (C.C.)
- Centre of Molecular and Environmental Biology, University of Minho, Department of Biology, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Xiao-yi Suo
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.-y.S.); (X.-p.L.)
| | - Qi Zhang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (L.X.); (Q.Z.); (C.C.)
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.-y.S.); (X.-p.L.)
| | - Xin-ping Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.-y.S.); (X.-p.L.)
| | - Chen Chen
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (L.X.); (Q.Z.); (C.C.)
| | - Xiao-ying Zhang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (L.X.); (Q.Z.); (C.C.)
- Centre of Molecular and Environmental Biology, University of Minho, Department of Biology, Campus de Gualtar, 4710-057 Braga, Portugal
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.-y.S.); (X.-p.L.)
- Correspondence:
| |
Collapse
|
33
|
Xue Y, Ma L, Zhang L, Zhao W, Li Z, Li Q. A Green, Rapid and Efficient Dual-Sensors for Highly Selective and Sensitive Detection of Cation (Hg 2+) and Anion (S 2-) Ions Based on CMS/AgNPs Composites. Polymers (Basel) 2020; 12:polym12010113. [PMID: 31948031 PMCID: PMC7023171 DOI: 10.3390/polym12010113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
Detection of mercury (Hg2+) and sulfide (S2−), universal and well-known toxic ions, is crucial in monitoring several diseases. How to design and fabricate the high-performance sensor for simultaneously and accurately detecting the Hg2+ and S2− is critical. Herein, we proposed a novel and convenient strategy for optical detection of Hg2+ and S2− by employing a carboxymethyl cellulose sodium/silver nanoparticle (CMS/AgNPs) colloidal solution, in which AgNPs were used as monitor for Hg2+ and S2−, and the CMS was utilized as both the stabilizer and the hydrophilic substrate for AgNPs. Well-identifiable peaks for Hg2+ and S2– were obtained in water based on UV–VIS absorption spectra, the absorbance intensity and/or position of nano-silver vary with the addition of Hg2+ cation and S2– anion, accompanying with color change. Impressively, the optimal AgNPs anchored CMS exhibited a high sensitivity and selectivity toward Hg2+ and S2−, the change in absorbance was linear with the concentration of Hg2+ (0–50 μM) and S2− (15–70 μM), and the lowest limits of detection (LOD) were 1.8 × 10−8 M and 2.4 × 10−7 M, respectively. More importantly, owing to the superior properties in testing Hg2+ and S2−, the fabricated sensor was successfully applied for detection of target ions in lake and tap water samples. All these good results implied that the designed strategy and as-designed samples is promising in detecting cation (Hg2+) and anion (S2−) ions and open up new opportunities for selecting other kinds of ions.
Collapse
Affiliation(s)
- Yun Xue
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (Y.X.); (L.M.); (L.Z.); (W.Z.)
| | - Lina Ma
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (Y.X.); (L.M.); (L.Z.); (W.Z.)
| | - Lei Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (Y.X.); (L.M.); (L.Z.); (W.Z.)
| | - Wanting Zhao
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (Y.X.); (L.M.); (L.Z.); (W.Z.)
| | - Zichao Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China;
| | - Qun Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (Y.X.); (L.M.); (L.Z.); (W.Z.)
- Correspondence: ; Tel.: +86-532-8595-0705
| |
Collapse
|
34
|
Mo A, Wang J, Yuan M, Zhao D, Gu Z, Liu Y, Huang H, Yuan YC. Effect of sub-chronic dietary L-selenomethionine exposure on reproductive performance of Red Swamp Crayfish, (Procambarus clarkii). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:749-758. [PMID: 31344537 DOI: 10.1016/j.envpol.2019.07.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/18/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
The effect of selenium (Se) on the reproductive system has been investigated in both humans and vertebrates, but few studies of female fertility and reproduction in invertebrate have been reported. This study is aimed to investigate the effect of SeMet on growth performance and reproductive system after crayfish were fed with graded levels of dietary SeMet (0, 1.49, 3.29, 10.02, 30.27 or 59.8 μg Se/g dry weight) for 60 days. Crayfish treated with the high levels of SeMet (10.02, 30.27 and 59.76 μg Se/g) exhibited decreasing FW and CL in both male and female. Interestingly, Se accumulation was higher in ovary than in other tissues, suggesting that ovary may serve as a target organ for Se accumulation. We found that dietary Se concentration of 10.02 μg Se/g significantly improved the spawning rate, promoted the synchronized spawning, and up-regulated the expressions of mRNA of cdc2 and vitellogenin, with significantly increased E2 and VTG concentrations in hemolymph of female crayfish. However, a marked decrease of the E2 contents and spawning rate was observed in the groups treated with 30.27 and 59.76 μg Se/g diets. In conclusion, the results of this study indicated that the Se had maximum accumulation in ovary, affecting the reproductive capacity by intervening the expression of cdc2 and vitellogenin in the reproductive system. The LOAEL to induce FW was observed in crayfish fed with 10.02 μg Se/g diet, and its value can cause toxicity within the range of natural concentration, so the addition of Se in the feed should be within 10.02 μg Se/g.
Collapse
Affiliation(s)
- Aijie Mo
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jianghua Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mingrui Yuan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dengxiao Zhao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zemao Gu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ya Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hongying Huang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yong Chao Yuan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shuangshui Shuanglu Institute, Huazhong Agricultural University, Wuhan 430070, China; National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
35
|
Yuan A, Wu X, Li X, Hao C, Xu C, Kuang H. Au@gap@AuAg Nanorod Side-by-Side Assemblies for Ultrasensitive SERS Detection of Mercury and its Transformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901958. [PMID: 31106526 DOI: 10.1002/smll.201901958] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/02/2019] [Indexed: 05/21/2023]
Abstract
As one of the most toxic heavy metal elements, mercury ion (Hg2+ ) and its methylated product, methylmercury (MeHg) can pose a threat to human health and the environment. Herein, a novel Raman biosensor with cascade sensitivity is developed for Hg2+ detection through Au@gap@AuAg nanorod side-by-side assemblies. Due to the strong electromagnetic coupling from the assemblies and core-shell structure, the Raman sensor possesses high sensitivity with the limit of detection (LOD) of 0.001 ng mL-1 , which is about one order lower than traditional atomic fluorescence spectrometer (AFS) methods. Moreover, the fabricated biosensor is used to measure residual mercury levels in tissues and eggs of hens fed high-mercury diets, and the results show total mercury in collected egg yolks is 20 times higher than whites. Furthermore, the form of mercury in the eggs is also analyzed by high-performance liquid chromatography coupled with AFS, and, unexpectedly, the methylated product MeHg tends to only be found in egg whites. These interesting differences may indicate a new research direction for the toxicity of mercury in living organisms, and the developed ultrasensitive Surface Enhanced Raman Scattering (SERS) method could pave a broad way for the application of biosensors in Hg detection.
Collapse
Affiliation(s)
- Aimeng Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Xiu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Changlong Hao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|