1
|
Wang R, Yang B, Jia S, Dai Y, Lin X, Ji C, Chen Y. The Antioxidant Capacity and Flavor Diversity of Strawberry Wine Are Improved Through Fermentation with the Indigenous Non- Saccharomyces Yeasts Hanseniaspora uvarum and Kurtzmaniella quercitrusa. Foods 2025; 14:886. [PMID: 40077589 PMCID: PMC11899187 DOI: 10.3390/foods14050886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
The production of strawberry wine is an effective strategy for addressing the significant economic losses caused by strawberry spoilage. In recent years, there has been an increase in consumer demand for quality and flavor diversity in fruit wines. Therefore, it is necessary to develop novel strawberry wine products. In this research, we assessed and analyzed the influences of fermentation with Hanseniaspora uvarum, Kurtzmaniella quercitrusa, and Saccharomyces cerevisiae under four fermentation conditions on the fermentation kinetics, organoleptic characteristics, chemical compositions, antioxidant capacities, and flavor profiles of strawberry wines. Strawberry wines fermented with the indigenous non-Saccharomyces yeasts H. uvarum and K. quercitrusa showed higher 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-Azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) free-radical-scavenging capacities and significantly different flavor profiles compared to strawberry wines fermented with S. cerevisiae. In addition, adjusting the initial soluble solids contents of strawberry juices and fermentation temperatures positively affected the quality and flavor profiles of strawberry wines fermented with the H. uvarum and K. quercitrusa strains. Under the condition of 18 °C-20 °Brix, strawberry wine fermented with K. quercitrusa presented the highest antioxidant capacity, with enhanced flavor diversity and color intensity. It is worth noting that K. quercitrusa can be an alternative yeast for producing high-quality strawberry wine with a distinct floral aroma.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yingxi Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (R.W.); (B.Y.); (S.J.); (Y.D.); (X.L.); (C.J.)
| |
Collapse
|
2
|
Ding B, Xiong L, Zhao S, Lin Y, Guo P, Zhang W. Impact of co-fermentation of Saccharomyces cerevisiae and Pichia kluyveri on the metabolic characteristics of the flavor compounds in mulberry wine. Front Nutr 2025; 12:1559599. [PMID: 40070484 PMCID: PMC11893436 DOI: 10.3389/fnut.2025.1559599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
This study investigated the metabolic characteristics of mulberry wine produced by co-fermentation with Saccharomyces cerevisiae (SC) and two different Pichia kluyveri (PK). Although S. cerevisiae inhibited the growth of P. kluyveri during co-fermentation, P. kluyveri showed robust growth adaptability. Classical oenological parameters were not significantly altered by co-fermentation compared to pure-fermentation. The P. kluyveri significantly modulated amino acid metabolism pathways during co-fermentation, enhancing the biosynthesis of higher alcohol acetate compounds. Furthermore, co-fermentation strategy promoted the production of volatile flavor compounds, particularly esters and alcohols, which enriched the wine with distinct floral and fruity flavors. This study provides novel insights into the metabolic mechanisms of co-fermentation with SC and PK strains and highlights the potential of P. kluyveri as a co-fermentation agent for improving the aromatic complexity of fruit wines.
Collapse
Affiliation(s)
- Bo Ding
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Ling Xiong
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Shutian Zhao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Ying Lin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Penghui Guo
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Wenxue Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- School of Liquor-Brewing Engineering, Sichuan University of Jinjiang College, Meishan, China
| |
Collapse
|
3
|
Liu S, Lou Y, Zhao Y, Cai Y, Cao M, Li Y, Li P, Gu Q. Multi-omics analyses of the mechanism for formation of key aroma-active compounds in blood orange wine fermented by Pichia kudriavzevii. Food Res Int 2024; 198:115321. [PMID: 39643333 DOI: 10.1016/j.foodres.2024.115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 11/06/2024] [Indexed: 12/09/2024]
Abstract
Pichia kudriavzevii is an emerging non-Saccharomyces yeast recognized for its ability to enhance aroma quality in fermented foods, though the precise mechanisms underlying its effects remain poorly understood. This study delves into the influence of P. kudriavzevii BP15 on the formation of key aroma-active compounds (KAACs) and metabolic pathways during the fermentation of blood orange wine. By integrating multi-omics approaches, including volatilomics, genomics, and transcriptomics, this work systematically evaluated the profile of volatile organic compounds (VOCs), pinpointed the genes implicated in KAACs metabolism, and elucidated the biotransformation pathways of KAACs. The volatilomics results demonstrated that inoculation with P. kudriavzevii BP15 significantly improved the complexity and desirability of aroma by promoting the accumulation of diverse VOCs, particularly esters. The genomics analysis further revealed that a substantial portion of P. kudriavzevii BP15 genome was dedicated to carbohydrate, amino acid, and energy metabolisms. The transcriptomics data identified the high expression of multiple genes (e.g., ARO8, ACC1, ALD4, ILV5) during the early stages of fermentation by P. kudriavzevii BP15 that are integral to the biosynthesis of KAACs. These insights provide a deeper understanding of P. kudriavzevii BP15's potential application in the production of high-quality blood orange wine, underscoring its role in enhancing the aroma profile through sophisticated metabolic interventions.
Collapse
Affiliation(s)
- Shuxun Liu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Ying Lou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Yan Zhao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Yuling Cai
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Mingfeng Cao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Yixian Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
4
|
Fikri S, Perreault V, Lessard MH, Goulet C, Doyen A, Labrie S. Proanthocyanidins and volatile aroma of cranberry juice are modulated by its microbiota and processing environment. Food Microbiol 2024; 124:104611. [PMID: 39244364 DOI: 10.1016/j.fm.2024.104611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 09/09/2024]
Abstract
The quality and sensory attributes of juices are influenced by their natural microbiota and the microorganisms found on filtration membranes. This study aimed to assess the influence of natural microbiota and specific contaminants, including Candida krusei, Rhodotorula mucilaginosa, Debaryomyces prosopidis, Ralstonia insidiosa, and Lactiplantibacillus paraplantarum, isolated from cranberry juice and its associated industrial filtration membranes, on the characteristics of cranberry juice. Their growth kinetics and impacts on total phenols, total anthocyanins, total proanthocyanins, total organic acids, pH, titratable acidity, and volatile compounds were assessed. During the 42 h fermentation period, Candida krusei and Ralstonia insidiosa exhibited significant growth, increasing by 1-log and 3-log, respectively. The natural microbiota led to a 7% and 6% reduction in anthocyanins and proanthocyanidins, while Candida krusei and Rhodotorula mucilaginosa caused losses of 10% and 7% in proanthocyanidins, respectively. Organic acid content remained stable, except for an 8% decrease caused by Ralstonia insidiosa. Volatile compounds underwent significant increases, particularly in green (703%), winey (100%), mushroom (306%), and fusel (2678%) notes. These findings underscore the rapid impact of microorganisms from natural microbiota and filtration membranes on cranberry juice characteristics, highlighting the importance for beverage industries to prioritize customer safety and satisfaction.
Collapse
Affiliation(s)
- Sherazade Fikri
- Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Département des sciences des aliments, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, 2425 rue de l'Agriculture, Québec, QC, G1V 0A6, Canada
| | - Véronique Perreault
- Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Département des sciences des aliments, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, 2425 rue de l'Agriculture, Québec, QC, G1V 0A6, Canada
| | - Marie-Hélène Lessard
- Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Département des sciences des aliments, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, 2425 rue de l'Agriculture, Québec, QC, G1V 0A6, Canada
| | - Charles Goulet
- Department of Phytology, FSAA, Université Laval, 2425 rue de l'Agriculture, Québec, QC, G1V 0A6, Canada
| | - Alain Doyen
- Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Département des sciences des aliments, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, 2425 rue de l'Agriculture, Québec, QC, G1V 0A6, Canada
| | - Steve Labrie
- Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Département des sciences des aliments, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, 2425 rue de l'Agriculture, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
5
|
Lei W, Mao Y, Liu C, Pan F, Ma K, Li J. Contribution of polyvinylpolypyrrolidone (PVPP) treatment to the distribution of polyphenols and the evolution of esters and higher alcohols in Rosa roxburghii Tratt wine. Food Res Int 2024; 197:115245. [PMID: 39593327 DOI: 10.1016/j.foodres.2024.115245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/02/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
Polyvinylpolypyrrolidone (PVPP) is commonly employed for fining in fruit wine brewing. This study aimed to investigate the impact of PVPP pretreatment on the formation of fermentation aroma and polyphenol distribution in Rosa roxburghii Tratt (RRT) wine. A significant effect of PVPP on polyphenol adsorption was observed, and polyphenol families or subfamilies such as flavanols and flavonols showed specific affinity for PVPP, decreasing by over 19 % and 30 %, respectively. Furthermore, it was the first time to demonstrate a significant enhancement in the ester content of the corresponding RRT wine after PVPP treatment, particularly in imparting sweet and fruity esters (increased by over 40 %). In contrast, the RRT wine treated with PVPP exhibited a significant reduction of over 20 % in the concentration of higher alcohols, particularly reflected in the green and chemical aromas. This indicates that PVPP treatment could promote the transformation of RRT wine aroma from green and chemical to sweet and fruity. Correlation analysis revealed a positive relationship between the concentration of higher alcohols and most phenolic compounds in RRT wine, while quercetin 3-glucoside, rutin, and polydatin were negatively correlated with esters that can impart fruit flavor and floral aroma to fruit wine. As a practical insight into fruit wine fermentation, PVPP fining before fermentation is more likely to alter the phenolic compositions of RRT wine, thereby influencing its aroma characteristics. Specifically, polyphenols associated with energy metabolism of yeast could have stimulated the formed fluxes of esters. The association between the formation of esters and higher alcohols with phenolic compounds will provide new information on the impact of clarification treatments on yeast-derived volatile metabolites in RRT wine and hold promise in improving the aroma of RRT wine by modulating polyphenol composition through pre-clarification.
Collapse
Affiliation(s)
- Wenping Lei
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Beijing 100083, China; CAU Sichuan Chengdu Advanced Agricultural Industrial Institute, No. 515 Xingyuan 8th Road, Chengdu 611430, China
| | - Yu Mao
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Beijing 100083, China; CAU Sichuan Chengdu Advanced Agricultural Industrial Institute, No. 515 Xingyuan 8th Road, Chengdu 611430, China
| | - Chang Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Beijing 100083, China; CAU Sichuan Chengdu Advanced Agricultural Industrial Institute, No. 515 Xingyuan 8th Road, Chengdu 611430, China
| | - Fei Pan
- Guizhou Yunshang Cilihua Technology Co., Ltd, Yongning Town, Guanling Autonomous County, Anshun 561000, China
| | - Kexi Ma
- CAU Sichuan Chengdu Advanced Agricultural Industrial Institute, No. 515 Xingyuan 8th Road, Chengdu 611430, China
| | - Jingming Li
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Beijing 100083, China; CAU Sichuan Chengdu Advanced Agricultural Industrial Institute, No. 515 Xingyuan 8th Road, Chengdu 611430, China.
| |
Collapse
|
6
|
Gao L, Li Y, Yang S, Bao Y, Luo T, Wang J. Effects of an inoculation dose of Issatchenkia terricola WJL-G4 on physicochemical properties, active substances, and antioxidant capacity of black, red, and white currant juice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6405-6416. [PMID: 38497362 DOI: 10.1002/jsfa.13464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Due to the high level of organic acids - primarily citric acid - black, red, and white currants have an excessively sour taste, making taste adjustment during processing challenging. This study investigated and evaluated the effects of an inoculation dose of the acid-reducing yeast Issatchenkia terricola WJL-G4 on several aspect such as physicochemical properties, chromaticity, active substances, and antioxidant capacity. A sensory evaluation was also conducted. RESULTS The results indicated that, when the inoculation dose increased from 2% to 12%, the total phenol, total flavonoid, and total anthocyanin content, and antioxidant capacity in currant juice decreased. A low inoculation dose (2-4%) was beneficial for preserving the total phenol and total flavonoid content. Although the levels of most phenolic compounds decreased, the concentrations of caffeic acid, p-coumaric acid, ferulic acid, rutin, and epicatechin were significantly higher than the control after fermentation. Overall acceptability and taste scores of fermented currants improved compared with those of the control group. CONCLUSION This experiment provided an effective solution, with a theoretical basis, to the problems of the sour taste and harsh flavor of currant juice. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liping Gao
- College of Life Science, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin, China
| | - Yunhan Li
- Faculty of Arts and Science, University of Toronto, Toronto, Ontario, Canada
| | - Shuo Yang
- College of Life Science, Northeast Forestry University, Harbin, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China
| | - Yihong Bao
- College of Life Science, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin, China
| | - Ting Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jinling Wang
- College of Life Science, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin, China
| |
Collapse
|
7
|
Li L, Yuan C, Zhang L, Chu R, Yu Q, Cai J, Yang T, Zhang M. The impact of simultaneous inoculation with Torulaspora delbrueckii and Hanseniaspora uvarum combined with Saccharomyces cerevisiae on chemical and sensory quality of Sauvignon blanc wines. Front Microbiol 2024; 15:1413650. [PMID: 39113838 PMCID: PMC11303216 DOI: 10.3389/fmicb.2024.1413650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Non-Saccharomyces yeasts have great potential in improving wine quality, showing personality characteristics, and highlighting the terroir of wine. In this study, we evaluated the impact of simultaneous inoculation with the non-Saccharomyces yeasts Torulaspora delbrueckii or (and) Hanseniaspora uvarum in combination with Saccharomyces cerevisiae (EC1118 or VL3) on the aromatic compounds and sensory quality of Sauvignon blanc wines. The growth of yeast groups in the alcoholic fermentation process was tracked using fluorescence in situ hybridization. The presence of non-Saccharomyces yeast notably impacted the distribution of S. cerevisiae and was related to the species of yeast. The co-fermentation of H. uvarum and S. cerevisiae improved the content of total esters, especially acetate esters. Simultaneous inoculation of T. delbrueckii or (and) H. uvarum significantly increased the content of total terpenes, especially linalool. Similar results were found for some higher alcohols and organic acids. Sensory evaluation showed that the wines mixed fermentation with H. uvarum had significantly tropical fruit aroma characteristics. Citrus and mineral notes, typical aroma characteristics of Sauvignon blanc wine, were enhanced by mixed fermentation strategies with T. delbrueckii or (and) H. uvarum and different S. cerevisiae. Hence, co-fermentation by T. delbrueckii or H. uvarum combined with S. cerevisiae could significantly improve the sensory quality of Sauvignon blanc wine.
Collapse
Affiliation(s)
- Linbo Li
- School of Life Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Chenyang Yuan
- School of Life Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Lei Zhang
- School of Life Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Ruichao Chu
- School of Life Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Qingquan Yu
- Cofco Great Wall Sanggan Winery (Huailai) Co., Ltd., Huailai, China
| | - Jian Cai
- Yunnan Engineering Research Center of Fruit Wine, QuJing Normal University, Qujing, China
| | - Tianyou Yang
- School of Life Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Mingxia Zhang
- School of Life Science, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
8
|
Zhao X, Wang Z, Tang F, Cai W, Peng B, Shan C. Exploring jujube wine flavor and fermentation mechanisms by HS-SPME-GC-MS and UHPLC-MS metabolomics. Food Chem X 2024; 21:101115. [PMID: 38292672 PMCID: PMC10825367 DOI: 10.1016/j.fochx.2024.101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/28/2023] [Accepted: 01/01/2024] [Indexed: 02/01/2024] Open
Abstract
The fermentation metabolites significantly influence the quality of jujube wine. However, the dynamics of these metabolites during fermentation are not well understood. In this study, a total of 107 volatile and 1758 non-volatile compounds were identified using a flavor-directed research strategy and non-targeted metabolomics. The increase in esters and alcohols during fermentation shifted the aroma from grassy, mushroomy, and earthy to a floral and fruity flavor in the jujube wine. Leucine and phenylalanine were notably enriched during fermentation, potentially benefiting human health and enriching the flavor of fruit wines. Moreover, pathway analysis identified four key metabolic pathways and two crucial metabolic substrates, pyruvate and l-aspartate. This study provides a theoretical reference for optimizing the fermentation process and enhancing the quality of jujube wine.
Collapse
Affiliation(s)
- Xinxin Zhao
- School of Food Science, Shihezi University, Xinjiang Autonomous Region, Shihezi 832000, PR China
- Shihezi University, Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Xinjiang Autonomous Region, Shihezi 832000, PR China
| | - Zhouping Wang
- School of Food Science and Technology, Jiangnan University, Jiangsu Autonomous Region, Wuxi 214000, PR China
| | - Fengxian Tang
- School of Food Science, Shihezi University, Xinjiang Autonomous Region, Shihezi 832000, PR China
- Shihezi University, Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Xinjiang Autonomous Region, Shihezi 832000, PR China
| | - Wenchao Cai
- School of Food Science, Shihezi University, Xinjiang Autonomous Region, Shihezi 832000, PR China
- Shihezi University, Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Xinjiang Autonomous Region, Shihezi 832000, PR China
| | - Bo Peng
- School of Food Science, Shihezi University, Xinjiang Autonomous Region, Shihezi 832000, PR China
- Shihezi University, Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Xinjiang Autonomous Region, Shihezi 832000, PR China
| | - Chunhui Shan
- School of Food Science, Shihezi University, Xinjiang Autonomous Region, Shihezi 832000, PR China
- Shihezi University, Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Xinjiang Autonomous Region, Shihezi 832000, PR China
| |
Collapse
|
9
|
Wang Y, Fu Y, Zhang Q, Zhu Y, Yang Q, Bian C, Zhao LL, Chen Q, Bi HJ, Yang XH, Gao XL. Enhancement of ester biosynthesis in blueberry wines through co-fermentation via cell-cell contact between Torulaspora delbrueckii and Saccharomyces cerevisiae. Food Res Int 2024; 179:114029. [PMID: 38342548 DOI: 10.1016/j.foodres.2024.114029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/13/2024]
Abstract
This study investigated the effects of co-fermentation of T. delbrueckii and S. cerevisiae on the volatile composition and sensory characteristics of blueberry wines. Mixed fermentation led to higher levels of terpenes, higher alcohols, and esters compared to wines fermented with each yeast individually. Conversely, when T. delbrueckii were physically separated from S. cerevisiae in the double-compartment fermenter, contrasting outcomes emerged. The stronger fruity aroma induced by mixed fermentation were linked to higher ester concentrations, including isoamyl acetate, ethyl isovalerate, ethyl hexanoate, and diethyl succinate. The enhanced esters in mixed fermentation can be attributed to the upregulated alcohol acyltransferase activity and the expressions of ACC1, FAS2, ELO1 and ATF1 genes in late fermentation stage via the cell-cell contact between T. delbrueckii and S. cerevisiae. These findings can deepen the understanding of the interaction between non-Saccharomyces and S. cerevisiae in ester production, assisting wineries in effectively controlling wine aroma through mixed fermentations.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Yu Fu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qi Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yue Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qin Yang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chen Bian
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Lu-Lu Zhao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qi Chen
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hai-Jun Bi
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiao-Hui Yang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xue-Ling Gao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
10
|
Fu Y, Gao Y, Yang M, Chen J, Zhu C, Tang J, Chen L, Cai Z. Effects of Non-Saccharomyces Yeasts and Their Pairwise Combinations in Co-Fermentation with Saccharomyces cerevisiae on the Quality of Chunjian Citrus Wine. Molecules 2024; 29:1028. [PMID: 38474538 DOI: 10.3390/molecules29051028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Non-Saccharomyces (NSc) yeasts have great potential in improving wine qualities. In this study, two NSc and two Saccharomyces cerevisiae (Sc) samples were tested on their performance of mono-inoculated and composite culture in the fermentation of Chunjian citrus wine. The cell count, Brix degree, total sugar, total acidity, alcohol level, pH value, color intensity (CI), and tonality were determined to evaluate the contribution of NSc to the quality of citrus wine in the mixed fermentation. Volatile compounds were analyzed by HS-SPME-GC-MS, and sensory evaluation was carried out. During the 9-day fermentation, the mixed-culture wine exhibited a higher cell concentration than the pure culture. After the fermentation, mixed-culture wine specifically decreased the concentrations of unfavorable volatile compounds, such as isobutanol and octanoic acid, and increased favorable volatile compounds, including ethyl octanoate, ethyl decanoate, and phenylethyl acetate. The quality category of the citrus wine was improved compared with the Sc mono-inoculated wines, mainly in regard to aroma, retention, and sweetness. The study shows that the mixed fermentation of NSc and Sc has positive impacts on reducing alcohol level and total acidity and increasing CI. The present work demonstrates that the mixed fermentation of NSc and Sc has enormous beneficial impacts on improving the quality of citrus wine.
Collapse
Affiliation(s)
- Yu Fu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610225, China
| | - Yueyue Gao
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610225, China
| | - Ming Yang
- Sichuan Sports College Rehabilitation Research Center, Chengdu 610093, China
| | - Juan Chen
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610225, China
| | - Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610225, China
| | - Junni Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610225, China
| | - Lianhong Chen
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610225, China
| | - Zijian Cai
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610225, China
| |
Collapse
|
11
|
Gu Q, Li Y, Lou Y, Zhao Y, Feng X, Li P, Laaksonen O, Yang B, Capozzi V, Liu S. Selecting autochthonous lactic acid bacteria for co-inoculation in Chinese bayberry wine production: Stress response, starter cultures application and volatilomic study. Food Res Int 2024; 178:113976. [PMID: 38309882 DOI: 10.1016/j.foodres.2024.113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/05/2024]
Abstract
This study focused on isolating and characterising autochthonous lactic acid bacteria (LAB) from spontaneously fermented Chinese bayberry (CB) and their potential application in CB wine fermentation in co-inoculation with yeast starter cultures. Numerous LAB, including Lactiplantibacillus (Lp.) plantarum (9), Limosilactobacillus (Lb.) fermentum (6), Lactococcus (Lc.) lactis (3), Enterococcus (Ec.) hirae (1), Leuconostoc (Le.) mesenteroides (1), and Weissella (Ws.) cibaria (1), were isolated and identified. The isolated strains Lp. plantarum ZFM710 and ZFM715, together with Lb. fermentum ZFM720 and ZFM722, adapted well to unfavourable fermentation environment, including ethanol, osmolality, and acidity stresses, were selected for producing CB wine by co-inoculation with Saccharomyces cerevisiae. During fermentation, the presence of LAB promoted the development of S. cerevisiae, while the population dynamics of LAB in different groups at different stages showed strain-specific differences. Fermentation trials involving LAB yielded a lower ethanol concentration except for Lp. plantarum ZFM715. Compared to the pure S. cerevisiae fermented sample, the addition of LAB led to a clear modulation in organic acid composition. Lb. fermentum strains in co-fermentation led to significant decreases in each classified group of aroma compounds, while Lp. plantarum ZFM715 significantly increased the complexity and intensity of aroma compounds, as well as the intensities of fruity and floral notes. The study selects interesting strains for the design of starter cultures for use in CB wine production, underlining the interest in the selection of autochthonous LAB in fruit wines, with the aim of improving the adaptation of bacteria to specific environmental conditions and shaping the unique traits of the finished products.
Collapse
Affiliation(s)
- Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Yixian Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Ying Lou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Yan Zhao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Xujie Feng
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Oskar Laaksonen
- Food Science, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Baoru Yang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China; Food Science, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council, c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Shuxun Liu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
12
|
Silva-Sousa F, Oliveira B, Franco-Duarte R, Camarasa C, João Sousa M. Bridging the gap: linking Torulaspora delbrueckii genotypes to fermentation phenotypes and wine aroma. FEMS Yeast Res 2024; 24:foae034. [PMID: 39509285 PMCID: PMC11600337 DOI: 10.1093/femsyr/foae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024] Open
Abstract
Climate change and consumer preferences are driving innovation in winemaking, with a growing interest in non-Saccharomyces species. Among these, Torulaspora delbrueckii (Td) has gained recognition for its ability to reduce volatile acidity and enhance aromatic complexity in wine. However, knowledge regarding its phenotypic and genomic diversity impacting alcoholic fermentation remains limited. Aiming to elucidate the metabolic differences between Td and Saccharomyces cerevisiae (Sc) and the Td intraspecies diversity, we conducted a comprehensive metabolic characterization of 15 Td strains. This analysis delved beyond standard fermentation parameters (kinetics and major metabolites production) to explore non-conventional aromas and establish genotype-phenotype links. Our findings confirmed that most Td strains produce less acetic acid and more succinate and glycerol than Sc. The overall aromatic profiles of Td strains differed from Sc, exhibiting higher levels of monoterpenes and higher alcohols, while producing less acetate esters, fatty acids, their corresponding ethyl esters, and lactones. Moreover, we identified the absence of genes responsible for specific aroma profiles, such as decreased ethyl esters production, as well as the absence of cell wall genes, which might negatively affect Td performance when compared to Sc. This work highlights the significant diversity within Td and underscores potential links between its genotype and phenotype.
Collapse
Affiliation(s)
- Flávia Silva-Sousa
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Bruna Oliveira
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Ricardo Franco-Duarte
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Carole Camarasa
- UMR SPO, Université de Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| | - Maria João Sousa
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
13
|
Luo X, Li Y, Zhong K, Luo D, Wu Y, Gao H. Discovering the effect of co-fermentation involving Saccharomyces cerevisiae and Schizosaccharomyces pombe on the sensory quality improvement of mandarin wine based on metabolites and transcriptomic profiles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7932-7940. [PMID: 37499161 DOI: 10.1002/jsfa.12885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/02/2023] [Accepted: 07/28/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Mandarin wine has high added value, which can extend the industry chain of mandarins with excellent economic results. However, innovative fermentation methods are urgently needed to improve the typical taste and flavor characteristics of mandarin wine. In this study, the effect and underlying mechanism of co-fermentation with Saccharomyces cerevisiae and Schizosaccharomyces pombe on the characteristics of mandarin wine were investigated based on integrated metabolomic and transcriptomic analyses. RESULTS In comparison with fermentation with only S. cerevisiae, the mandarin wine produced from co-fermentation with S. cerevisiae and Sc. pombe had a higher pH value, lower malic acid content, and more abundant free amino acids, resulting in better sensory evaluation scores. The introduction of Sc. pombe extended the stage of alcoholic fermentation and enhanced the richness and diversity of volatile compounds, especially floral and fruity aroma compounds, including ethyl hexanoate, ethyl caprylate, ethyl enanthate, 1-heptanol, and phenylethyl alcohol. he significantly differential metabolites and varying genes were mainly found in pathways of glycolysis, pyruvate metabolism, the citrate cycle, and amino acid metabolism. CONCLUSION Co-fermentation with S. cerevisiae and Sc. pombe showed advantages in producing distinctive taste and flavor of mandarin wine in comparison with fermentation with only S. cerevisiae. This study can inspire new co-fermentation strategies to improve the sensory quality of mandarin wine. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoqin Luo
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Yumeng Li
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Kai Zhong
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Dong Luo
- Sichuan MingFuBang Agricultural Science and Technology Co., LTD, Meishan, China
| | - Yanping Wu
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Hong Gao
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Zou J, Chen X, Wang C, Liu Y, Li M, Pan X, Chang X. Microbial Communities and Correlation between Microbiota and Volatile Compounds in Fermentation Starters of Chinese Sweet Rice Wine from Different Regions. Foods 2023; 12:2932. [PMID: 37569201 PMCID: PMC10419015 DOI: 10.3390/foods12152932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Chinese sweet rice wines (CSRW) are traditional, regionally distinct alcoholic beverages that are generally brewed with glutinous rice and fermentation starters. This study aimed to characterize microbial communities and volatile compounds of CSRW starters and explore correlations between them. The major volatiles in starters include 1-heptanol, 1-octanol, 2-nonanol, phenylethyl alcohol, 2-nonanone, acetophenone, and benzaldehyde. Microbiological analysis based on high-throughput sequencing (HTS) technology demonstrated that starter bacterial communities are dominated by Weissella, Pediococcus, and Lactobacillus, while Saccharomycopsis and Rhizopus predominate in fungal communities. Carbohydrate and amino acid metabolism are the most active metabolic pathways in starters. Spearman correlation analysis revealed that 15 important volatile compounds including alcohols, acids, aldehydes and esters were significantly positively correlated with nine microbial genera (|r| > 0.7, p < 0.05), including five bacterial genera (i.e., Weissella, Pediococcus, Lactobacillus, Bacillus, and Nocardiopsis) and four fungal genera (i.e., Saccharomycopsis, Rhizopus, Wickerhamomyces, and Cyberlindnera), spanning 19 distinct relationships and these microorganisms were considered the core functional microorganisms in CSRW starters. The most important positive correlations detected between phenylethyl alcohol and Weissella or Saccharomycopsis and between 2-nonanol and Pediococcus. This study can serve as a reference to guide the development of defined starter cultures for improving the aromatic quality of CSRW.
Collapse
Affiliation(s)
- Jing Zou
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066104, China; (X.C.); (C.W.); (Y.L.); (M.L.); (X.P.); (X.C.)
- Engineering Research Center of the Ministry of Education of Chestnut Industry Technology, Qinhuangdao 066000, China
| | - Xiaohui Chen
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066104, China; (X.C.); (C.W.); (Y.L.); (M.L.); (X.P.); (X.C.)
| | - Chenyu Wang
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066104, China; (X.C.); (C.W.); (Y.L.); (M.L.); (X.P.); (X.C.)
| | - Yang Liu
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066104, China; (X.C.); (C.W.); (Y.L.); (M.L.); (X.P.); (X.C.)
| | - Miao Li
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066104, China; (X.C.); (C.W.); (Y.L.); (M.L.); (X.P.); (X.C.)
| | - Xinyuan Pan
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066104, China; (X.C.); (C.W.); (Y.L.); (M.L.); (X.P.); (X.C.)
| | - Xuedong Chang
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066104, China; (X.C.); (C.W.); (Y.L.); (M.L.); (X.P.); (X.C.)
- Engineering Research Center of the Ministry of Education of Chestnut Industry Technology, Qinhuangdao 066000, China
| |
Collapse
|
15
|
Liu J, Zhao H, Chang X, Li X, Zhang Y, Zhu B, Wang X. Investigation of aroma characteristics of seven Chinese commercial sunflower seed oils using a combination of descriptive Analysis, GC-quadrupole-MS, and GC-Orbitrap-MS. Food Chem X 2023; 18:100690. [PMID: 37179977 PMCID: PMC10172861 DOI: 10.1016/j.fochx.2023.100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The aroma characteristics of seven commercial Chinese sunflower seed oils were investigated in this study using descriptive analysis, headspace solid-phase microextraction coupled with GC-quadrupole-MS (LRMS, low-resolution mass spectrometry), and GC-Orbitrap-MS (HRMS, high-resolution mass spectrometry). GC-Orbitrap-MS quantified 96 compounds, including 18 alcohols, 12 esters, 7 ketones, 20 terpenoids, 11 pyrazines, 6 aldehydes, 6 furans, 6 benzene ring-containing compounds, 3 sulfides, 2 alkanes, and 5 nitrogen-containing compounds. Moreover, 22 compounds including 5 acids, 1 amide, and 16 aldehydes were quantified using GC-Quadrupole-MS. To our knowledge, 23 volatile compounds were reported for the first time in sunflower seed oil. All the seven samples were found to have a 'roasted sunflower seeds' note, 'sunflower seeds aroma' note and 'burnt aroma' note and only five of them had 'fried instant noodles' note, three had 'sweet' note and two had 'puffed food' note. Partial least squares regression was used to screen the candidate key volatiles that caused the aroma differences among these seven samples. It was observed that 'roasted sunflower seeds' note was positively correlated with 1-octen-3-ol, n-heptadehyde and dimethyl sulfone, whereas the 'fried instant noodles' and 'puffed food' demonstrated a positive correlation with pentanal, 3-methylbutanal, hexanal, (E)-2-hexenal and 2-pentylfuran. Our findings provide information to the producers and developers for quality control and improvement of sunflower seed oil.
Collapse
Affiliation(s)
- Jiani Liu
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Huimin Zhao
- COFCO Nutrition and Health Research Institute, Beijing 102209, China
| | - Xiaomin Chang
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaolong Li
- COFCO Nutrition and Health Research Institute, Beijing 102209, China
| | - Yu Zhang
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Baoqing Zhu
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Corresponding author at: Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (B. Zhu).
| | - Xiangyu Wang
- COFCO Nutrition and Health Research Institute, Beijing 102209, China
- Beijing Key Laboratory of Nutrition & Health and Food Safety, Beijing 102209, China
- Beijing Engineering Laboratory of Geriatric Nutrition Food Research, Beijing 102209, China
- Corresponding author at: Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (B. Zhu).
| |
Collapse
|
16
|
Wang Y, Qi XY, Fu Y, Zhang Q, Wang XH, Cui MY, Ma YY, Gao XL. Effects of Torulaspora delbrueckii co-fermented with Saccharomyces cerevisiae on physicochemical and aromatic profiles of blueberry fermented beverage. Food Chem 2023; 409:135284. [PMID: 36586265 DOI: 10.1016/j.foodchem.2022.135284] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
To investigate the effects of mixed fermentation with T. delbrueckii on aroma profiles of blueberry fermented beverage, five fermentations were conducted: monoculture of T. delbrueckii and S. cerevisiae, respectively; co-inoculation of two strains; sequential inoculation of two strains at time intervals of 24 h and 48 h, respectively. Compared with pure S. cerevisiae fermentation, ethanol level was decreased by up to 1.1% vol., while total anthocyanins were increased by 27.7%-85.0% in mixed fermentations. Marker aroma compounds in different fermentations with relative odor activity values higher than 1were identified. T. delbrueckii significantly decreased volatile acid content (especially acetic acid) by 22.2%-83.3%. Ethyl 3-methylbutanoate, ethyl hexanoate and ethyl octanoate, in pure T. delbrueckii fermentation were significantly decreased, while their concentrations were increased by 1.6-4.4 folds in sequential fermentations. Besides, linalool, rose oxide, benzeneacetaldehyde were significantly increased by sequential fermentation, which was associated with the enhancement of fruity and sweet notes.
Collapse
Affiliation(s)
- Yu Wang
- Anhui Engineering Laboratory for Agro-products Processing, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiao-Yan Qi
- Anhui Engineering Laboratory for Agro-products Processing, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yu Fu
- Anhui Engineering Laboratory for Agro-products Processing, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qi Zhang
- Anhui Engineering Laboratory for Agro-products Processing, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiao-Han Wang
- Anhui Engineering Laboratory for Agro-products Processing, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Meng-Yao Cui
- Anhui Engineering Laboratory for Agro-products Processing, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ying-Ying Ma
- Anhui Engineering Laboratory for Agro-products Processing, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xue-Ling Gao
- Anhui Engineering Laboratory for Agro-products Processing, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
17
|
He W, Tian Y, Liu S, Vaateri L, Ma X, Haikonen T, Yang B, Laaksonen O. Comparison of phenolic composition and sensory quality among pear beverages made using Saccharomyces cerevisiae and Torulaspora delbrueckii. Food Chem 2023; 422:136184. [PMID: 37148850 DOI: 10.1016/j.foodchem.2023.136184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/08/2023]
Abstract
The effects of Saccharomyces cerevisiae and Torulaspora delbrueckii on phenolic composition and sensory quality were characterized in the production of alcoholic beverages from selected pear cultivars with diverse biochemical characteristics. The fermentation process generally affected the phenolic composition by increasing the contents of hydroxycinnamic acids and flavan-3-ols and reducing the levels of hydroxybenzoic acids, procyanidins, and flavonols. Although the phenolic compositions and sensory properties of pear beverages depended primarily on pear cultivar selection, the applied yeast strains also played important roles in beverage quality. Fermentation with T. delbrueckii resulted in higher caffeoylquinic acid and quercetin-3-O-glucoside contents, higher rated intensities of 'cooked pear' and 'floral' odors and a sweeter taste than fermentation with S. cerevisiae. Moreover, higher concentrations of hydroxybenzoic acids, hydroxycinnamic acids, and flavonols correlated closely with astringency perception. Applying T. delbrueckii strains and breeding novel pear cultivars are important approaches to produce fermented beverages of high quality.
Collapse
Affiliation(s)
- Wenjia He
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ye Tian
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Shuxun Liu
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Laura Vaateri
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Xueying Ma
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; Technology Innovation Center of Special Food for State Market Regulation, Wuxi Food Safety Inspection and Test Center, Wuxi 214100, China
| | - Tuuli Haikonen
- Natural Resources Institute Finland (Luke), Production Systems/Horticulture Technologies, Toivonlinnantie 518, FI-21500 Piikkiö, Finland
| | - Baoru Yang
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Oskar Laaksonen
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland.
| |
Collapse
|
18
|
Gao M, Hu J, Wang X, Zhang H, Du Z, Ma L, Du L, Zhang H, Tian X, Yang W. Effects of Pichia kluyveri on the flavor characteristics of wine by co-fermentation with Saccharomyces cerevisiae. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04224-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
19
|
Liu J, Wang Q, Weng L, Zou L, Jiang H, Qiu J, Fu J. Analysis of sucrose addition on the physicochemical properties of blueberry wine in the main fermentation. Front Nutr 2023; 9:1092696. [PMID: 36741998 PMCID: PMC9892837 DOI: 10.3389/fnut.2022.1092696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/31/2022] [Indexed: 01/21/2023] Open
Abstract
Introduction Harvested blueberries can be processed into wine to extend their shelf life and increase their commercial value. In order to produce fruit wine, external sugar is often added prior to fermentation to increase the final alcohol content to a target of 8-12% (v/v) to meet consumer expectations. Method we explore the effect of 8-14% (w/w) sucrose on the physicochemical properties of blueberry wine throughout the main fermentation process. We monitor changes of alcohol content, sugar, color, phenol, acidity, anthocyanin, and odor. Results and discussion We notice that sucrose affects the fermentation process and physicochemical composition of the final blueberry wine by fermentation rate, fermentation color and protection of functional substances protection. Additional sucrose extends the total time of fermentation, and increases wine acidity. The color of the wine is also affected, with added sugar darkening and yellowing the final product. Interestingly, the sucrose has a protective effect on anthocyanin levels, although total anthocyanin levels are still substantially reduced following fermentation. Finally, the additional sugar increases accumulation of volatile odor components, particularly alcohols and esters, as measured by an electronic nose. We conclude that an addition of 12% sucrose produces wine with superior physicochemical properties of alcohol, anthocyanin loss and odor relative to other conditions tested and recommend this approach to commercial manufacturers.
Collapse
Affiliation(s)
- Junbo Liu
- Institute of Agricultural Products Processing, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Qian Wang
- Institute of Agricultural Products Processing, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Liping Weng
- Institute of Agricultural Products Processing, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Ligen Zou
- Institute of Agricultural Products Processing, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Huiyan Jiang
- Institute of Agricultural Products Processing, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Jing Qiu
- Institute of Agricultural Products Processing, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Jiafei Fu
- Department of Environmental Health and Food Science and Technology, Hangzhou Wanxiang Polytechnic, Hangzhou, China
| |
Collapse
|
20
|
Chen ES. Application of the fission yeast Schizosaccharomyces pombe in human nutrition. FEMS Yeast Res 2023; 23:6961766. [PMID: 36574952 DOI: 10.1093/femsyr/foac064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/03/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
Fission yeast Schizosaccharomyces pombe (S. pombe) is renowned as a powerful genetic model for deciphering cellular and molecular biological phenomena, including cell division, chromosomal events, stress responses, and human carcinogenesis. Traditionally, Africans use S. pombe to ferment the beer called 'Pombe', which continues to be consumed in many parts of Africa. Although not as widely utilized as the baker's yeast Saccharomyces cerevisiae, S. pombe has secured several niches in the food industry for human nutrition because of its unique metabolism. This review will explore three specific facets of human nutrition where S. pombe has made a significant impact: namely, in wine fermentation, animal husbandry and neutraceutical supplementation coenzyme Q10 production. Discussions focus on the current gaps in these areas, and the potential research advances useful for addressing future challenges. Overall, gaining a better understanding of S. pombe metabolism will strengthen production in these areas and potentially spearhead novel future applications.
Collapse
Affiliation(s)
- Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore.,National University Health System (NUHS), Singapore 119228, Singapore.,NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
21
|
LIU J, LIU M, LIU Y, HE C, HUANG J, ZHANG S, ZHOU R, ZHOU J, CAI L. Split batch and coculture fermentation to regulate the organic acids and flavor profile of fruit wine-a case study of Prunus mume Sieb. et Zucc (greengage) wine. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.107622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jian LIU
- Sichuan University, China; Chinese Academy of Agricultural Sciences, China
| | - Miao LIU
- Luzhoulaojiao Company Limited, China
| | | | - Cheng HE
- Luzhoulaojiao Company Limited, China
| | | | | | - Rongqing ZHOU
- Sichuan University, China; National Engineering Research Centre of Solid-state Brewing, China; Sichuan University, China
| | - Jun ZHOU
- Luzhoulaojiao Company Limited, China
| | - Liang CAI
- Luzhoulaojiao Company Limited, China
| |
Collapse
|
22
|
Changes in the Phytochemical and Bioactive Compounds and the Antioxidant Properties of Wolfberry during Vinegar Fermentation Processes. Int J Mol Sci 2022; 23:ijms232415839. [PMID: 36555477 PMCID: PMC9780972 DOI: 10.3390/ijms232415839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Wolfberry (Lycium barbarum L.), as a kind of functional fruit, has various nutritional and bioactive components, which exhibit healthy benefits. However, wolfberry is not easy to preserve, and the intensive processing of wolfberry needs to be developed. In the present study, the changes in the phytochemical and bioactive compounds, as well as the antioxidant properties of wolfberry, were evaluated in the brewed processes. We found that the sugar contents were significantly decreased, and the total acids values were significantly increased during the fermentation processes. The sugar and fat contents were low in the wolfberry fruit vinegar after fermentation, which is of benefit to human health. In addition, amino acids were examined during the fermentation processes, and histidine, proline, and alanine were found to be the main amino acids in vinegar. The total phenolics and flavonoids contents were significantly increased by 29.4% and 65.7% after fermentation. 4-Hydroxy benzoic acid, 3-hydroxy cinnamic acid, and chlorogenic acid were the primary polyphenols in the wolfberry fruit vinegar. Moreover, the antioxidant activity of wolfberry fruit vinegar was significantly increased compared with that of wolfberry fruit after the fermentation processes. Polysaccharides and polyphenolics were strongly correlated with the antioxidant activity during the fermentation processes. The findings suggest that wolfberry fruit vinegar has a high antioxidant capability, and could be a beneficial food in the human diet.
Collapse
|
23
|
Wang Y, Wang M, Li W, Wang X, Kong W, Huang W, Zhan J, Xia G, You Y. Indigenous yeast can increase the phenolic acid and volatile ester compounds in Petit Manseng wine. Front Nutr 2022; 9:1031594. [PMID: 36562039 PMCID: PMC9763556 DOI: 10.3389/fnut.2022.1031594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Indigenous yeasts are generally found in grapes, vineyards, and natural environments. Sequential inoculation and fermentation with non-Saccharomyces cerevisiae yeast (H30) and Saccharomyces cerevisiae (YT13) also improve the flavor of wine. Methods This study sequentially inoculated fermented Petit Manseng and natural grape juice with native H30 and YT13 selected from vineyards in Yantai, China. Results and discussion The sensory characteristics of Petit Manseng wine were evaluated by detecting the primary organic acids, phenolic acid compounds, and volatile ester compounds. The results showed that the lactic acid content of the natural wine fermented sequentially with H30 and YT13 increased by 490 μg/L compared with the control group, while the ferulic acid content was 1.4 times that of the single-yeast fermentation group. Furthermore, butyrolactone and anthocyanidin propionate were present in the mixed fermentation group, increasing the aroma complexity of Petit Manseng wine and providing high-quality yeast resources that increase the regional characteristics when producing dry white wine.
Collapse
Affiliation(s)
- Yanyu Wang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China,Yantai Research Institute, China Agricultural University, Yantai, Shandong, China,Yantai Pula Valley Winery Management Co., Ltd., Yantai, Shandong, China
| | - Miao Wang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China,Yantai Research Institute, China Agricultural University, Yantai, Shandong, China,Yantai Pula Valley Winery Management Co., Ltd., Yantai, Shandong, China
| | - Wenjuan Li
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China,Yantai Pula Valley Winery Management Co., Ltd., Yantai, Shandong, China
| | - Xinyuan Wang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Weifu Kong
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China,Yantai Research Institute, China Agricultural University, Yantai, Shandong, China
| | - Weidong Huang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Guangli Xia
- Yantai Pula Valley Winery Management Co., Ltd., Yantai, Shandong, China,College of Pharmacy, Binzhou Medical University, Yantai, Shandong, China,*Correspondence: Guangli Xia,
| | - Yilin You
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China,Yilin You,
| |
Collapse
|
24
|
Assessment of the contributions of Saccharomyces cerevisiae, Hansenula sp. and Pichia kudriavzevii to volatile organic compounds and sensory characteristics of waxy rice wine. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
25
|
Effect of Fermentation Strategy on the Quality and Aroma Characteristics of Yellow Peach Wines. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To obtain high-quality yellow peach wines of varying characteristics, different fermentation strategies, including various pre-fermentative treatments, were applied. This study aimed to determine the effect of different fermentation strategies on the physicochemical properties, monomer phenol content, in vitro antioxidant activity, and volatile compounds of yellow peach wine. The results showed that peach wine P12, fermented with pulp, had higher total phenolic content (TPC), total flavonoid content (TFC), monomer phenol and volatile compound content, and antioxidant activity. Ten monomeric phenols were detected in peach wines, and the content of catechin was the highest. Juice fermentation wine, J12, had a strong floral aroma, and some volatile compounds were released during fermentation when water was added to the pulp, and low alcohol content did not reduce the variety of volatile compounds. The main aroma and common characteristics of the fermented yellow peach wine were dominated by esters, with a relative odor activity value (ROAV) ≥ 1, namely, isoamyl acetate, ethyl hexanoate, and ethyl octanoate. Our results demonstrated that the application of the described fermentation strategies significantly affected the quality and volatile compound content of yellow peach wines. This might assist in the development of a highly diverse yellow peach wine flavor.
Collapse
|
26
|
Wang N, Zhu Y, Zhu R, Xiao Y, Qiu J, Wu Y, Zhong K, Gao H. Revealing the co-fermentation of Saccharomyces cerevisiae and Schizosaccharomyces pombe on the quality of cider based on the metabolomic and transcriptomic analysis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Tian Y, Kriisa M, Föste M, Kütt ML, Zhou Y, Laaksonen O, Yang B. Impact of enzymatic pre-treatment on composition of nutrients and phytochemicals of canola (Brassica napus) oil press residues. Food Chem 2022; 387:132911. [DOI: 10.1016/j.foodchem.2022.132911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 11/04/2022]
|
28
|
Sooklim C, Samakkarn W, Thongmee A, Duangphakdee O, Soontorngun N. Enhanced aroma and flavour profile of fermented Tetragonula pagdeni Schwarz honey by a novel yeast T. delbrueckii GT-ROSE1 with superior fermentability. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Abstract
Wine produced by fermentation of Chestnut rose (Rosa roxburghii) hips, known as cili (Chinese-Mandarin), in Guizhou province, and other places in China is becoming popular but there is limited knowledge of suitable yeast strains for its production. In this study, we first investigated the oenological properties of six commercial S. cerevisiae yeast strains (X16, F33, SH12, GV107, S102, RMS2), one commercial Saccharomyces cerevisiae var. bayanus (S103), one commercial, non-Saccharomyces yeast strain, Torulaspora delbrueckii Prelude, and one indigenous S. cerevisiae strain, CZ, for cili wine fermentation. We measured the key traits of each of the yeast strains, viz., sulfite resistance, flocculation, hydrogen sulfide production capacity, fermentation rate, and yeast growth curves. Subsequently, we measured the resultant wine characteristics, viz., pH, alcohol content, residual sugar, titratable acidity, volatile acidity, ascorbic acid content and headspace volatile compounds. The overall suitability of each yeast type was evaluated using a multi-factor, unweighted, scorecard. On that basis, RMS2 was the most suitable, and closely followed by CZ and X16. This study is the first comparative evaluation of yeasts for cili wine production and provides a preliminary guide for their selection.
Collapse
|
30
|
Silva-Sousa F, Fernandes T, Pereira F, Rodrigues D, Rito T, Camarasa C, Franco-Duarte R, Sousa MJ. Torulaspora delbrueckii Phenotypic and Metabolic Profiling towards Its Biotechnological Exploitation. J Fungi (Basel) 2022; 8:jof8060569. [PMID: 35736052 PMCID: PMC9225199 DOI: 10.3390/jof8060569] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
Wine is a particularly complex beverage resulting from the combination of several factors, with yeasts being highlighted due to their fundamental role in its development. For many years, non-Saccharomyces yeasts were believed to be sources of spoilage and contamination, but this idea was challenged, and many of these yeasts are starting to be explored for their beneficial input to wine character. Among this group, Torulaspora delbrueckii is gaining relevance within the wine industry, owing to its low volatile acidity production, increased release of aromatic compounds and enhanced color intensity. In addition, this yeast was also attracting interest in other biotechnological areas, such as bread and beer fermentation. In this work, a set of 40 T. delbrueckii strains, of varied geographical and technological origins, was gathered in order to characterize the phenotypic behavior of this species, focusing on different parameters of biotechnological interest. The fermentative performance of the strains was also evaluated through individual fermentations in synthetic grape must with the isolates’ metabolic profile being assessed by HPLC. Data analysis revealed that T. delbrueckii growth is significantly affected by high temperature (37 °C) and ethanol concentrations (up to 18%), alongside 1.5 mM SO2, showing variable fermentative power and yields. Our computation models suggest that the technological origin of the strains seems to prevail over the geographical origin as regards the influence on yeast properties. The inter-strain variability and profile of the products through the fermentative processes reinforce the potential of T. delbrueckii from a biotechnological point of view.
Collapse
Affiliation(s)
- Flávia Silva-Sousa
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (F.S.-S.); (T.F.); (F.P.); (D.R.); (T.R.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Ticiana Fernandes
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (F.S.-S.); (T.F.); (F.P.); (D.R.); (T.R.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Fábio Pereira
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (F.S.-S.); (T.F.); (F.P.); (D.R.); (T.R.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Diana Rodrigues
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (F.S.-S.); (T.F.); (F.P.); (D.R.); (T.R.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Teresa Rito
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (F.S.-S.); (T.F.); (F.P.); (D.R.); (T.R.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Carole Camarasa
- SPO, University Montpellier, INRAE, Institut Agro, 34060 Montpellier, France;
| | - Ricardo Franco-Duarte
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (F.S.-S.); (T.F.); (F.P.); (D.R.); (T.R.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
- Correspondence: (R.F.-D.); (M.J.S.)
| | - Maria João Sousa
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (F.S.-S.); (T.F.); (F.P.); (D.R.); (T.R.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
- Correspondence: (R.F.-D.); (M.J.S.)
| |
Collapse
|
31
|
Effects of inoculation protocols on aroma profiles and quality of plum wine in mixed culture fermentation of Metschnikowia pulcherrima with Saccharomyces cerevisiae. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
He W, Laaksonen O, Tian Y, Haikonen T, Yang B. Chemical Composition of Juices Made from Cultivars and Breeding Selections of European Pear ( Pyrus communis L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5137-5150. [PMID: 35426665 PMCID: PMC9052750 DOI: 10.1021/acs.jafc.2c00071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 05/23/2023]
Abstract
The phenolic profiles and other major metabolites in juices made from fruits of 17 cultivars and selections of European pears were investigated using UHPLC-DAD-ESI-QTOF-MS and GC-FID, respectively. A total of 39 phenolic compounds were detected, including hydroxybenzoic acids, hydroxycinnamic acids, flavan-3-ols, procyanidins, flavonols, and arbutin. Among these compounds, 5-O-caffeoylquinic acid was the most predominant, accounting for 14-39% of total quantified phenolic contents (TPA) determined in this study. The variations were mainly cultivar dependent. The genetic background effect on the chemical compositions is complex, and breeding selections from the same parental cultivars varied dramatically in chemical compositions. Putative perry pears contained more 4-O-caffeoylquinic acid, 5-O-caffeoylquinic acid, caffeoyl N-trytophan, caffeoylshikimic acid, coumaroylquinic acid isomer, syringic acid hexoside, procyanidin dimer B2, (+)-catechin, and malic acid, whereas putative dessert pears had higher esters, alcohols, and aldehydes. The results will be helpful in providing industry with phytochemical compositional information, assisting pear selections in commercial utilization.
Collapse
Affiliation(s)
- Wenjia He
- Food
Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Oskar Laaksonen
- Food
Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Ye Tian
- Food
Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Tuuli Haikonen
- Production
systems/Horticulture Technologies, Natural
Resources Institute Finland (Luke), Toivonlinnantie 518, Piikkiö FI-21500, Finland
| | - Baoru Yang
- Food
Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
33
|
He W, Laaksonen O, Tian Y, Heinonen M, Bitz L, Yang B. Phenolic compound profiles in Finnish apple (Malus × domestica Borkh.) juices and ciders fermented with Saccharomyces cerevisiae and Schizosaccharomyces pombe strains. Food Chem 2022; 373:131437. [PMID: 34749087 DOI: 10.1016/j.foodchem.2021.131437] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 11/26/2022]
Abstract
The phenolic compounds in juices and ciders made with Saccharomyces cerevisiae or Schizosaccharomyces pombe from eleven Finnish apple cultivars were analyzed using liquid chromatographic and mass spectrometric methods combined with multivariate data analysis. In general, the ciders contained less phenolic compounds than corresponding apple juices. In the studied apple juices and ciders, hydroxycinnamic acids were the most predominant, accounting for around 80% of total phenolic compounds. Apple juices contained more flavonol glycosides and dihydrochalcones whereas cider processing resulted in increased amount of free hydroxycinnamic acids. The contents of individual phenolic compounds were more dependent on the apple cultivars than the yeast species. Certain cultivars contained remarkably higher contents of dihydrochalcones and hydroxycinnamic acids when comparing with other cultivars. Ciders made using S. pombe remained higher contents of procyanidins and (+)-catechin while S. cerevisiae ciders contained higher individual hydroxycinnamic acids, such as 5-O-caffeoylquinic acid, 4-O-caffeoylquinic acid, 3-O-p-coumaroylquinic acid, and 4-O-p-coumaroylquinic acid.
Collapse
Affiliation(s)
- Wenjia He
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Oskar Laaksonen
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Ye Tian
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Maarit Heinonen
- Natural Resources Institute Finland (Luke), Production systems/Horticultural technologies, Myllytie 1, FI-31600 Jokioinen, Finland
| | - Lidija Bitz
- Natural Resources Institute Finland (Luke), Production systems/Horticultural technologies, Myllytie 1, FI-31600 Jokioinen, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, No. 79, Longcheng Street, Taiyuan 030031, China.
| |
Collapse
|
34
|
Liu C, Li M, Ren T, Wang J, Niu C, Zheng F, Li Q. Effect of Saccharomyces cerevisiae and non-Saccharomyces strains on alcoholic fermentation behavior and aroma profile of yellow-fleshed peach wine. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Xu A, Xiao Y, He Z, Liu J, Wang Y, Gao B, Chang J, Zhu D. Use of Non-Saccharomyces Yeast Co-Fermentation with Saccharomyces cerevisiae to Improve the Polyphenol and Volatile Aroma Compound Contents in Nanfeng Tangerine Wines. J Fungi (Basel) 2022; 8:jof8020128. [PMID: 35205881 PMCID: PMC8875693 DOI: 10.3390/jof8020128] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
This study attempted to improve the polyphenol and volatile aroma compound contents in Nanfeng tangerine wines using non-Saccharomyces yeast and Saccharomyces cerevisiae. The effects of fermentation with pure cultures of Candida ethanolica, Hanseniaspora guilliermondii and Hanseniaspora thailandica, as well as in sequential and mixed inoculations (1:1 or 1:100 ratio) with S. cerevisiae in Nanfeng tangerine wines were evaluated. C. ethanolica was found to produce the most polyphenols (138.78 mg/L) during pure fermentation, while H. guilliermondii produced the most volatile aroma compounds (442.34 mg/L). The polyphenol content produced during sequential fermentation with S. cerevisiae and H. guilliermondii (140.24 mg/L) or C. ethanolica (140.21 mg/L) was significantly higher than other co-fermentations. Meanwhile, the volatile aroma compounds were found to be more abundant in S. cerevisiae/H. guilliermondii mixed fermentation (1:1 ratio) (588.35 mg/L) or S. cerevisiae/H. guilliermondii sequential fermentation (549.31 mg/L). Thus, S. cerevisiae/H. guilliermondii sequential fermentation could considerably boost the polyphenol and volatile aroma component contents in Nanfeng tangerine wines. The findings of this study can be used to drive strategies to increase the polyphenol content and sensory quality of tangerine wines and provide a reference for selecting the co-fermentation styles for non-Saccharomyces yeast and S. cerevisiae in fruit wine fermentation.
Collapse
Affiliation(s)
- Ahui Xu
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (A.X.); (Y.X.); (Z.H.); (Y.W.); (B.G.); (J.C.)
| | - Yiwen Xiao
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (A.X.); (Y.X.); (Z.H.); (Y.W.); (B.G.); (J.C.)
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Zhenyong He
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (A.X.); (Y.X.); (Z.H.); (Y.W.); (B.G.); (J.C.)
| | - Jiantao Liu
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (A.X.); (Y.X.); (Z.H.); (Y.W.); (B.G.); (J.C.)
- Correspondence: (J.L.); (D.Z.)
| | - Ya Wang
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (A.X.); (Y.X.); (Z.H.); (Y.W.); (B.G.); (J.C.)
| | - Boliang Gao
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (A.X.); (Y.X.); (Z.H.); (Y.W.); (B.G.); (J.C.)
| | - Jun Chang
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (A.X.); (Y.X.); (Z.H.); (Y.W.); (B.G.); (J.C.)
| | - Du Zhu
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (A.X.); (Y.X.); (Z.H.); (Y.W.); (B.G.); (J.C.)
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
- Correspondence: (J.L.); (D.Z.)
| |
Collapse
|
36
|
Liu S, Laaksonen O, Li P, Gu Q, Yang B. Use of Non- Saccharomyces Yeasts in Berry Wine Production: Inspiration from Their Applications in Winemaking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:736-750. [PMID: 35019274 DOI: 10.1021/acs.jafc.1c07302] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although berries (nongrape) are rich in health-promoting bioactive compounds, and their consumption is associated with a lower risk of diverse chronic diseases, only a fraction of the annual yield of berries is exploited and consumed. Development of berry wines presents an approach to increase the utilization of berries. Alcoholic fermentation is a complex process driven by yeasts, which influence key properties of wine diversification and quality. In winemaking, non-Saccharomyces yeasts were traditionally considered as undesired microorganisms because of their high production of metabolites with negative connotations. However, there has been a recent and growing interest in the application of non-Saccharomyces yeast in many innovative wineries. Numerous studies have demonstrated the potential of these yeasts to improve properties of wine as an alternative or complement to Saccharomyces cerevisiae. The broad use of non-Saccharomyces yeasts in winemaking provides a promising picture of these unconventional yeasts in berry wine production, which can be considered as a novel biotechnological approach for creating value-added berry products for the global market. This review provides an overview of the current use of non-Saccharomyces yeasts in winemaking and their applicative perspective in berry wine production.
Collapse
Affiliation(s)
- Shuxun Liu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014, Turku, Finland
| | - Oskar Laaksonen
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014, Turku, Finland
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014, Turku, Finland
| |
Collapse
|
37
|
Lin Y, Liu Y, Liu S, Kortesniemi M, Liu J, Zhu B, Laaksonen O. Sensory and chemical characterization of Chinese bog bilberry wines using Check-all-that-apply method and GC-Quadrupole-MS and GC-Orbitrap-MS analyses. Food Res Int 2022; 151:110809. [PMID: 34980368 DOI: 10.1016/j.foodres.2021.110809] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/23/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022]
Abstract
The sensory and chemical profiles of commercial bog bilberry (BB) wines were investigated using a multi-analytical approach. Sensory test included scaling and check-all-that-apply (CATA) method with questions on liking of BB wine. The sensory data was correlated with their volatile compound profiles determined using gas chromatography coupled with quadrupole and orbitrap mass spectrometry (GC-Quadrupole/Orbitrap-MS). In general, all BB wines were characterized with "fruity", "blueberry" and "floral" odors and "sour", "mouth puckering" and "sweet" flavors. Samples more frequently characterized as "fruity" and "floral" in CATA were preferred by the panelists (n = 93). High relative proportions of o-cymene, p-cymenene, 1-octen-3-one and 3-ethylphenol in a sample (described as "ginger" and "chili") resulted in a lower liking rating. Similarly, generally disliked sample described with "Chinese herbs" and "licorice" was characterized by compounds 3-methylpentan-1-ol, 1,1,6-trimethyl-1,2-dihydronaphthalene, and 4-vinylphenol. The data will give novel information for berry wine and beverage industry on the quality factors of BB wines linked to higher acceptance.
Collapse
Affiliation(s)
- Yanxin Lin
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Yaran Liu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Shuxun Liu
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland.
| | - Maaria Kortesniemi
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland.
| | - Jiani Liu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Baoqing Zhu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Oskar Laaksonen
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland.
| |
Collapse
|
38
|
Wang G, Song X, Zhu L, Li Q, Zheng F, Geng X, Li L, Wu J, Li H, Sun B. A flavoromics strategy for the differentiation of different types of Baijiu according to the non-volatile organic acids. Food Chem 2021; 374:131641. [PMID: 34836669 DOI: 10.1016/j.foodchem.2021.131641] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 01/19/2023]
Abstract
Non-volatile organic acids (NVOAs) in 12 main flavor types of Baijiu were analyzed by a derivatization method combined with GC-MS and 38 NVOAs were quantified. Meanwhile, a flavoromics strategy based on the contents of NVOAs in the 12 flavor types of Baijiu was successfully used to the differentiation of Baijiu. PLS-DA models (explained variation, predictive capability) were used to consider different categories: fermentation process (0.931, 0.870), starter (0.921, 0.834), fermentation container (0.899, 0.810) and raw material (0.951, 0.909). Based on the selected categories, suitable separations were achieved, and the classification ability of these models were nearly 100%. As a result, the model demonstrated its ability to perfectly distinguish different types of Baijiu. Seventeen potential markers were identified by variable importance in projection method and were further processed using heatmap and hierarchical cluster analysis, indicating that the NVOAs had great discrimination power to differentiate Baijiu.
Collapse
Affiliation(s)
- Guangnan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Xuebo Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Lin Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Qing Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Fuping Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Xiaojie Geng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Lianghao Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Jihong Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Hehe Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
39
|
Benucci I, Esti M. Arginase Activity Characterization During Alcoholic Fermentation by Sequential Inoculation with Non-Saccharomyces and Saccharomyces Yeast. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02701-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Yang W, Liu S, Marsol-Vall A, Tähti R, Laaksonen O, Karhu S, Yang B, Ma X. Chemical composition, sensory profile and antioxidant capacity of low-alcohol strawberry beverages fermented with Saccharomyces cerevisiae and Torulaspora delbrueckii. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Fernandes T, Silva-Sousa F, Pereira F, Rito T, Soares P, Franco-Duarte R, Sousa MJ. Biotechnological Importance of Torulaspora delbrueckii: From the Obscurity to the Spotlight. J Fungi (Basel) 2021; 7:jof7090712. [PMID: 34575750 PMCID: PMC8467266 DOI: 10.3390/jof7090712] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/28/2022] Open
Abstract
Torulaspora delbrueckii has attracted interest in recent years, especially due to its biotechnological potential, arising from its flavor- and aroma-enhancing properties when used in wine, beer or bread dough fermentation, as well as from its remarkable resistance to osmotic and freezing stresses. In the present review, genomic, biochemical, and phenotypic features of T. delbrueckii are described, comparing them with other species, particularly with the biotechnologically well-established yeast, Saccharomyces cerevisiae. We conclude about the aspects that make this yeast a promising biotechnological model to be exploited in a wide range of industries, particularly in wine and bakery. A phylogenetic analysis was also performed, using the core proteome of T. delbrueckii, to compare the number of homologous proteins relative to the most closely related species, understanding the phylogenetic placement of this species with robust support. Lastly, the genetic tools available for T. delbrueckii improvement are discussed, focusing on adaptive laboratorial evolution and its potential.
Collapse
Affiliation(s)
- Ticiana Fernandes
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (T.F.); (F.S.-S.); (F.P.); (T.R.); (P.S.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Flávia Silva-Sousa
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (T.F.); (F.S.-S.); (F.P.); (T.R.); (P.S.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Fábio Pereira
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (T.F.); (F.S.-S.); (F.P.); (T.R.); (P.S.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Teresa Rito
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (T.F.); (F.S.-S.); (F.P.); (T.R.); (P.S.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Pedro Soares
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (T.F.); (F.S.-S.); (F.P.); (T.R.); (P.S.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Ricardo Franco-Duarte
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (T.F.); (F.S.-S.); (F.P.); (T.R.); (P.S.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
- Correspondence: or ; Tel.: +351-253-604-310; Fax: +351-253-678-980
| | - Maria João Sousa
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (T.F.); (F.S.-S.); (F.P.); (T.R.); (P.S.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
42
|
Ma W, Yu J, Zhang X, Guo S, Zhang F, Jin W, Dong J, Jia S, Zhong C, Xue J. Whole-genome sequencing exploitation analysis of non-Saccharomyces yeast Nakazawaea ishiwadae GDMCC 60786 and its physiological characterizations. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Zhang B, Ivanova-Petropulos V, Duan C, Yan G. Distinctive chemical and aromatic composition of red wines produced by Saccharomyces cerevisiae co-fermentation with indigenous and commercial non-Saccharomyces strains. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100925] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Qiu X, Yu L, Wang W, Yan R, Zhang Z, Yang H, Zhu D, Zhu B. Comparative Evaluation of Microbiota Dynamics and Metabolites Correlation Between Spontaneous and Inoculated Fermentations of Nanfeng Tangerine Wine. Front Microbiol 2021; 12:649978. [PMID: 34046021 PMCID: PMC8144288 DOI: 10.3389/fmicb.2021.649978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/31/2021] [Indexed: 01/16/2023] Open
Abstract
Understanding the evolution of microorganisms and metabolites during wine fermentation is essential for controlling its production. The structural composition and functional capacity of the core microbiota determine the quality and quantity of fruit wine. Nanfeng tangerine wine fermentation involves a complex of various microorganisms and a wide variety of metabolites. However, the microbial succession and functional shift of the core microbiota in this product fermentation remain unclear. Therefore, high-throughput sequencing (HTS) and headspace-gas chromatography-mass spectrometry (HS/GC-MS) were employed to reveal the core functional microbiota for the production of volatile flavors during spontaneous fermentation (SF) and inoculated fermentation (IF) with Saccharomyces cerevisiae of Nanfeng tangerine wine. A total of 13 bacterial and 8 fungal genera were identified as the core microbiota; Lactobacillus and Acetobacter were the dominant bacteria in SF and IF, respectively. The main fungal genera in SF and IF were Hanseniaspora, Pichia, and Saccharomyces with a clear succession. In addition, the potential correlations analysis between microbiota succession and volatile flavor dynamics revealed that Lactobacillus, Acetobacter, Hanseniaspora, and Saccharomyces were the major contributors to the production of the volatile flavor of Nanfeng tangerine wine. The results of the present study provide insight into the effects of the core functional microbiota in Nanfeng tangerine wine and can be used to develop effective strategies for improving the quality of fruit wines.
Collapse
Affiliation(s)
- Xiangyu Qiu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Linlin Yu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Weiying Wang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Riming Yan
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Zhibin Zhang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Huilin Yang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Du Zhu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bo Zhu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| |
Collapse
|
45
|
Du H, Song Z, Zhang M, Nie Y, Xu Y. The deletion of Schizosaccharomyces pombe decreased the production of flavor-related metabolites during traditional Baijiu fermentation. Food Res Int 2021; 140:109872. [PMID: 33648190 DOI: 10.1016/j.foodres.2020.109872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/15/2020] [Accepted: 10/29/2020] [Indexed: 01/03/2023]
Abstract
The microbiota in traditional solid-state fermentation is a complex microbiota that plays a key role in the production of feed, fuel, food and pharmaceutical products. The function of microbiota is an important factor dictating the quantity and quality of products. Core functional species play key metabolic roles in the microbiota, and their disappearance could result in the abnormal fermentation process. In this work, we combined Baijiu production and laboratory experiments to explore the keystone microbes and their metabolites. We found the deletion of core functional microbe resulted in the loss of multiple metabolites involved many alcohols and acids. In the traditional Baijiu production, the absence or appearance of Schizosaccharomyces pombe caused the content divergence in 227 flavor-related metabolites, especially in ethanol, butanol and pentanoic acid between abnormal and normal group (each content > 1 mg/kg and the content ratio of normal/abnormal group > 2). Schi. pombe increased the expression level of related genes involving alcohol dehydrogenase (ADH), acyl-CoA oxidase (ACOX) and trans-2-enoyl-CoA reductase (TER). Moreover, in the verification experiment of laboratory, the absence or appearance of Schizosaccharomyces pombe C-11 caused the content divergence in 136 flavor-related metabolites, especially in ethanol, butanol and pentanoic acid between Sp- and Sp+ group (each content > 1 mg/kg and the content ratio of Sp+/Sp- group > 2). Our results identified specific member that were essential for the function of fermentation microbiota. This study also suggests species deletions from fermentation microbiota and synthetic consortium could be a useful approach to illustrate relevant microbe-metabolites association and defining metabolic roles in the traditional solid-state fermentation.
Collapse
Affiliation(s)
- Hai Du
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhewei Song
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Menghui Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Microbiology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yao Nie
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Yan Xu
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
46
|
Chen L, Li D, Ren L, Song S, Ma X, Rong Y. Effects of simultaneous and sequential cofermentation of Wickerhamomyces anomalus and Saccharomyces cerevisiae on physicochemical and flavor properties of rice wine. Food Sci Nutr 2021; 9:71-86. [PMID: 33473272 PMCID: PMC7802529 DOI: 10.1002/fsn3.1899] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/26/2022] Open
Abstract
Microorganism species and inoculation fermentation methods have great influence on physicochemical and flavor properties of rice wine. Thus, this work investigated microbial interactions and physicochemical and aroma changes of rice wine through different inoculation strategies of Wickerhamomyces anomalus (W. anomalus) and Saccharomyces cerevisiae (S. cerevisiae). The results underlined that inoculation strategies and non-Saccharomyces yeasts all affected the volatile acidity, total acidity, and alcohol content of rice wine. The sequential cofermentation consumed relatively more sugar and resulted in the higher ethanol content, causing reduced thiols and increased alcohols, esters, phenylethyls, and terpenes, which was more conducive to improve rice wine flavor than simultaneous cofermentation. Moreover, simultaneous cofermentation increased fatty aroma of rice wine, while sequential cofermentation increased mellow and cereal-like flavor. These results confirmed that sequential cofermentation of S. cerevisiae and W. anomalus was a choice for the future production of rice wine with good flavor and quality.
Collapse
Affiliation(s)
- Lihua Chen
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| | - Dongna Li
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| | - Lixia Ren
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| | - Shiqing Song
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| | - Xia Ma
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| | - Yuzhi Rong
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| |
Collapse
|
47
|
He W, Liu S, Heponiemi P, Heinonen M, Marsol-Vall A, Ma X, Yang B, Laaksonen O. Effect of Saccharomyces cerevisiae and Schizosaccharomyces pombe strains on chemical composition and sensory quality of ciders made from Finnish apple cultivars. Food Chem 2020; 345:128833. [PMID: 33341559 DOI: 10.1016/j.foodchem.2020.128833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 11/30/2022]
Abstract
Composition of volatile compounds and concentrations of sugars and organic acids were studied in apple ciders produced with Saccharomyces cerevisiae and Schizosaccharomyces pombe yeasts using eleven different Finnish apple cultivars. Moreover, sensory quality of selected ciders was studied using check-all-that-apply test with untrained panelists. Seventy-seven volatile compounds were detected in the samples using HS-SPME-GC-MS. In general, the ciders had higher concentrations of higher alcohols, aldehydes, and acetals whereas the juices contained higher contents of C6-alcohols. Simultaneously, fermentation using S. pombe resulted in lower concentrations of malic acid, ethyl pentanoate, ethyl hexanoate, and volatile acids and higher concentrations of residual sugars compared to S. cerevisiae. Ciders made using S. cerevisiae were characterized as 'alcoholic' and 'yeasty' while S. pombe ciders were more frequently described as 'sweet', 'honey-like', and less rated as sour. Besides the strong effect by the yeasts, apple cultivars had significant effects on the compositional and sensorial properties of apple ciders.
Collapse
Affiliation(s)
- Wenjia He
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Shuxun Liu
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Paulina Heponiemi
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Maarit Heinonen
- Natural Resources Institute Finland (Luke), Production Systems/Plant Genetics, Myllytie 1, FI-31600 Jokioinen, Finland
| | - Alexis Marsol-Vall
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Xueying Ma
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Oskar Laaksonen
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| |
Collapse
|
48
|
Liu X, Li Y, Yu Z, Liu X, Hardie WJ, Huang M. Screening and characterisation of β-glucosidase production strains from Rosa roxburghii Tratt. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2020. [DOI: 10.1515/ijfe-2020-0152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The β-glucosidase properties from one yeast isolate identified as Wickerhamomyces anomalus C4 were characterised. The β-glucosidase activity of W. anomalus C4 was 41.83 ± 0.25 mU/mL, and the optimum temperature and pH were 40 °C and 5.0, respectively. The glucose, 10% v/v of ethanol and 10 mmol/L of Cu2+ inhibited the β-glycosidases activities. The isolate W. anomalus C4 had a stronger alcohol metabolism capacity than commercial Saccharomyces cerevisiae X16. Besides, fermentation with W. anomalus C4 alone and co-fermentations with S. cerevisiae X16 and W. anomalus C4 reduced the volatile acids content and the sourness value compared to S. cerevisiae X16 control. Moreover, inoculation with W. anomalus C4 could enhance volatile aroma richness and complexity of Rosa roxburghii wines, regardless of type or amount thereof. Therefore, the R. roxburghii native yeast isolate W. anomalus C4 may have some application potentials for R. roxburghii wine-making.
Collapse
Affiliation(s)
- Xiaozhu Liu
- Guizhou Institute of Technology , Guiyang 550003 , Guizhou , China
| | - Yinfeng Li
- Guizhou Institute of Technology , Guiyang 550003 , Guizhou , China
| | - Zhihai Yu
- Guizhou Institute of Technology , Guiyang 550003 , Guizhou , China
| | - Xiaohui Liu
- Guizhou Institute of Technology , Guiyang 550003 , Guizhou , China
| | - William James Hardie
- Guizhou Institute of Technology , Guiyang 550003 , Guizhou , China
- Changzhou University , Changzhou 213000 , Jiangsu , China
| | - Mingzheng Huang
- Guizhou Institute of Technology , Guiyang 550003 , Guizhou , China
| |
Collapse
|
49
|
Scansani S, Rauhut D, Brezina S, Semmler H, Benito S. The Impact of Chitosan on the Chemical Composition of Wines Fermented with Schizosaccharomyces pombe and Saccharomyces cerevisiae. Foods 2020; 9:foods9101423. [PMID: 33050127 PMCID: PMC7599843 DOI: 10.3390/foods9101423] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 11/16/2022] Open
Abstract
This study investigates the influence of the antimicrobial agent chitosan on a selected Schizosaccharomyces pombe strain during the alcoholic fermentation of ultra-pasteurized grape juice with a high concentration of malic acid. It also studies a selected Saccharomyces cerevisiae strain as a control. The study examines several parameters relating to wine quality, including volatile and non-volatile compounds. The principal aim of the study is to test the influence of chitosan on the final chemical composition of the wine during alcoholic fermentation, and to compare the two studied fermentative yeasts between them. The results show that chitosan influences the final concentration of acetic acid, ethanol, glycerol, acetaldehyde, pyruvic acid, α-ketoglutarate, higher alcohols, acetate esters, ethyl esters, and fatty acids, depending on the yeast species.
Collapse
Affiliation(s)
- Stefano Scansani
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University (HGU), Von-Lade-Straße 1, 65366 Geisenheim, Germany; (S.S.); (D.R.); (S.B.); (H.S.)
| | - Doris Rauhut
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University (HGU), Von-Lade-Straße 1, 65366 Geisenheim, Germany; (S.S.); (D.R.); (S.B.); (H.S.)
| | - Silvia Brezina
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University (HGU), Von-Lade-Straße 1, 65366 Geisenheim, Germany; (S.S.); (D.R.); (S.B.); (H.S.)
| | - Heike Semmler
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University (HGU), Von-Lade-Straße 1, 65366 Geisenheim, Germany; (S.S.); (D.R.); (S.B.); (H.S.)
| | - Santiago Benito
- Department of Chemistry and Food Technology, Polytechnic University of Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-910671107
| |
Collapse
|
50
|
Kelanne N, Yang B, Liljenbäck L, Laaksonen O. Phenolic Compound Profiles in Alcoholic Black Currant Beverages Produced by Fermentation with Saccharomyces and Non- Saccharomyces Yeasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10128-10141. [PMID: 32805115 PMCID: PMC7660742 DOI: 10.1021/acs.jafc.0c03354] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Alcoholic beverages with low ethanol contents were produced by fermenting black currant juice with Saccharomyces and non-Saccharomyces yeasts without added sugar. The effects of different yeasts on the phenolic compounds (anthocyanins, hydroxycinnamic acids, flavonols, and flavan-3-ols) and other selected constituents (the ethanol content, residual sugars, organic acids, and color) of the black currants were assessed. Single yeast-fermented beverages had higher ethanol contents (3.84-4.47%, v/v) than those produced by sequential fermentation. In general, the fermentation of black currant juice increased the contents of organic acids and flavonols, whereas anthocyanin contents decreased. All of the fermentations decreased the contents of glycosylated nitrile-containing hydroxycinnamic acids, resulting in higher contents of the corresponding aglycons. Fermentation with Saccharomyces bayanus resulted in lower anthocyanin and organic acid contents compared to the other yeasts. Sequential fermentations with Saccharomyces cerevisiae and Metschnikowia pulcherrima led to the highest total hydroxycinnamic acids and anthocyanins among all of the fermentations.
Collapse
|