1
|
Wu W, Zheng Z, Wang Z, He B, Du S, Zeng W, Sun W. Identification of key aroma compounds contributing to the pleasurable sensory experience of white Peony tea using GC-MS, computational modeling, and sensory evaluation. Food Res Int 2025; 208:116280. [PMID: 40263863 DOI: 10.1016/j.foodres.2025.116280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/03/2025] [Accepted: 03/12/2025] [Indexed: 04/24/2025]
Abstract
White Peony Tea (WPT) is valued for its unique flavor and pleasant sensory effects. However, the specific aroma compounds in WPT contributing to this pleasant sensation and the underlying mechanisms remain unclear. This study integrates GC-MS, computational modeling, and sensory evaluation to systematically explore the key pleasant aroma compounds in WPT and their potential mechanisms. Seven key components were identified as eliciting the pleasant sensation of WPT, including cedrol and β-ionone. These compounds activate human pleasure receptors, influencing neurological pathways to enhance sensory pleasure. Molecular simulations validated the stability of the interactions between the aroma compounds and their targets, specifically cedrol-CHRM4, cedrol-ADORA1, β-ionone-ADORA2A, and cedrol-MAOB. Sensory evaluation revealed pleasantness scores for these aroma compounds between 2.60 and 6.80, supporting the positive effects on sensory experience. This research provides scientific insight into the relationship between tea aroma and sensory pleasure, providing a foundation for the development of tea products.
Collapse
Affiliation(s)
- Weiwei Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiqiang Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhihui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Jiangxi Cash Crops Research Institute, Nanchang 330043, China
| | - Biyun He
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siqing Du
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wen Zeng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Feng Y, Tian D, Wang C, Huang Y, Luo Y, Zhang X, Li L. Aromatic Volatile Substances in Different Types of Guangnan Dixu Tea Based on HS-SPME-GC-MS Odor Activity Value. Metabolites 2025; 15:257. [PMID: 40278386 PMCID: PMC12029467 DOI: 10.3390/metabo15040257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/19/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
Dixu tea is one of the characteristic tea germplasm resources of southeastern Yunnan, and is also a precious wild tea germplasm resource. Background: In order to further develop Dixu tea products and improve their flavor, this article studies the effects of different processing methods on the aroma quality of Dixu tea. Methods: A comprehensive analysis of the aroma quality of Diwei tea was conducted using HS-SPME combined with GC-MS and multivariate statistical analysis. A principal component analysis (PCA) was applied to process the detected volatile substances and an orthogonal partial least squares-discriminant analysis (OPLS-DA) model was established. We evaluated the contribution of major compounds in the tea aroma by calculating the odor activity value (OAV). Results: The results showed that a total of 67 compounds were identified. A total of 27 major aromatic volatile compounds (OAV > 1) were screened, and 17 key differential volatile compounds were identified in different tea samples, including octanoic acid, d-citrol, laurene, hexanal, citral, β-cyclic citral, trans-2-hexenal, γ-nonanolide, β-ionone, geranylacetone, 1,1,6-trimethyl-1,2-dihydronaphthalene, geraniol, methyl salicylate, linalool, nerolidol, and 7,11-dimethyl-3-methylene-1,6,10-dodecatriene. Combined with the OAV analysis, it is shown that a floral fragrance is a common feature of Guangnan Dixu tea varieties. In addition, white tea also has a fragrant aroma, while black tea, green tea, and bamboo tube tea are all accompanied by a fruity aroma. Conclusions: In summary, processing techniques regulate the aroma characteristics of various types of tea by changing the types and contents of volatile aroma compounds. This provides a theoretical basis for exploring and utilizing tea production resources in the future.
Collapse
Affiliation(s)
- Ying Feng
- College of Sanqi Medical, Wenshan College, Wenshan 663099, China; (Y.F.); (C.W.); (Y.H.); (Y.L.)
| | - Di Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650051, China;
| | - Chaoliang Wang
- College of Sanqi Medical, Wenshan College, Wenshan 663099, China; (Y.F.); (C.W.); (Y.H.); (Y.L.)
| | - Yong Huang
- College of Sanqi Medical, Wenshan College, Wenshan 663099, China; (Y.F.); (C.W.); (Y.H.); (Y.L.)
| | - Yang Luo
- College of Sanqi Medical, Wenshan College, Wenshan 663099, China; (Y.F.); (C.W.); (Y.H.); (Y.L.)
| | - Xiuqiong Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Lei Li
- College of Sanqi Medical, Wenshan College, Wenshan 663099, China; (Y.F.); (C.W.); (Y.H.); (Y.L.)
| |
Collapse
|
3
|
Su D, Wang Z, Zhou J, Ren H, Sun M, Zhou H. Effect of Anaerobic Treatment on the Formation of Volatile Flavor Characteristics in GABA White Tea. Foods 2025; 14:1153. [PMID: 40238334 PMCID: PMC11988505 DOI: 10.3390/foods14071153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
This study investigated the volatile flavor characteristics of Fujian white tea (FWT), Yunnan white tea (YWT), and GABA-enriched white tea (GWT) using headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS). Cluster analysis and sensory evaluations were employed to compare the relative content changes in volatile compounds and their contributions to freshness-related aroma. A total of 85 volatile compounds were identified, with cis-3-Hexenyl isovalerate, β-Ocimene, and nerol identified as key contributors to the fresh aroma of white tea. Comparative analysis of 2023 and 2024 GABA white tea batches revealed significant differences in volatile compounds, highlighting the role of anaerobic treatment in enhancing freshness and purity. The findings provide theoretical support for optimizing GABA white tea production and advancing functional tea research.
Collapse
Affiliation(s)
- Dan Su
- College of Tea, Xinyang Agriculture and Forestry University, Xinyang 464000, China;
- Dabie Mountain Laboratory, Xinyang 464000, China
| | - Zhixia Wang
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China;
| | - Jia Zhou
- College of Tea, Yunnan Agricultural University, Kunming 650000, China (H.R.)
| | - Hongtao Ren
- College of Tea, Yunnan Agricultural University, Kunming 650000, China (H.R.)
| | - Mufang Sun
- College of Tea, Xinyang Agriculture and Forestry University, Xinyang 464000, China;
- Dabie Mountain Laboratory, Xinyang 464000, China
| | - Hongjie Zhou
- College of Tea, Xinyang Agriculture and Forestry University, Xinyang 464000, China;
- College of Tea, Yunnan Agricultural University, Kunming 650000, China (H.R.)
| |
Collapse
|
4
|
Zhang J, Wang Z, Zhang L, Huang W, Lin F, Xiao C, Zheng Z, Huang Y, Sun W. Underlying characteristic aroma of white tea from diverse geographical origins and its prediction. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40079094 DOI: 10.1002/jsfa.14184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND White tea, an agriculturally distinctive product, exhibits significant aroma variations across different regions. Nevertheless, the mechanisms driving these differences, and distinguishing methods suitable for specific origins, have been scarcely reported. In this study, we analyzed the aroma characteristics and volatile components of 100 white tea samples from ten regions, utilizing sensory evaluation, headspace solid-phase microextraction-gas chromatography-mass spectrometry and chemometrics, then established a discrimination model. RESULTS A total of 66 volatile compounds were identified, with alcohols and esters being the most important. Linalool and geranyl alcohol were common and relatively abundant volatile compounds across all ten regions, significantly contributing to the aroma characteristics of white tea. The relative content of volatile compounds differed notably across regions, where 33 key compounds, including (E)-2-phenylbut-2-enal and methyl 2,5-octadecadiynoate, were crucial for regional prediction. Employing machine learning algorithms, such as random forest and support vector machine for regional prediction, yielded accuracies of 93.33% and 90.00%, respectively. CONCLUSION This study unveils new insights into aroma variation in white tea across different origins, proposing an innovative way of origin determination. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jialin Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhihui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lingzhi Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fuming Lin
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou, China
| | - Chunyan Xiao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiqiang Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Huang
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou, China
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
5
|
Zhu W, Feng X, Pan Y, Guo H, Liu Y, Lin X, Fan F, Gong S, Chen P, Chu Q. Flowering in aged white tea: Recovering umami taste and amplifying of stale aroma. Food Chem 2025; 465:141649. [PMID: 39433449 DOI: 10.1016/j.foodchem.2024.141649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/11/2024] [Accepted: 10/12/2024] [Indexed: 10/23/2024]
Abstract
Throughout the natural aging process from new to aged white tea, the flavor evolves into a 'stale flavor', despite the initial umami diminishes. The flowering process, inoculation of Eurotium cristatum to white tea, improves the flavor. The impact on sensory qualities and underlying chemical basis of flowering in aged white tea warrant investigation. Sensory analysis, non-targeted metabolomics and volatilomics together deciphered flavor modifications of flowering in aged white tea from different aging years (FAWTs). Findings indicate the flowering process can recover the umami of aged white tea, enhancing the 'stale flavor'. These changes primarily stem from oxidations of catechins and free amino acids, enrichments of flavonols and soluble sugars, and 16 pivotal aroma compounds from degradations of lipids and glycosides. Additionally, 15 volatile and 39 non-volatile compounds were identified as potential biomarkers for FAWTs. These findings offer a viable strategy to improving the quality of aged white tea.
Collapse
Affiliation(s)
- Wan Zhu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Feng
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Yani Pan
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Haowei Guo
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Yunqing Liu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | | | - Fangyuan Fan
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Shuying Gong
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China..
| |
Collapse
|
6
|
Huang T, Zhang Y, Wang X, Zhang H, Chen C, Chen Q, Zhong Q. Comprehensive metabolite profiling reveals the dynamic changes of volatile and non-volatile metabolites in albino tea cultivar 'Ming guan' (MG) during white tea withering process. Food Res Int 2025; 202:115784. [PMID: 39967118 DOI: 10.1016/j.foodres.2025.115784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 02/20/2025]
Abstract
'Ming guan'(MG), an elite albino cultivar deriving from the progeny of the traditional albino cultivar 'Bai jiguan', is a promising candidate for white tea production due to its favorable amino acid to phenol ratio. In this study, a comprehensive metabolomics analysis using ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) and headspace solid-phase microextraction-gas chromatography mass spectrometry (HS-SPME-GC-MS) were conducted to reveal the dynamic changes of non-volatile and volatile organic compounds (VOCs) throughout the withering processing of MG white tea. Meanwhile, multivariate statistical analyses were applied to screen for the characteristic components in the flavor and aroma of MG white tea. A total of 625 non-volatile metabolites and 118 VOCs were determined, of which 90 non-volatile metabolites (VIP ≥ 1, FC ≥ 2 or ≤ 0.5) were identified as key flavor components significantly changed throughout the withering process. The relative odor activity value (ROAV) analysis highlighted 22 VOCs (ROAV ≥ 1) with substantial effect on aroma formation, of which geraniol, (E)-2-hexenal, 4-methoxy-benzaldehyde and guaiacol emerging as the most key aroma constituents of MG white tea, endowing MG white tea with fruity and floral odor notes. This study offered a comprehensive investigation into metabolite changes in MG white tea, contributing valuable insights for the innovation of new white tea products utilizing albino tea plant mutants.
Collapse
Affiliation(s)
- Ting Huang
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yinggen Zhang
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Xiuping Wang
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Hui Zhang
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| | - Quanbin Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Qiusheng Zhong
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| |
Collapse
|
7
|
Tian J, Xu S, Wu Y, Shi Y, Duan Y, Li Z, Cao H, Zeng J, Shen T, Pan L, Xin Z, Fang W, Zhu X. Authenticating vintage in white tea: Appearance-taste-aroma-based three-in-one non-invasive anticipation. Food Res Int 2025; 199:115394. [PMID: 39658181 DOI: 10.1016/j.foodres.2024.115394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
To safeguard the legal rights of tea enterprises and promote sustainable development in the tea industry, this study proposes a rapid, non-destructive method for authenticating white tea vintages based on the hypothesis that the appearance, taste and aroma cannot be simultaneously replicated in counterfeit teas. Using visible-near infrared hyperspectral imaging, this three-in-one appearance-taste-aroma method was applied to Bai Mudan white tea, produced from the Jinggu Dabai Tea cultivar harvested in 2020, 2021 and 2022. Hyperspectral imaging captured appearance data from dry samples of different vintages, with preprocessing using multiplicative scatter correction (MSC) and standard normal variate (SNV). Partial least squares regression (PLSR) and support vector regression (SVR) models were used to explore correlations between appearance data, electronic tongue-measured taste and electronic nose-measured aroma. The results showed that appearance data can predict tea infusion taste (0.6540 < Rp < 0.8873) and aroma (0.8880 < Rp < 0.9703) across vintages. Further integration of high-performance liquid chromatography (HPLC), high-performance liquid chromatography (GC-IMS) and regression models revealed that appearance-based spectral data predict taste through gallic acid (GA), catechin (C) and gallocatechin gallate (GCG), and predict aroma via styrene, 2,5-dimethylpyrazine and 2-octanone. This non-invasive method, leveraging visible-near infrared spectroscopy, provides a standardized approach for white tea vintage authentication by integrating appearance, taste and aroma assessments.
Collapse
Affiliation(s)
- Jingjing Tian
- Tea Research Institute, Key Laboratory of Food Processing and Quality Control, State Key Lab of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuofei Xu
- Tea Research Institute, Key Laboratory of Food Processing and Quality Control, State Key Lab of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujing Wu
- Tea Research Institute, Key Laboratory of Food Processing and Quality Control, State Key Lab of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaning Shi
- Tea Research Institute, Key Laboratory of Food Processing and Quality Control, State Key Lab of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Duan
- Tea Research Institute, Key Laboratory of Food Processing and Quality Control, State Key Lab of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, China
| | - Zihui Li
- Tea Research Institute, Key Laboratory of Food Processing and Quality Control, State Key Lab of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, China
| | - Hujing Cao
- Tea Research Institute, Key Laboratory of Food Processing and Quality Control, State Key Lab of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiarui Zeng
- Tea Research Institute, Key Laboratory of Food Processing and Quality Control, State Key Lab of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, China
| | - Tingting Shen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Leiqing Pan
- Tea Research Institute, Key Laboratory of Food Processing and Quality Control, State Key Lab of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihong Xin
- Tea Research Institute, Key Laboratory of Food Processing and Quality Control, State Key Lab of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanping Fang
- Tea Research Institute, Key Laboratory of Food Processing and Quality Control, State Key Lab of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, China
| | - Xujun Zhu
- Tea Research Institute, Key Laboratory of Food Processing and Quality Control, State Key Lab of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Huang J, Zhang J, Chen Z, Xiong Z, Feng W, Wei Y, Li T, Ning J. Sensory-directed flavor analysis of Jinggu white tea: Exploring the formation mechanisms of sweet and fruity aromas. Food Chem X 2024; 24:102026. [PMID: 39655215 PMCID: PMC11626070 DOI: 10.1016/j.fochx.2024.102026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
White tea is a naturally processed type of tea that has a unique favorable aroma. Typically, the aroma of white tea depends on its origin. Compared with Fujian white tea (FJ) and Yunnan other origin white tea (YO), Jinggu white tea (JG) has a stronger fruity and sweet aroma. In this study, to determine the factors underlying the unique fruity and sweet aroma of JG, we used YO and FJ as control samples and analysed the samples by using a molecular sensory science technique. Olfactory experiments and odor activity analysis revealed 10 key active substances to contribute to the aroma of JG. Aroma addition experiments further showed that linalool and benzeneacetaldehyde were the main contributors to the fruity and sweet aroma of JG, respectively. The results are helpful to understand the aroma of JG and provide a theoretical basis for the quality control of JG.
Collapse
Affiliation(s)
- Junlan Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Zhenbin Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Zhichao Xiong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Wanzhen Feng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| |
Collapse
|
9
|
Qin L, Zheng J, Fan B, Zhou Y, Diao R, Sun Y, Liu J, Wang F. Analysis of volatile flavour compounds in different potato varieties and regions and the effect of soil elements on starch content. Food Chem X 2024; 24:102019. [PMID: 39655219 PMCID: PMC11626059 DOI: 10.1016/j.fochx.2024.102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/06/2024] [Accepted: 11/17/2024] [Indexed: 12/12/2024] Open
Abstract
This study aims to analyze the differences in flavor compounds of potatoes from various varieties and regions, as well as to explore the impact of soil elements on starch content in potatoes. Headspace solid-phase micro-extraction/gas chromatography-mass spectrometry (HS-SPME-GC-MS) was employed to identify volatile flavor compounds in 18 potatoes representing 4 different varieties from 5 different regions. The relative odor activity (rOAV) was utilized for principal component analysis to establish a comprehensive scoring model for potato volatile flavor compounds. In addition, the starch and amylose content of the potatoes were determined using enzymatic methods, and the correlation between soil elements and starch content in Dingxi potatoes was analyzed. The results indicated that the flavor scores for the samples "DX-DP," "DX-LS," "NM-XY," "JB-LS," "ZB-XS," and "GY-LS" were 15.184, 14.500, 13.992, -4.62, -7.199 and - 9.525, respectively, with "DX-DP" exhibiting the highest flavor score (15.184) and starch content (15.21 %). This study demonstrated that the overall quality of potatoes from Dingxi was superior, particularly for "DX-DP". Further analysis revealed that potato starch content was positively correlated with soil potassium and negatively correlated with total nitrogen and pH. In conclusion, this study provides insights into the relationship between potato genotypes and soil environments, offering valuable guidance for potato land selection and cultivation practices.
Collapse
Affiliation(s)
- Luqi Qin
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiahuan Zheng
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bei Fan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yixia Zhou
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Rao Diao
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yufeng Sun
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiameng Liu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji 831199, China
| |
Collapse
|
10
|
Huang H, Chen X, Wang Y, Cheng Y, Liu Z, Hu Y, Wu X, Wu C, Xiong Z. Characteristic volatile compounds of white tea with different storage times using E-nose, HS-GC-IMS, and HS-SPME-GC-MS. J Food Sci 2024; 89:9137-9153. [PMID: 39630468 DOI: 10.1111/1750-3841.17535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 12/28/2024]
Abstract
This paper studied the influence of storage duration on the flavor profile of white tea in detail, with samples produced between 2020 and 2023. Sensory evaluation was performed by quantitative descriptive analysis (QDA), followed by an in-depth aroma components analysis employing an electronic nose (E-nose), headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS), and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). The QDA findings revealed a gradual transition in the flavor profile of white tea during storage, shifting from sweet, fruity, and floral to more herbal and stale characteristics. E-nose could well distinguish white tea with different storage times. A total of 55 and 53 volatile compounds were identified by HS-GC-IMS and HS-SPME-GC-MS, respectively. The orthogonal partial least squares-discriminant analysis models, based on HS-GC-IMS (R2Y = 0.998, Q2 = 0.987) and HS-SPME-GC-MS (R2Y = 0.984, Q2 = 0.993), successfully distinguished white tea samples stored for different storage times. Furthermore, 14 and 8 key compounds were screened based on the double variable criterion of one-way analysis of variance (p < 0.05) and variable importance in projection (VIP) >1.2, and their content changes were also compared. It is the gradual decrease of important aroma components such as 2-hexenal, 2-methyl-2-hepten-6-one, linalool, and geraniol, which are positively correlated with sweet, fruity, and floral aromas, and the gradual increase of hexanoic acid, thiophene, propanoic acid, dimethyl disulfide, and borneyl acetate, which are positively correlated with herbal and stale flavor, that leads to the changes in flavor and aroma of white tea during storage. The results of the study provided a reference for elucidating the aroma characteristics of white tea at different storage times as well as a theoretical basis for the quality control of white tea.
Collapse
Affiliation(s)
- Haoran Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Xinyu Chen
- School of Electrical and Optoelectronic Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Ying Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Ye Cheng
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhijian Liu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Yunchao Hu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Xianzhi Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhixin Xiong
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
11
|
Li Y, Wang R, Xiao T, Song L, Xiao Y, Liu Z, Wang K, Huang J, Zhu M. Unveiling key odor-active compounds and bacterial communities in Fu Brick tea from seven Chinese regions: A comprehensive sensomics analysis using GC-MS, GC-O, aroma recombination, omission, and high-throughput sequencing. Food Res Int 2024; 196:114978. [PMID: 39614465 DOI: 10.1016/j.foodres.2024.114978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 12/01/2024]
Abstract
Fu Brick Tea (FBT) is a unique fermented tea produced in multiple regions of China, whose aroma qualities, key odor-active compounds and bacterial communities are not well characterized. By optimizing HS-SPME methods, utilizing GC-MS, GC-O, sensory analysis, aroma recombination and omission experiments, and bacterial sequencing, we revealed the primary volatiles and bacterial communities in 41 samples from 7 major producing regions. A total of 63 volatiles and 32 odor-active compounds were quantitatively analyzed using GC-MS and GC-O, respectively. Sensory analyses discriminated the quality of the samples. Differential analysis indicated that poor aroma FBTs had either low volatile content or excessive "green" notes. Key odor-active compounds in high-quality aroma FBTs include 1-octen-3-ol, phenylethylalcohol, β-ionone, dihydroactindiolide, and 1,2,3-trimethoxybenzene. Sequencing results identified Bacillus, Pseudomonas, and Streptococcus as dominant genera. Functional prediction analyses suggest that bacteria contribute to the formation of FBT aroma. This study offers new insights into the quality characteristics of FBT.
Collapse
Affiliation(s)
- Yilong Li
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Ruoxian Wang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Tian Xiao
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Lubin Song
- Tea Research Institute of Shandong Academy of Agricultral Sciences.
| | - Yu Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Zhonghua Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Kunbo Wang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Jianan Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Mingzhi Zhu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
12
|
Wei Y, Pang Y, Ma P, Miao S, Xu J, Wei K, Wang Y, Wei X. Green preparation, safety control and intelligent processing of high-quality tea extract. Crit Rev Food Sci Nutr 2024; 64:11468-11492. [PMID: 37493455 DOI: 10.1080/10408398.2023.2239348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Tea contains a variety of bioactive components, including catechins, amino acids, tea pigments, caffeine and tea polysaccharides, which exhibit multiple biological activities. These functional components in tea provide a variety of unique flavors, such as bitterness, astringency, sourness, sweetness and umami, which meet the demand of people for natural plant drinks with health benefits and pleasant flavor. Meanwhile, the traditional process of tea plantation, manufacturing and circulation are often accompanied by the safety problems of pesticide residue, heavy metal, organic solvents and other exogenous risks. High-quality tea extract refers to the special tea extract obtained by enriching the specific components of tea. Through green and efficient extraction technologies, diversed high-quality tea extracts such as high-fragrance and high-amino acid tea extracts, low-caffeine and high-catechin tea extracts, high-bioavailability and high-theaflavin tea extracts, high-antioxidant and high-tea polysaccharide tea extracts, high-umami-taste and low-bitter and astringent taste tea extracts are produced. Furthermore, rapid detection, green control and intelligent processing are applied to monitor the quality of tea in real-time, which guarantee the stability and safety of high-quality tea extracts with enhanced efficiency. These emerging technologies will realize the functionalization and specialization of high-quality tea extracts, and promote the sustainable development of tea industry.
Collapse
Affiliation(s)
- Yang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yuxuan Pang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Peihua Ma
- Department of nutrition and Food science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland, USA
| | - Siwei Miao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jia Xu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Kang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yuanfeng Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, PR China
| | - Xinlin Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
13
|
Zou L, Sheng C, Xia D, Zhang J, Wei Y, Ning J. Mechanism of aroma formation in white tea treated with solar withering. Food Res Int 2024; 194:114917. [PMID: 39232537 DOI: 10.1016/j.foodres.2024.114917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/10/2024] [Accepted: 08/10/2024] [Indexed: 09/06/2024]
Abstract
Withering is a crucial process that determines the quality of white tea (WT). Solar withering (SW) is reported to contribute to the aroma quality of WT. However, the mechanism by which aroma is formed in WT subjected to SW remains unclear. In this study, through headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and transcriptomics, we found that 13 key genes enriched in the mevalonic acid and methylerythritol phosphate pathways, such as those of 1-deoxy-D-xylulose-5-phosphate synthase and terpineol synthase, were significantly upregulated, promoting the accumulation of α-terpinolene, geraniol, and nerolidol, which imparted floral and fruity odors to WT subjected to SW. Additionally, the significant upregulation of lipoxygenases enriched in the lipoxygenase pathway promoting the accumulation of hexanol, 1-octen-3-ol, (E, Z)-3,6-nonadien-1-ol, and nonanal, which contributed to the green and fresh odor in WT subjected to SW. This study provided the first comprehensive insight into the effect mechanism of SW on aroma formation in WT.
Collapse
Affiliation(s)
- Li Zou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Caiyan Sheng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Dongzhou Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332900, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.
| |
Collapse
|
14
|
Song X, Wu Z, Liang Q, Ma C, Cai P. Prediction of storage years of Wuyi rock tea Shuixian by metabolites analysis. Food Sci Nutr 2024; 12:7166-7176. [PMID: 39479628 PMCID: PMC11521635 DOI: 10.1002/fsn3.4327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 11/02/2024] Open
Abstract
Wuyi rock teas of different storage duration have different flavor, bioactivity, and market value, Shuixian is a main variety of Wuyi rock tea. In this study, metabolites composition of Shuixian with different storage years were analyzed using Ultrahigh Performance Liquid Chromatography-Quadrupole-Time of Flight-Mass Spectrometry (UPLC-Q-TOF-MS). A total of 1201 compounds were identified, and 104 differential compounds (VIP > 1.5) were determined. Furthermore, the results showed that five compounds exhibited a positive correlation with storage time, such as alpha-terpineol formate, carnosol, 2-phenethyl-D-glucopyranoside, Ellagic acid, and D-ribosyl nicotinic acid, while 24 compounds showed a negative correlation, such as Ethyl linoleate, leucocyanidin, cis-3-hexenyl acetate. In total, 29 signature compounds significantly correlated with storage time. These findings shed light on the patterns and mechanisms of changes in the composition of Wuyi rock tea during storage and provide a theoretical foundation for distinguishing the storage years.
Collapse
Affiliation(s)
- Xiaoyue Song
- College of Food Science, Fujian Agriculture and Forestry UniversityFuzhouFujianChina
- College of Tea and Food Science, Wuyi UniversityWuyishanChina
| | - Zhifeng Wu
- College of Food Science, Fujian Agriculture and Forestry UniversityFuzhouFujianChina
- College of Tea and Food Science, Wuyi UniversityWuyishanChina
| | - Quanming Liang
- College of Tea and Food Science, Wuyi UniversityWuyishanChina
| | - Chunhua Ma
- College of Tea and Food Science, Wuyi UniversityWuyishanChina
| | - Pumo Cai
- College of Tea and Food Science, Wuyi UniversityWuyishanChina
| |
Collapse
|
15
|
Zhu W, Zhou S, Guo H, Hu J, Cao Y, Xu Y, Lin X, Tian B, Fan F, Gong S, Chen P, Chu Q. Golden-flower fungus (Eurotiwm Cristatum) presents fungal flower aroma as well as accelerates the aging of white tea (Shoumei). Food Chem 2024; 451:139452. [PMID: 38688098 DOI: 10.1016/j.foodchem.2024.139452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024]
Abstract
Golden-flower fungus (Eurotiwm Cristatum, EC) is widely inoculated in dark tea to endow a typical fungal floral aroma. Recently, Golden Flower White Tea (GFWT), prepared by transplanting EC-mediated fermentation to white tea (Shoumei, SM) to reform the roughness and coarseness, has attracted much attention attributed to coordinated flavor. However, the bio-chemistry reactions between EC and SM, along with origination of composited aroma are still unclear. Thus, the rejected EC, GFWT leaves and stems after EC removal were separated by layer-by-layer stripping following sensory evaluation, volatiles and microstructure analysis to uncover aroma formation mechanism. In GFWT, EC presents fungal flower aroma rather than contribution of extracellular enzymes secreted by fungus in Fu brick tea. Moreover, the short "flowering process" (7 days) endows SM with a stale, jujube, and sweet aroma, which is regarded as the typical characteristic of aged white tea. This inspires EC-mediated fermentation as a promising rapid aging process.
Collapse
Affiliation(s)
- Wan Zhu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Su Zhou
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China; Department of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Haowei Guo
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Jiali Hu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Yanyan Cao
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Yingxin Xu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | | | - Baoming Tian
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, China
| | - Fangyuan Fan
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Shuying Gong
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Lin Y, Huang Y, Zhou S, Li X, Tao Y, Pan Y, Feng X, Guo H, Chen P, Chu Q. A newly-discovered tea population variety processed Bai Mu Dan white tea: Flavor characteristics and chemical basis. Food Chem 2024; 446:138851. [PMID: 38428080 DOI: 10.1016/j.foodchem.2024.138851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
The quality of white tea (WT) is impacted by selected tea cultivars. To explore the organoleptic quality of a recently-discovered WT ("Caicha", CC), HS-SPME/GC-MS and UPLC were employed to identify volatile and non-volatile compounds in tea samples. Multiple statistical methods demonstrated the distinctions between CC and four mainstream WT varieties from main producing areas. CC exhibited abundant volatile alcohol, terpenoids, ketone, aldehyde and ester, as well as non-volatile lignans and coumarins, phenolic acids and low-molecular carbohydrates. These substances combinedly contributed to the flavor attributes of CC, characterized by an intense herbal/citrus-like cleanness and flower/fruit-like sweetness, scarce in existing commercial WT varieties. Sensory evaluation corroborated these findings. In conclusion, we have processed a new tea variety (CC) with WT manufacturing technology, and discovered the unique cleanness and sweetness of it. This study enriches the raw material database for WT production and blending, and boosts the development of more premium WT varieties.
Collapse
Affiliation(s)
- Yanping Lin
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China
| | - Yibiao Huang
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China
| | - Su Zhou
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Xiaolan Li
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yike Tao
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yani Pan
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Feng
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Haowei Guo
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ping Chen
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Qiang Chu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
17
|
Deng Y, Li C, Chen Y, Zou Z, Gong J, Shen C, Fang K. Chemical Profile and Aroma Effects of Major Volatile Compounds in New Mulberry Leaf Fu Brick Tea and Traditional Fu Brick Tea. Foods 2024; 13:1808. [PMID: 38928750 PMCID: PMC11203251 DOI: 10.3390/foods13121808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to investigate the aroma effects of key volatile compounds in a new type of mulberry leaf Fu brick teas (MTs) and traditional Fu brick teas (FTs). Headspace solid-phase microextraction (HS-SPME), gas chromatography-mass spectrometry (GC-MS), sensory evaluation, and chemometrics were used to determine the differences in key flavour qualities between the two. The results showed that a total of 139 volatile components were identified, with aldehydes, ketones, and alcohols dominating. Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) combined with the odour activity value (OAV) showed that seven aroma compounds had an OAV > 10, including 2-(4-methylcyclohex-3-en-1-yl) propan-2-ol with floral and fruity aroma and green attributes, 6-methylhept-5-en-2-one, (E)-6,10-dimethyl-5,9-Undecadien-2-one, (3E,5E)-octa-3,5-dien-2-one, Benzaldehyde, and (E)-3,7,11,15-tetramethylhexadec-2-en-1-ol, which were more abundant in MTs than FTs; Cedrol with sweet aroma attributes was more consistent in MTs than FTs, and we suggest that these odour compounds are important aroma contributors to MTs. Taken together, these findings will provide new insights into the mechanism of formation of the characteristic attributes of aroma in MTs.
Collapse
Affiliation(s)
- Yuezhao Deng
- College of Information and Intelligent Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.D.); (C.L.); (Z.Z.); (J.G.)
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China;
| | - Cheng Li
- College of Information and Intelligent Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.D.); (C.L.); (Z.Z.); (J.G.)
| | - Yineng Chen
- School of Information Science and Engineering, Hunan Women’s College, Changsha 410000, China;
| | - Zhuoyang Zou
- College of Information and Intelligent Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.D.); (C.L.); (Z.Z.); (J.G.)
| | - Junyao Gong
- College of Information and Intelligent Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.D.); (C.L.); (Z.Z.); (J.G.)
| | - Chengwen Shen
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China;
| | - Kui Fang
- College of Information and Intelligent Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.D.); (C.L.); (Z.Z.); (J.G.)
| |
Collapse
|
18
|
Chen Z, Dai W, Xiong M, Gao J, Zhou H, Chen D, Li Y. Metabolomics investigation of the chemical variations in white teas with different producing areas and storage durations. Food Chem X 2024; 21:101127. [PMID: 38292681 PMCID: PMC10825419 DOI: 10.1016/j.fochx.2024.101127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
In this study, we employed nontargeted metabolomics and quantitative analysis to explore the variations in metabolites among white teas from different production areas and with varying storage durations. A total of 83 compounds exhibited differential levels between Zhenghe and Fuding white tea, 89 between Zhenghe and Jinggu, and 75 between Fuding and Jinggu white tea. Concerning the storage of white tea, the concentrations of flavanols, dimeric catechins, and amino acids decreased over time, while N-ethyl-2-pyrrolidone-substituted flavanols (EPSFs), caffeine, adenosine monophosphate (AMP), and adenosine increased. Galloylated flavanols showed a higher propensity to form EPSFs with theanine compared to nongalloylated flavanols during storage. Theanine and epigallocatechin gallate were more inclined to generate S-configuration EPSFs during storage in Fuding and Jinggu white tea samples, while R-configuration EPSFs were more readily formed in Zhenghe white tea samples. This study offers a comprehensive understanding of the changes in metabolites during the storage of white tea.
Collapse
Affiliation(s)
- Zewen Chen
- College of Tea, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Weidong Dai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China
| | - Mengfan Xiong
- College of Tea, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Jianjian Gao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China
| | - Hongjie Zhou
- College of Tea, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Dan Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China
| | - Yali Li
- College of Tea, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| |
Collapse
|
19
|
Liu S, Rong Y, Chen Q, Ouyang Q. Colorimetric sensor array combined with chemometric methods for the assessment of aroma produced during the drying of tencha. Food Chem 2024; 432:137190. [PMID: 37633147 DOI: 10.1016/j.foodchem.2023.137190] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/24/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
The aroma produced during drying is an important indicator of tencha and needs to be monitored. This study constructed an olfactory visualization system for assessing tencha aroma using colorimetric sensor array (CSA) combined with chemometric methods. The 16 chemically responsive dyes were selected to obtain aroma information of tencha samples and extracted image data of aroma information by machine vision algorithms. Subsequently, k-nearest neighbor, support vector machine, classification and regression tree, and random forest (RF), four qualitative models were applied to build the mathematical models. The RF model with nine principal components was preferred, with recognition rate of 100.00% and 91.07% for the training and prediction sets, respectively. The experimental results showed that CSA combined with the RF model can be effectively applied to assess tencha aroma. This study provided a scientific and novel method to maintain the stability of tencha quality in the production process.
Collapse
Affiliation(s)
- Shuangshuang Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yanna Rong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
20
|
Yang Y, Liang Q, Zhang B, Zhang J, Fan L, Kang J, Lin Y, Huang Y, Tan TC, Ho LH. Adsorption and desorption characteristics of flavonoids from white tea using macroporous adsorption resin. J Chromatogr A 2024; 1715:464621. [PMID: 38198876 DOI: 10.1016/j.chroma.2023.464621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/29/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
White tea contains the highest flavonoids compared to other teas. While there have been numerous studies on the components of different tea varieties, research explicitly focusing on the flavonoid content of white tea remains scarce, making the need for a good flavonoid purification process for white tea even more important. This study compared the adsorption and desorption performance of five types of macroporous resins: D101, HP20, HPD500, DM301, and AB-8. Among the tested resins, AB-8 was selected based on its best adsorption and desorption performance to investigate the static adsorption kinetics and dynamic adsorption-desorption purification of white tea flavonoids. The optimal purification process was determined: adsorption temperature 25 °C, crude tea flavonoid extract pH 3, ethanol concentration 80 %, sample loading flow rate and eluent flow rate 1.5 BV/min, and eluent dosage 40 BV. The results indicated that the adsorption process followed pseudo-second-order kinetics. Under the above purification conditions, the purity of the total flavonoids in the purified white tea flavonoid increased from approximately 17.69 to 46.23 %, achieving a 2.61-fold improvement, indicating good purification results. The purified white tea flavonoid can be further used for nutraceutical and pharmaceutical applications.
Collapse
Affiliation(s)
- Yuhua Yang
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, PR China; Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia USM, Penang 11800, Malaysia
| | - Quanming Liang
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, PR China
| | - Bo Zhang
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, PR China
| | - Jianming Zhang
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, PR China
| | - Li Fan
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, PR China
| | - Jiahui Kang
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, PR China
| | - Yiqin Lin
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, PR China
| | - Yan Huang
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, PR China.
| | - Thuan-Chew Tan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia USM, Penang 11800, Malaysia; Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia USM, Penang 11800, Malaysia.
| | - Lee-Hoon Ho
- Department of Food Industry, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu 22200, Malaysia
| |
Collapse
|
21
|
Xu J, Zhang Y, Zhang M, Wei X, Zhou Y. Effects of foliar selenium application on Se accumulation, elements uptake, nutrition quality, sensory quality and antioxidant response in summer-autumn tea. Food Res Int 2024; 175:113618. [PMID: 38128974 DOI: 10.1016/j.foodres.2023.113618] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 12/23/2023]
Abstract
Summer-autumn tea is characterized by high polyphenol content and low amino acid content, resulting in bitter and astringent teast. However, these qualities often lead to low economic benefits, ultimately resulting in a wastage of tea resources. The study focused on evaluating the effects of foliar spraying of glucosamine selenium (GLN-Se) on summer-autumn tea. This foliar fertilizer was applied to tea leaves to assess its impact on plant development, nutritional quality, elemental uptake, organoleptic quality, and antioxidant responses. The results revealed that GlcN-Se enhanced photosynthesis and yield by improving the antioxidant system. Additionally, the concentration of GlcN-Se positively correlated with the total and organic selenium contents in tea. The foliar application of GlcN-Se reduced toxic heavy metal content and increased the levels of macronutrients and micronutrients, which facilitated adaptation to environmental changes and abiotic stresses. Furthermore, GlcN-Se significantly improved both non-volatile and volatile components of tea leaves, resulting in a sweet aftertaste and nectar aroma in the tea soup. To conclude, the accurate and rational application of exogenous GlcN-Se can effectively enhance the selenium content and biochemical status of tea. This improvement leads to enhanced nutritional quality and sensory characteristics, making it highly significant for the tea industry.
Collapse
Affiliation(s)
- Jia Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yayuan Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, NO. 100 Haiquan Road, Shanghai 201418, PR China
| | - Mengke Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Yiming Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, NO. 100 Haiquan Road, Shanghai 201418, PR China.
| |
Collapse
|
22
|
Zhang M, Zhou C, Zhang C, Xu K, Lu L, Huang L, Zhang L, Li H, Zhu X, Lai Z, Guo Y. Analysis of Characteristics in the Macro-Composition and Volatile Compounds of Understory Xiaobai White Tea. PLANTS (BASEL, SWITZERLAND) 2023; 12:4102. [PMID: 38140429 PMCID: PMC10747399 DOI: 10.3390/plants12244102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
Understory planting affects the growth environment of tea plants, regulating the tea plant growth and the formation of secondary metabolites, which in turn affects the flavor of Xiaobai white tea. The present research adopted biochemical composition determination, widely targeted volatilities (WTV) analysis, multivariate statistical analysis, and odor activity value (OAV) analysis to analyze the characteristics in the macro-composition and volatile compounds of understory white tea. The sensory evaluation results indicated that understory Xiaobai white tea (LWTs) was stronger than ordinary Xiaobai white tea (PWTs) in terms of the taste of smoothness, sweetness, and thickness as well as the aromas of the flower and sweet. Understory planting reduced light intensity and air temperature, increased air humidity, organic matter, total nitrogen, and available nitrogen contents, which improved the growth environment of tea plants. The phytochemical analysis showed that the water-extractable substances, caffeine, flavonoids, and soluble sugar contents of understory tea fresh-leaf (LF) were higher than those of ordinary fresh-leaf (PF). The phytochemical analysis showed that the free amino acids, theaflavins, thearubigins, water-extractable substances, and tea polyphenols contents of LWTs were significantly higher than those of PWTs, which may explain the higher smoothness, sweetness, and thickness scores of LWTs than those of PWTs. The 2-heptanol, 2-decane, damasone, and cedar alcohol contents were significantly higher in LWTs than in PWTs, which may result in stronger flowery and sweet aromas in LWTs than in PWTs. These results provide a firm experimental basis for the observed differences in the flavor of LWTs and PWTs.
Collapse
Affiliation(s)
- Mengcong Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (C.Z.); (C.Z.); (K.X.); (L.L.); (L.H.); (L.Z.); (H.L.); (Z.L.)
| | - Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (C.Z.); (C.Z.); (K.X.); (L.L.); (L.H.); (L.Z.); (H.L.); (Z.L.)
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cheng Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (C.Z.); (C.Z.); (K.X.); (L.L.); (L.H.); (L.Z.); (H.L.); (Z.L.)
| | - Kai Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (C.Z.); (C.Z.); (K.X.); (L.L.); (L.H.); (L.Z.); (H.L.); (Z.L.)
| | - Li Lu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (C.Z.); (C.Z.); (K.X.); (L.L.); (L.H.); (L.Z.); (H.L.); (Z.L.)
| | - Linjie Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (C.Z.); (C.Z.); (K.X.); (L.L.); (L.H.); (L.Z.); (H.L.); (Z.L.)
| | - Lixuan Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (C.Z.); (C.Z.); (K.X.); (L.L.); (L.H.); (L.Z.); (H.L.); (Z.L.)
| | - Huang Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (C.Z.); (C.Z.); (K.X.); (L.L.); (L.H.); (L.Z.); (H.L.); (Z.L.)
| | - Xuefang Zhu
- Nanping Jianyang District Tea Development Center, Nanping 353000, China;
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (C.Z.); (C.Z.); (K.X.); (L.L.); (L.H.); (L.Z.); (H.L.); (Z.L.)
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- Anxi College of Tea Science (College of Digital Economy), Fujian Agriculture and Forestry University, Quanzhou 362400, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
23
|
Ma L, Sun Y, Wang X, Zhang H, Zhang L, Yin Y, Wu Y, Du L, Du Z. The characteristic of the key aroma-active components in white tea using GC-TOF-MS and GC-olfactometry combined with sensory-directed flavor analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7136-7152. [PMID: 37337850 DOI: 10.1002/jsfa.12798] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND White tea has become more and more popular with consumers due to its health benefits and unique flavor. However, the key aroma-active compounds of white tea during the aging process are still unclear. Thus, the key aroma-active compounds of white tea during the aging process were investigated using gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS) and gas chromatography-olfactometry (GC-O) combined with sensory-directed flavor analysis. RESULTS A total of 127 volatile compounds were identified from white tea samples with different aging years by GC-TOF-MS. Fifty-eight aroma-active compounds were then determined by GC-O, and 19 of them were further selected as the key aroma-active compounds based on modified frequency (MF) and odor activity value (OAV). CONCLUSION Aroma recombination and omission testing confirmed that 1-octen-3-ol, linalool, phenethyl alcohol, geraniol, (E)-β-ionone, α-ionone, hexanal, phenylacetaldehyde, nonanal, (E, Z)-(2,6)-nonadienal, safranal, γ-nonalactone and 2-amylfuran were the common key aroma-active compounds to all samples. Cedrol, linalool oxide II and methyl salicylate were confirmed peculiar in new white tea, while β-damascenone and jasmone were peculiar in aged white tea. This work will offer support for further studies on the material basis of flavor formation of white tea. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lijuan Ma
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yangyang Sun
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Xuejiao Wang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Heyun Zhang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Linqi Zhang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yage Yin
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yumeng Wu
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Liping Du
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Ziping Du
- College of Economics and Management, Tianjin University of Science and Technology, Tianjin, P. R. China
| |
Collapse
|
24
|
Peng Q, Li S, Zheng H, Meng K, Jiang X, Shen R, Xue J, Xie G. Characterization of different grades of Jiuqu hongmei tea based on flavor profiles using HS-SPME-GC-MS combined with E-nose and E-tongue. Food Res Int 2023; 172:113198. [PMID: 37689946 DOI: 10.1016/j.foodres.2023.113198] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
In order to distinguish different grades of Jiuqu hongmei tea (black tea), four different grades of Jiuqu hongmei tea were used as materials in this study: Super Grade (SuG), First Grade (FG), Second Grade (SG), and Third Grade (TG). HS-SPME-GC-MS combined with electronic nose (E-nose) and electronic tongue (E-tongue) technology was used to detect and analyze tea samples. The results showed that 162 volatile substances were identified, mainly alcohols, followed by hydrocarbons, aldehydes, ketones and esters. Twenty-nine volatile compounds were found in all grades of tea samples. The results of heat map analysis showed that the relative contents of five volatile compounds in different grades of Jiuqu hongmei tea were positively correlated with the grades of Jiuqu hongmei tea. By orthogonal partial least squares discriminant analysis (OPLS-DA), 35 different compounds of SuG and FG, 30 different compounds of SG and TG, 34 different compounds of FG and SG were found. Overall, the results indicated that there were significant differences in volatile compounds among different grades of Jiuqu hongmei tea, and the use of HS-SPME-GC-MS combined with E-nose and E-tongue could provide a scientific reference method as an effective tool for detecting flavor characteristics of other types of black tea grades.
Collapse
Affiliation(s)
- Qi Peng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China; National Engineering Research Center for Chinese CRW (Branch Center), Shaoxing University, 900 Chengnan Road, Shaoxing 312000, Zhejiang, China
| | - Shanshan Li
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Huajun Zheng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Kai Meng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Xi Jiang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Rui Shen
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Jingrun Xue
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Guangfa Xie
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China.
| |
Collapse
|
25
|
Guo J, Yu Z, Liu M, Guan M, Shi A, Hu Y, Li S, Yi L, Ren D. Analysis of Volatile Profile and Aromatic Characteristics of Raw Pu-erh Tea during Storage Based on GC-MS and Odor Activity Value. Foods 2023; 12:3568. [PMID: 37835224 PMCID: PMC10572200 DOI: 10.3390/foods12193568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Volatile constituents are critical to the flavor of tea, but their changes in raw Pu-erh tea (RAPT) during storage have not been clearly understood. This work aimed to investigate the volatile composition and their changes at various storage durations. The volatile profile of RAPT was determined using headspace solid-phase microextraction in combination gas chromatography-mass spectrometry. A total of 130 volatile compounds were identified in RAPT samples, and 64 of them were shared by all samples. The aroma attributes of RAPT over a storage period ranging from 0 to 10 years were assessed through the combination of odor activity value (OAV), aroma characteristic influence(ACI) value, and multivariate statistical analysis. The results revealed that RAPT exhibited a distinct floral and fruity aroma profile after storage for approximately 3-4 years. A notable shift in aroma was observed after 3-4 years of storage, indicating a significant turning point. Furthermore, the likely notable shift after 10 years of storage may signify the second turning point. According to the odor activity value (OAV ≥ 100), eight key volatile compounds were identified: linalool, α-terpineol, geraniol, trans-β-ionone, α-ionone, (E,E)-2,4-heptadienal, 1-octanol, and octanal. Combining OAV (≥100) and ACI (≥1), five compounds, namely linalool, (E,E)-2,4-heptadienal, (Z)-3-hexen-1-ol, 2,6,10,10-tetramethyl-1-oxaspiro [4.5]dec-6-ene, and octanal, were identified as significant contributors to the aroma. The results offer a scientific foundation and valuable insights for understanding the volatile composition of RAPT and their changes during storage.
Collapse
Affiliation(s)
- Jie Guo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (J.G.); (Z.Y.); (M.L.); (M.G.); (Y.H.); (S.L.); (L.Y.)
| | - Zhihao Yu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (J.G.); (Z.Y.); (M.L.); (M.G.); (Y.H.); (S.L.); (L.Y.)
| | - Meiyan Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (J.G.); (Z.Y.); (M.L.); (M.G.); (Y.H.); (S.L.); (L.Y.)
| | - Mengdi Guan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (J.G.); (Z.Y.); (M.L.); (M.G.); (Y.H.); (S.L.); (L.Y.)
| | - Aiyun Shi
- Yunnan TAETEA Group Co., Ltd., Kunming 650500, China;
| | - Yongdan Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (J.G.); (Z.Y.); (M.L.); (M.G.); (Y.H.); (S.L.); (L.Y.)
| | - Siyu Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (J.G.); (Z.Y.); (M.L.); (M.G.); (Y.H.); (S.L.); (L.Y.)
| | - Lunzhao Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (J.G.); (Z.Y.); (M.L.); (M.G.); (Y.H.); (S.L.); (L.Y.)
| | - Dabing Ren
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (J.G.); (Z.Y.); (M.L.); (M.G.); (Y.H.); (S.L.); (L.Y.)
| |
Collapse
|
26
|
An T, Shen S, Zu Z, Chen M, Wen Y, Chen X, Chen Q, Wang Y, Wang S, Gao X. Changes in the volatile compounds and characteristic aroma during liquid-state fermentation of instant dark tea by Eurotium cristatum. Food Chem 2023; 410:135462. [PMID: 36669288 DOI: 10.1016/j.foodchem.2023.135462] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Instant dark tea (IDT) was prepared by liquid-state fermentation inoculating Eurotium cristatum. The changes in the volatile compounds and characteristic aroma of IDT during fermentation were analyzed using gas chromatography-mass spectrometry by collecting fermented samples after 0, 1, 3, 5, 7, and 9 days of fermentation. Components with high odor activity (log2FD ≥ 5) were verified by gas chromatography-olfactometry. A total of 107 compounds showed dynamic changes during fermentation over 9 days, including 17 alcohols, 7 acids, 10 ketones, 11 esters, 8 aldehydes, 37 hydrocarbons, 4 phenols, and 13 other compounds. The variety of flavor compounds increased gradually with time within the early stage and achieved a maximum of 79 compounds on day 7 of fermentation. β-Damascenone showed the highest odor activity (log2FD = 9) in the day 7 sample, followed by linalool and geraniol. These results indicate that fungal fermentation is critical to the formation of these aromas of IDT.
Collapse
Affiliation(s)
- Tingting An
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Anhui Agricultural University, Hefei 230036, China
| | - Shanshan Shen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Anhui Agricultural University, Hefei 230036, China
| | - Zhongqi Zu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Anhui Agricultural University, Hefei 230036, China
| | - Mengxue Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Anhui Agricultural University, Hefei 230036, China
| | - Yu Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Anhui Agricultural University, Hefei 230036, China
| | - Xu Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Anhui Agricultural University, Hefei 230036, China
| | - Yu Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Anhui Agricultural University, Hefei 230036, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xueling Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
27
|
Peng Y, Zheng C, Guo S, Gao F, Wang X, Du Z, Gao F, Su F, Zhang W, Yu X, Liu G, Liu B, Wu C, Sun Y, Yang Z, Hao Z, Yu X. Metabolomics integrated with machine learning to discriminate the geographic origin of Rougui Wuyi rock tea. NPJ Sci Food 2023; 7:7. [PMID: 36928372 PMCID: PMC10020150 DOI: 10.1038/s41538-023-00187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
The geographic origin of agri-food products contributes greatly to their quality and market value. Here, we developed a robust method combining metabolomics and machine learning (ML) to authenticate the geographic origin of Wuyi rock tea, a premium oolong tea. The volatiles of 333 tea samples (174 from the core region and 159 from the non-core region) were profiled using gas chromatography time-of-flight mass spectrometry and a series of ML algorithms were tested. Wuyi rock tea from the two regions featured distinct aroma profiles. Multilayer Perceptron achieved the best performance with an average accuracy of 92.7% on the training data using 176 volatile features. The model was benchmarked with two independent test sets, showing over 90% accuracy. Gradient Boosting algorithm yielded the best accuracy (89.6%) when using only 30 volatile features. The proposed methodology holds great promise for its broader applications in identifying the geographic origins of other valuable agri-food products.
Collapse
Affiliation(s)
- Yifei Peng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chao Zheng
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuang Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fuquan Gao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaxia Wang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenghua Du
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Feng Gao
- Fujian Farming Technology Extension Center, Fuzhou, 350003, China
| | - Feng Su
- Fujian Farming Technology Extension Center, Fuzhou, 350003, China
| | - Wenjing Zhang
- Fujian Farming Technology Extension Center, Fuzhou, 350003, China
| | - Xueling Yu
- Fujian Farming Technology Extension Center, Fuzhou, 350003, China
| | - Guoying Liu
- Wuyishan Institute of Agricultural Sciences, Wuyishan, 354300, China
| | - Baoshun Liu
- Wuyishan Tea Bureau, Wuyishan, 354300, China
| | - Chengjian Wu
- Fujian Vocational College of Agriculture, Fuzhou, 350119, China
| | - Yun Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenbiao Yang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhilong Hao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xiaomin Yu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
28
|
Zhou S, Zhang J, Ma S, Ou C, Feng X, Pan Y, Gong S, Fan F, Chen P, Chu Q. Recent advances on white tea: Manufacturing, compositions, aging characteristics and bioactivities. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
29
|
Wang Z, Wang Z, Dai H, Wu S, Song B, Lin F, Huang Y, Lin X, Sun W. Identification of characteristic aroma and bacteria related to aroma evolution during long-term storage of compressed white tea. Front Nutr 2022; 9:1092048. [PMID: 36601074 PMCID: PMC9806140 DOI: 10.3389/fnut.2022.1092048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Compressed white tea (CWT) is a reprocessed tea of white tea. Long-term storage has greatly changed its aroma characteristics, but the material basis and transformation mechanism of its unique aroma are still unclear. In this study, flavor wheel, headspace gas chromatography ion mobility spectroscopy, chemometrics, and microbiomics were applied to study the flavor evolution and important aroma components during long-term storage of CWT, and core functional bacteria were screened. During long-term storage, the aroma of CWT gradually changed from sweet, fruity and floral to stale flavor, woody and herbal. A total of 56 volatile organic compounds (VOCs) were identified, 54 of which were significantly differences during storage. The alcohols content was the highest during 1-5 years of storage, the esters content was the highest during 7-13 years of storage, and the aldehydes content was the highest during 16 years of storage. Twenty-nine VOCs were identified as important aroma components, which were significantly correlated with 6 aroma sub-attributes (P < 0.05). The functional prediction of bacterial community reminded that bacterial community could participate in the transformation of VOCs during storage of CWT. Twenty-four core functional bacteria were screened, which were significantly associated with 29 VOCs. Finally, 23 characteristic differential VOCs were excavated, which could be used to identify CWT in different storage years. Taken together, these findings provided new insights into the changes in aroma characteristics during storage of CWT and increased the understanding of the mechanism of characteristic aroma formation during storage.
Collapse
Affiliation(s)
- Zhihui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhihua Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haomin Dai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoling Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bo Song
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fuming Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China,Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou, China
| | - Yan Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China,Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou, China
| | - Xingchen Lin
- Fujian Ming Shan Tea Industry Co., Ltd., Fuding, China
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China,*Correspondence: Weijiang Sun ✉
| |
Collapse
|
30
|
Ye F, Guo X, Li B, Chen H, Qiao X. Characterization of Effects of Different Tea Harvesting Seasons on Quality Components, Color and Sensory Quality of "Yinghong 9" and "Huangyu" Large-Leaf-Variety Black Tea. Molecules 2022; 27:8720. [PMID: 36557856 PMCID: PMC9782827 DOI: 10.3390/molecules27248720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Harvesting seasons are crucial for the physicochemical qualities of large-leaf-variety black tea. To investigate the effect of harvesting seasons on physicochemical qualities, the color and sensory characteristics of black tea produced from "Yinghong 9" (Yh) and its mutant "Huangyu" (Hy) leaves were analyzed. The results demonstrated that Hy had better chemical qualities and sensory characteristics, on average, such as a higher content of tea polyphenols, free amino acids, caffeine, galloylated catechins (GaCs) and non-galloylated catechins (NGaCs), while the hue of the tea brew (ΔE*ab and Δb*) increased, which meant that the tea brew was yellower and redder. Moreover, the data showed that the physicochemical qualities of SpHy (Hy processed in spring) were superior to those of SuHy (Hy processed in summer) and AuHy (Hy processed in autumn), and 92.6% of the total variance in PCA score plots effectively explained the separation of the physicochemical qualities of Yh and Hy processed in different harvesting seasons. In summary, Hy processed in spring was superior in its physicochemical qualities. The current results will provide scientific guidance for the production of high-quality large-leaf-variety black tea in South China.
Collapse
Affiliation(s)
- Fei Ye
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xinbo Guo
- Tuguanya Agricultural Technology Extension Center, Danjiangkou 442700, China
| | - Bo Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Haiqiang Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Xiaoyan Qiao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| |
Collapse
|
31
|
Li P, Zhou H, Wang Z, Al-Dalali S, Nie W, Xu F, Li C, Li P, Cai K, Xu B. Analysis of flavor formation during the production of Jinhua dry-cured ham using headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). Meat Sci 2022; 194:108992. [PMID: 36170784 DOI: 10.1016/j.meatsci.2022.108992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 08/04/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022]
Abstract
This study aimed to clarify the formation process of flavor compounds and identify the volatile substances present during a continuous period of Jinhua dry-cured ham (JDH) making. Via headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS), a total of 53 volatile organic compounds (VOCs), including 20 aldehydes, 16 alcohols, 11 ketones, 5 esters and 1 furan, were identified in JDH from seven sampling stages. The results showed that butanal, 3-methylbutanal, 2-methylbutanal, 2-hexanone, 2-pentanone and 2-butanone could be flavor markers in the evolution of aroma characteristics of JDH. Aldehydes (2-methylbutanal and 3-methylbutanal), alcohols (2-methylpropanol, 2-methylbutanol, 3-methylbutanol and 1-penten-3-ol), ketones (2-pentanone, 2-propanone, 2-butanone and 2-hexanone) and esters (ethyl acetate and ethyl 3-methylbutyrate) were considered the main VOCs in the mature JDH. Free fatty acid (FFA) analysis displayed the changes in intramuscular fat (IMF) of JDH. Additionally, principal component analysis (PCA) showed that drying-ripening was a critical stage in the flavor formation of JDH.
Collapse
Affiliation(s)
- Ping Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Hui Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| | - Zhiqi Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Sam Al-Dalali
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Wen Nie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Feiran Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Cong Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Peijun Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Kezhou Cai
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| |
Collapse
|
32
|
Li Z. Comparative analysis of Fenghuang Dancong, Tieguanyin, and Dahongpao teas using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry and chemometric methods. PLoS One 2022; 17:e0276044. [PMID: 36228035 PMCID: PMC9560621 DOI: 10.1371/journal.pone.0276044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
Fenghuang Dancong, Tieguanyin, and Dahongpao teas are belonged to semi-fermented oolong teas and are famous for their unique aroma. However, reports regarding the systematic comparison, differentiation, and classification of the volatile components of these three types of oolong teas are lacking. In this study, we aimed to establish a method for distinguishing these three types of oolong teas. The volatile components in a total of 21 tea samples of these three types of oolong teas were extracted, determined, and identified by headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS). In addition, chemometric methods such as hierarchical cluster analysis (HCA), principal component analysis (PCA), and orthogonal partial least squares discriminant analysis (OPLS-DA) were used for distinguishing and classifying the three types of oolong teas on the basis of the similarities and differences in the volatile components. The results showed that 125 volatile components were extracted and identified from the three types of oolong teas, among which 53 volatile components overlapped among the samples. The results of HCA indicated that the samples of each of the three types of oolong teas could be placed in one category when the t value was 220. The results of PCA and OPLS-DA showed that the volatile components such as dehydrolinalool, linalool oxide II, linalool, α-farnesene, linalool oxide I, β-ocimene, nerolidol, cis-3-butyric acid folate, myrcene, and (Z)-hexanoic acid-3-hexenyl ester are the characteristic components, which can be used to distinguish the three types of oolong teas. We developed a simple, fast, and efficient method for distinguishing three types of oolong teas and provided a feasible technique for the identification of oolong tea types.
Collapse
Affiliation(s)
- Zhangwei Li
- Institute of Chemistry and Environment Engineering, Hanshan Normal University, Chaozhou, P. R. China
| |
Collapse
|
33
|
Junxing LI, Aiqing M, Gangjun ZHAO, Xiaoxi L, Haibin W, Jianning L, Hao G, Xiaoming Z, Liting D, Chengying M. Assessment of the ‘taro-like’ aroma of pumpkin fruit (Cucurbita moschata D.) via E-nose, GC–MS and GC-O analysis. Food Chem X 2022; 15:100435. [PMID: 36211734 PMCID: PMC9532776 DOI: 10.1016/j.fochx.2022.100435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
E-nose and GC–MS could distinguish the different pumpkin based on aroma profiles and volatile compounds. It’s the first time to study the key volatile compound associated with ‘taro-like’ aroma of pumpkin fruit. 2-Acetyl-1-pyrroline is the key contributor to the ‘taro-like’ aroma of pumpkin fruit.
‘Taro-like’ aroma is a pleasant flavor and value-added trait in pumpkin species imparted by unknown key volatile compounds. In this study, we used the electronic nose (E-nose), gas chromatography-mass spectrometry (GC–MS), and GC-Olfactometry (GC-O) to study the aroma profile, volatile compounds, and key contributors, respectively. By E-nose and GC–MS, we found significant differences in the aroma profiles and volatile compounds between fruits from five samples with/without ‘taro-like’ aroma. According to the analysis of differential volatile compounds obtained from GC–MS and the GC-O analysis of the sample with ‘taro-like’ aroma, we found that 2-acetyl-1-pyrroline representing the ‘taro’ odor was only identified in the sample with ‘taro-like’ aroma. Therefore, we conclude that 2-acetyl-1-pyrroline is the key contributor to the 'taro-like' aroma. Moreover, the relationship between 2-acetyl-1-pyrroline and ‘taro-like’ aroma was further verified via other pumpkin samples. Our results provide a theoretical basis for understanding the aroma characteristics of pumpkin fruit.
Collapse
|
34
|
An Improved Method of Theabrownins Extraction and Detection in Six Major Types of Tea (Camellia sinensis). J CHEM-NY 2022. [DOI: 10.1155/2022/8581515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tea pigments consisting of theabrownins (TBs), theaflavins (TFs), and thearubigins (TRs) affect the color and taste of tea. TBs include a variety of water-soluble compounds, but do not dissolve in n-butanol and ethyl acetate. Previously, the traditional method of TB extraction only mixed tea with n-butanol, and TBs were retained in the water phase. However, without ethyl acetate extraction, TFs and TRs remained in the water phase and affected the detection of TB content. Although an improved method had been devised by adding an ethyl acetate extraction step between tea production and n-butanol extraction, the proportional equation for calculating TB content (%) was not yet developed. In this study, we compared the absorbance at 380 nm (A380) of TB solutions from six major types of tea (green, yellow, oolong, white, black, and dark teas) extracted by improved and traditional methods from the same tea samples. Significantly lower A380 values were obtained from TB solutions via the improved method compared to the traditional method for six major types of tea, and the highest and lowest slops in TB concentrations from A380 analyses were from dark tea and green tea, respectively. Moreover, newly developed equations for TB content in those six tea types extracted by the improved methods were also established.
Collapse
|
35
|
D’Auria JC, Cohen SP, Leung J, Glockzin K, Glockzin KM, Gervay-Hague J, Zhang D, Meinhardt LW. United States tea: A synopsis of ongoing tea research and solutions to United States tea production issues. FRONTIERS IN PLANT SCIENCE 2022; 13:934651. [PMID: 36212324 PMCID: PMC9538180 DOI: 10.3389/fpls.2022.934651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/25/2022] [Indexed: 06/01/2023]
Abstract
Tea is a steeped beverage made from the leaves of Camellia sinensis. Globally, this healthy, caffeine-containing drink is one of the most widely consumed beverages. At least 50 countries produce tea and most of the production information and tea research is derived from international sources. Here, we discuss information related to tea production, genetics, and chemistry as well as production issues that affect or are likely to affect emerging tea production and research in the United States. With this review, we relay current knowledge on tea production, threats to tea production, and solutions to production problems to inform this emerging market in the United States.
Collapse
Affiliation(s)
- John C. D’Auria
- Metabolic Diversity Group, Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Stephen P. Cohen
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| | - Jason Leung
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| | - Kayla Glockzin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Kyle Mark Glockzin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Jacquelyn Gervay-Hague
- Department of Chemistry, University of California, University of California, Davis, Davis, CA, United States
| | - Dapeng Zhang
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| | - Lyndel W. Meinhardt
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| |
Collapse
|
36
|
Effects of elevated ultraviolet-B on the floral and leaf characteristics of a medicinal plant Wedelia chinensis (Osbeck) Merr. along with essential oil contents. Trop Ecol 2022. [DOI: 10.1007/s42965-022-00270-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
37
|
Zhai X, Zhang L, Granvogl M, Ho CT, Wan X. Flavor of tea (Camellia sinensis): A review on odorants and analytical techniques. Compr Rev Food Sci Food Saf 2022; 21:3867-3909. [PMID: 35810334 DOI: 10.1111/1541-4337.12999] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/08/2022] [Accepted: 05/23/2022] [Indexed: 01/28/2023]
Abstract
Tea is among the most consumed nonalcoholic beverages worldwide. Understanding tea flavor, in terms of both sensory aspects and chemical properties, is essential for manufacturers and consumers to maintain high quality of tea products and to correctly distinguish acceptable or unacceptable products. This article gives a comprehensive review on the aroma and off-flavor characteristics associated with 184 odorants. Although many efforts have been made toward the characterization of flavor compounds in different types of tea, modern flavor analytical techniques that affect the results of flavor analysis have not been compared and summarized systematically up to now. Thus, the overview mainly provides the instrumental flavor analytical techniques for both aroma and taste of tea (i.e., extraction and enrichment, qualitative, quantitative, and chemometric approaches) as well as descriptive sensory analytical methodologies for tea, which is helpful for tea flavor researchers. Flavor developments of tea evolved toward time-saving, portability, real-time monitoring, and visualization are also prospected to get a deeper insight into the influences of different processing techniques on the formation and changes of flavor compounds, especially desired flavor compounds and off-flavor substances present at (ultra)trace amounts in tea and tea products.
Collapse
Affiliation(s)
- Xiaoting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China
| | - Michael Granvogl
- Department of Food Chemistry and Analytical Chemistry (170a), Institute of Food Chemistry, Faculty of Natural Science, University of Hohenheim, Stuttgart, Germany
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China
| |
Collapse
|
38
|
Wu H, Chen Y, Feng W, Shen S, Wei Y, Jia H, Wang Y, Deng W, Ning J. Effects of Three Different Withering Treatments on the Aroma of White Tea. Foods 2022; 11:foods11162502. [PMID: 36010502 PMCID: PMC9407123 DOI: 10.3390/foods11162502] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 12/01/2022] Open
Abstract
White tea (WT) is a slightly fermented tea, and withering is a critical step in its processing. The withering treatment can affect white tea’s aroma; different treatments’ effects were investigated in this study. White tea was withered indoors (IWT), in a withering-tank (WWT), or under sunlight (SWT). Quantitative descriptive analysis (QDA) results showed that SWT had a more obvious flower aroma, and WWT had a more pronounced grassy aroma. Volatile compounds were extracted and subsequently detected with solvent-assisted flavor evaporation (SAFE) and headspace solid-phase microextraction (HS-SPME) combined in addition to gas chromatography–mass spectrometry (GC-MS). A total of 202 volatile compounds were detected; 35 of these aroma-active compounds met flavor dilution (FD) factor ≥ 4 or odor activity value (OAV) ≥ 1. The nine key potent odorants for which both conditions were met were dimethyl sulfide, 2-methyl-butanal, 1-penten-3-one, hexanal, (Z)-4-heptenal, β-Myrcene, linalool, geraniol, and trans-β-ionone. These results were used with QDA to reveal that SWT had a stronger floral aroma mainly due to an increase of geraniol and linalool. Moreover, WWT had a stronger grassy aroma mainly due to increased hexanal. The results could be used to select processing methods for producing white tea with a superior aroma.
Collapse
|
39
|
Wu X, Cai W, Zhu P, Peng Z, Zheng T, Li D, Li J, Zhou G, Du G, Zhang J. Profiling the role of microorganisms in quality improvement of the aged flue-cured tobacco. BMC Microbiol 2022; 22:197. [PMID: 35965316 PMCID: PMC9377114 DOI: 10.1186/s12866-022-02597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background The aging process in the tobacco production, as in other food industries, is an important process for improving the quality of raw materials. In the spontaneous aging, the complex components in flue-cured tobacco (FT) improve flavor or reduce harmful compounds through chemical reactions, microbial metabolism, and enzymatic catalysis. Some believed that tobacco-microbe played a significant part in this process. However, little information is available on how microbes mediate chemical composition to improve the quality of FT, which will lay the foundation for the time-consuming spontaneous aging to seek ways to shorten the aging cycle. Results Comparing aged and unaged FT, volatile and non-volatile differential compounds (DCs) were multi-dimensionally analyzed with the non-targeted metabolomes based on UPLC-QTOP-MS (the ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry), GC–MS (gas chromatography-mass spectrometer) assisted derivatization and HP-SPME-GC/MS (headspace solid-phase micro-extraction assisted GC–MS). Products associated with the degradation pathways of terpenoids or higher fatty acids were one of the most important factors in improving FT quality. With the microbiome, the diversity and functions of microbial flora were analyzed. The high relative abundance function categories were in coincidence with DCs-related metabolic pathways. According to the correlation analysis, Acinetobacter, Sphingomonas and Aspergillus were presumed to be the important contributor, in which Aspergillus was associated with the highest number of degradation products of terpenoids and higher fatty acids. At last, the screened Aspergillus nidulans strain F4 could promote the degradation of terpenoids and higher fatty acids to enhance tobacco flavor by secreting highly active lipoxygenase and peroxidase, which verified the effect of tobacco-microbes on FT quality. Conclusions By integrating the microbiome and metabolome, tobacco-microbe can mediate flavor-related substances to improve the quality of FT after aging, which provided a basis for identifying functional microorganisms for reforming the traditional spontaneous aging. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02597-9.
Collapse
Affiliation(s)
- Xinying Wu
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.,School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, China
| | - Wen Cai
- Technical Research Center, China Tobacco Sichuan Industrial Co., Ltd., 56 Chenglong Road, 610000, Chengdu, China
| | - Pengcheng Zhu
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.,Technical Research Center, China Tobacco Sichuan Industrial Co., Ltd., 56 Chenglong Road, 610000, Chengdu, China
| | - Zheng Peng
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Tianfei Zheng
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Dongliang Li
- Technical Research Center, China Tobacco Sichuan Industrial Co., Ltd., 56 Chenglong Road, 610000, Chengdu, China
| | - Jianghua Li
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Guanyu Zhou
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Guocheng Du
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China. .,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| | - Juan Zhang
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China. .,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| |
Collapse
|
40
|
Liu L, Shi J, Yuan Y, Yue T. Changes in the metabolite composition and enzyme activity of fermented tea during processing. Food Res Int 2022; 158:111428. [DOI: 10.1016/j.foodres.2022.111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/04/2022]
|
41
|
Luo N, Liu L, Yuan X, Jin Y, Zhao G, Wen J, Cui H. A Comparison of Different Tissues Identifies the Main Precursors of Volatile Substances in Chicken Meat. Front Physiol 2022; 13:927618. [PMID: 35874543 PMCID: PMC9301024 DOI: 10.3389/fphys.2022.927618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
Amino acids and fatty acids are the main precursors of volatile organic compounds (VOCs) in meat. The purpose of this study was to determine the main VOC components in chicken breast muscle (BM) and abdominal fat (AF) tissue, as well as the source of VOCs, to provide a basis for quality improvement of broilers. BM and AF served as experimental and control groups, and gas chromatography-mass spectrometry (GC-MS) and untargeted metabolomics were employed to identify the source of VOCs. The results revealed nine VOCs in BM and AF tissues, including hexanal, octanal, and nonanal. VOCs including 1-octen-3-ol, (E,E)-2, 4-nonadienal, and benzaldehyde were significantly elevated in BM compared with AF (p < 0.05), while heptane and diethyl disulphide showed the opposite trend (p < 0.05). Levels of hexanal, heptanal, and octanal were similar in the two tissues. Metabolites of VOCs in chicken BM were investigated by weighted co-expression network analysis. However, only blue module in BM tissue was positively correlated with hexanal (r = 0.66, p = 0.01), heptanal (r = 0.67, p = 0.008), and (E,E)-2,4-nonadienal (r = 0.88, p = 3E-05). L-tyrosine, L-asparagine, adenosine, and valine were the main precursors of (E,E)-2,4-nonadienal and heptanal in BM tissue. Amino acids are the main precursors of 1-octen-3-ol, (E,E)-2, 4-nonadienal, and heptanal in chicken meat, while fatty acids are the main precursors of diethyl disulfide. However, hexanal can be synthesized from amino acids and small amounts of fatty acids as precursors. These findings expand our understanding of VOCs in chicken.
Collapse
|
42
|
Zhang X, Du X, Li Y, Nie C, Wang C, Bian J, Luo F. Are organic acids really related to the sour taste difference between Chinese black tea and green tea? Food Sci Nutr 2022; 10:2071-2081. [PMID: 35702304 PMCID: PMC9179145 DOI: 10.1002/fsn3.2823] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
Sour is an important taste in some foods, beers, and teas; organic acids, in particular, are thought to play a key role in the formation of the sour taste of beer. It has been generally thought that organic acids also contribute to some teas tasting sour. In this study, through sensory evaluation experiments with black tea (BT) and green tea (GT), the difference in the sour taste of BT and GT was quantitatively characterized. Then the organic acids in the two types of tea were identified and quantified via high-performance liquid chromatography (HPLC) with taste activity value (TAV) analysis. The results showed that both teas had 12 identical common organic acids (including 11 taste-active components), but the results of the TAV analysis were not consistent with those of the sensory evaluation. Therefore, there is no direct relationship between organic acids and the acidity in BT and GT. It is related to the interaction between organic acids and other substances, pH value, or other sour substances in tea infusions. The mechanism of the disappearance of sourness in tea infusions was also discussed. These results help us to understand the correlation between tastes in teas.
Collapse
Affiliation(s)
- Xiang Zhang
- Sichuan Academy of Agricultural Sciences of Tea Research InstituteChengduChina
- Sichuan Agricultural UniversityChengduChina
| | - Xiao Du
- Sichuan Agricultural UniversityChengduChina
| | | | | | | | | | - Fan Luo
- Sichuan Academy of Agricultural Sciences of Tea Research InstituteChengduChina
| |
Collapse
|
43
|
Wang C, Li J, Wu X, Zhang Y, He Z, Zhang Y, Zhang X, Li Q, Huang J, Liu Z. Pu-erh tea unique aroma: Volatile components, evaluation methods and metabolic mechanism of key odor-active compounds. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
44
|
Comparative Analysis of Volatile Compounds in Tieguanyin with Different Types Based on HS-SPME-GC-MS. Foods 2022; 11:foods11111530. [PMID: 35681280 PMCID: PMC9180349 DOI: 10.3390/foods11111530] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/15/2022] Open
Abstract
Tieguanyin (TGY) is one kind of oolong tea that is widely appreciated for its aroma and taste. To study the difference of volatile compounds among different types of TGY and other oolong teas, solid-phase microextraction−gas chromatography−mass spectrometry and chemometrics analysis were conducted in this experiment. Based on variable importance in projection > 1 and aroma character impact > 1, the contents of heptanal (1.60−2.79 μg/L), (E,E)-2,4-heptadienal (34.15−70.68 μg/L), (E)-2-octenal (1.57−2.94 μg/L), indole (48.44−122.21 μg/L), and (E)-nerolidol (32.64−96.63 μg/L) in TGY were higher than in other varieties. With the increase in tea fermentation, the total content of volatile compounds decreased slightly, mainly losing floral compounds. Heavily fermented tea contained a higher content of monoterpenoids, whereas low-fermentation tea contained higher contents of sesquiterpenes and indole, which could well distinguish the degree of TGY fermentation. Besides, the volatiles analysis of different grades of TGY showed that the special-grade tea contained more aroma compounds, mainly alcohols (28%). (E,E)-2,4-Heptadienal, (E)-2-octenal, benzeneacetaldehyde, and (E)-nerolidol were the key volatile compounds to distinguish different grades of TGY. The results obtained in this study could help enrich the theoretical basis of aroma substances in TGY.
Collapse
|
45
|
Kong J, Yang X, Zuo X, Su X, Hu B, Liang X. High-quality instant black tea manufactured using fresh tea leaves by two-stage submerged enzymatic processing. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Characterization analysis of flavor compounds in green teas at different drying temperature. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Dynamic Changes in Volatile Compounds of Shaken Black Tea during Its Manufacture by GC × GC-TOFMS and Multivariate Data Analysis. Foods 2022; 11:foods11091228. [PMID: 35563951 PMCID: PMC9102106 DOI: 10.3390/foods11091228] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022] Open
Abstract
Changes in key odorants of shaken black tea (SBT) during its manufacture were determined using headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography−time-of-flight mass spectrometry (GC × GC−TOFMS) and multivariate data analysis. A total of 241 volatiles was identified, comprising 49 aldehydes, 40 esters, 29 alcohols, 34 ketones, 30 aromatics, 24 alkenes, 17 alkanes, 13 furans, and 5 other compounds. A total of 27 volatiles had average relative odor activity values (rOAVs) greater than 1, among which (E)-β-ionone, (E,Z)-2,6-nonadienal, and 1-octen-3-one exhibited the highest values. According to the criteria of variable importance in projection (VIP) > 1, p < 0.05, and |log2FC| > 1, 61 discriminatory volatile compounds were screened out, of which 26 substances were shared in the shaking stage (FL vs. S1, S1 vs. S2, S2 vs. S3). The results of the orthogonal partial least squares discriminate analysis (OPLS-DA) differentiated the influence of shaking, fermentation, and drying processes on the formation of volatile compounds in SBT. In particular, (Z)-3-hexenol, (Z)-hexanoic acid, 3-hexenyl ester, (E)-β-farnesene, and indole mainly formed in the shaking stage, which promoted the formation of the floral and fruity flavor of black tea. This study enriches the basic theory of black tea flavor quality and provide the theoretical basis for the further development of aroma quality control.
Collapse
|
48
|
Tao M, Guo W, Zhang W, Liu Z. Characterization and Quantitative Comparison of Key Aroma Volatiles in Fresh and 1-Year-Stored Keemun Black Tea Infusions: Insights to Aroma Transformation during Storage. Foods 2022; 11:foods11050628. [PMID: 35267261 PMCID: PMC8909151 DOI: 10.3390/foods11050628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/06/2022] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
The aroma of Keemun black tea (KBT) changes during storage. We investigated key aroma volatiles of fresh KBT (FKBT) and KBT stored for 1 year. Through gas chromatography−olfactometry−mass spectrometry/aroma extract dilution analysis (GC-O-MS/AEDA), 27 aroma volatiles with a flavor dilution (FD) value ≥16 were quantitated. In odor activity value (OAV) analysis, the two samples had nearly the same key aroma volatiles; (Z)-methyl epijasmonate was the exception. Dimethyl sulfide, 3-methylbutanal, 2-methylpropanal, and linalool had especially high OAVs. Except for β-damascenone, volatiles with OAVs > 1 had higher concentrations in FKBT, which revealed that most key aroma compounds were lost during storage. Sweet, malty, floral, and green/grassy aromas corresponded directly to certain compounds. Lastly, the addition test indicated that the addition of several key aroma volatiles decreasing during storage could enhance the freshness of KBT aroma, which may be a potential to control the aroma style of KBT or other teas in industry.
Collapse
Affiliation(s)
- Meng Tao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (M.T.); (W.G.); (W.Z.)
- School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Wenli Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (M.T.); (W.G.); (W.Z.)
- School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Wenjun Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (M.T.); (W.G.); (W.Z.)
- School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhengquan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (M.T.); (W.G.); (W.Z.)
- School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Correspondence: or ; Tel.: +86-182-5609-6628
| |
Collapse
|
49
|
Aroma characterization and their changes during the processing of black teas from the cultivar, Camellia sinensis (L.) O. Kuntze cv. Jinmudan. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Characterization of the key aroma compounds in infusions of four white teas by the sensomics approach. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-03967-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|