1
|
Luo CM, Ke LF, Huang XY, Zhuang XY, Guo ZW, Xiao Q, Chen J, Chen FQ, Yang QM, Ru Y, Weng HF, Xiao AF, Zhang YH. Efficient biosynthesis of prunin in methanol cosolvent system by an organic solvent-tolerant α-L-rhamnosidase from Spirochaeta thermophila. Enzyme Microb Technol 2024; 175:110410. [PMID: 38340378 DOI: 10.1016/j.enzmictec.2024.110410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Prunin of desirable bioactivity and bioavailability can be transformed from plant-derived naringin by the key enzyme α-L-rhamnosidase. However, the production was limited by unsatisfactory properties of α-L-rhamnosidase such as thermostability and organic solvent tolerance. In this study, biochemical characteristics, and hydrolysis capacity of a novel α-L-rhamnosidase from Spirochaeta thermophila (St-Rha) were investigated, which was the first characterized α-L-rhamnosidase for Spirochaeta genus. St-Rha showed a higher substrate specificity towards naringin and exhibited excellent thermostability and methanol tolerance. The Km of St-Rha in the methanol cosolvent system was decreased 7.2-fold comparing that in the aqueous phase system, while kcat/Km value of St-Rha was enhanced 9.3-fold. Meanwhile, a preliminary conformational study was implemented through comparative molecular dynamics simulation analysis to explore the mechanism underlying the methanol tolerance of St-Rha for the first time. Furthermore, the catalytic ability of St-Rha for prunin preparation in the 20% methanol cosolvent system was explored, and 200 g/L naringin was transformed into 125.5 g/L prunin for 24 h reaction with a corresponding space-time yield of 5.2 g/L/h. These results indicated that St-Rha was a novel α-L-rhamnosidase suitable for hydrolyzing naringin in the methanol cosolvent system and provided a better alternative for improving the efficient production yield of prunin.
Collapse
Affiliation(s)
- Chen-Mu Luo
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Li-Fan Ke
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiang-Yu Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiao-Yan Zhuang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - Ze-Wang Guo
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - Qiong Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - Jun Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - Fu-Quan Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - Qiu-Ming Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - Yi Ru
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - Hui-Fen Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - An-Feng Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China.
| | - Yong-Hui Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China.
| |
Collapse
|
2
|
Chen Y, Wang L, Guo Y, Zhang M, Xie H, Xia G, Xu L, Yang H, Shen Y. Preparation of isoquercitrin and rhamnose from readily accessible rutin by a highly specific recombinant α- L-rhamnosidase ( r-Rha1). Nat Prod Res 2024:1-6. [PMID: 38230560 DOI: 10.1080/14786419.2024.2303600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
Isoquercitrin has superior in vivo bioactivities with respect to its primary glycoside rutin. Its conventional preparation was ineffective, with large chemical consumption and many by-products. Rhamnose, a high value-added monosaccharide, is usually separated from acid hydrolytes of rutin. This study aimed to establish a novel enzymatic hydrolysis-based approach for their preparation. α-L-rhamnosidase was expressed in Pichia pastoris GS115 and applied to enzymolysis of rutin. Then, one-factor-at-a-time optimisation of hydrolysis conditions was performed. Two compounds were produced in 0.02 M HAc-NaAc buffer (pH4.50) containing α-L-rhamnosidase/rutin (1:4, w/w) at 60 °C. Consequently, 20.0 g/L rutin was completely hydrolysed in 2 hrs, and isoquercitrin was obtained after purification by HPD-100 resin. Additionally, rhamnose was enriched by decolorisation and crystallisation. MD simulation analysis suggested that rutin was catalysed on the hydrophobic surface of r-Rha1 with van-der-Waals force being main driving force. This strategy is an efficient approach for preparation of isoquercitrin and rhamnose.
Collapse
Affiliation(s)
- Yufei Chen
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Liwei Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Yuao Guo
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Mingjing Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Haicheng Xie
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Guohua Xia
- School of Pharmacy, Jiangsu University, Zhenjiang, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lili Xu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Huan Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuping Shen
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Pan L, Zhang Y, Zhang F, Wang Z, Zheng J. α-L-rhamnosidase: production, properties, and applications. World J Microbiol Biotechnol 2023; 39:191. [PMID: 37160824 DOI: 10.1007/s11274-023-03638-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/30/2023] [Indexed: 05/11/2023]
Abstract
α-L-rhamnosidase [EC 3.2.1.40] belongs to glycoside hydrolase (GH) families (GH13, GH78, and GH106 families) in the carbohydrate-active enzymes (CAZy) database, which specifically hydrolyzes the non-reducing end of α-L-rhamnose. Αccording to the sites of catalytic hydrolysis, α-L-rhamnosidase can be divided into α-1, 2-rhamnosidase, α-1, 3-rhamnosidase, α-1, 4-rhamnosidase and α-1, 6-rhamnosidase. α-L-rhamnosidase is an important enzyme for various biotechnological applications, especially in food, beverage, and pharmaceutical industries. α-L-rhamnosidase has a wide range of sources and is commonly found in animals, plants, and microorganisms, and its microbial source includes a variety of bacteria, molds and yeasts (such as Lactobacillus sp., Aspergillus sp., Pichia angusta and Saccharomyces cerevisiae). In recent years, a series of advances have been achieved in various aspects of α-validates the above-described-rhamnosidase research. A number of α-L-rhamnosidases have been successfully recombinant expressed in prokaryotic systems as well as eukaryotic systems which involve Pichia pastoris, Saccharomyces cerevisiae and Aspergillus niger, and the catalytic properties of the recombinant enzymes have been improved by enzyme modification techniques. In this review, the sources and production methods, general and catalytic properties and biotechnological applications of α-L-rhamnosidase in different fields are summarized and discussed, concluding with the directions for further in-depth research on α-L-rhamnosidase.
Collapse
Affiliation(s)
- Lixia Pan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Yueting Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Fei Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Jianyong Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China.
| |
Collapse
|
4
|
Feng T, Wang Z, Li H, Li Q, Guo Y, Zhao J, Liu J. Whole-cell biotransformation for simultaneous synthesis of allitol and d-gluconic acid in recombinant Escherichia coli. J Biosci Bioeng 2023; 135:433-439. [DOI: 10.1016/j.jbiosc.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 04/03/2023]
|
5
|
Simultaneous production and sustainable eutectic mixture based purification of narringinase with Bacillus amyloliquefaciens by valorization of tofu wastewater. Sci Rep 2022; 12:10509. [PMID: 35732803 PMCID: PMC9217967 DOI: 10.1038/s41598-022-14855-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
The current investigation is being executed for sustainable one-pot production and purification of naringinase using natural deep eutectic solvent-based extractive fermentation. Five natural deep eutectic solvents were prepared and their physicochemical properties were determined as a function of temperature. Tofu wastewater was used as a low-cost substrate for naringinase production and simultaneous in-situ purification of the enzyme was accomplished by employing NADES. Optimal conditions of influential factors like concentrations of NADES (74.5% w/w), Na2SO4 (15% w/v) and tofu wastewater (1.5% w/w) resulted in an effective yield of naringinase (249.6 U/ml). Scale-up of naringinase production with a 3 l custom made desktop bioreactor was accomplished and effective regeneration of NADES was established. NADES exhibits selectivity during extraction even after the fifth cycle proving it to be tailor-made. The resulting active enzyme was quantified by size exclusion chromatography (736.85 U/mg). Ultrapure enzyme fraction was obtained with anion exchange chromatography yielding maximum purity of (63.2 U/ml) and specific naringinase activity of (3516 U/mg). The in-vitro debittering activity of the resulting ultrapure enzyme fraction was determined with grape juice resulting in naringin and limonin removal of [23.4% (w/w)] and [64.3% (w/w)] respectively.
Collapse
|
6
|
Lou H, Liu X, Liu S, Chen Q. Purification and Characterization of a Novel α-L-Rhamnosidase from Papiliotrema laurentii ZJU-L07 and Its Application in Production of Icariin from Epimedin C. J Fungi (Basel) 2022; 8:644. [PMID: 35736128 PMCID: PMC9225045 DOI: 10.3390/jof8060644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
Icariin is the most effective bioactive compound in Herba Epimedii. To enhance the content of icariin in the epimedium water extract, a novel strain, Papiliotrema laurentii ZJU-L07, producing an intracellular α-L-rhamnosidase was isolated from the soil and mutagenized. The specific activity of α-L-rhamnosidase was 29.89 U·mg-1 through purification, and the molecular mass of the enzyme was 100 kDa, as assayed by SDS-PAGE. The characterization of the purified enzyme was determined. The optimal temperature and pH were 55 °C and 7.0, respectively. The enzyme was stable in the pH range 5.5-9.0 for 2 h over 80% and the temperature range 30-40 °C for 2 h more than 70%. The enzyme activity was inhibited by Ca2+, Fe2+, Cu2+, and Mg2+, especially Fe2+. The kinetic parameters of Km and Vmax were 1.38 mM and 24.64 μmol·mg-1·min-1 using pNPR as the substrate, respectively. When epimedin C was used as a nature substrate to determine the kinetic parameters of α-L-rhamnosidase, the values of Km and Vmax were 3.28 mM and 0.01 μmol·mg-1·min-1, respectively. The conditions of enzymatic hydrolysis were optimized through single factor experiments and response surface methodology. The icariin yield increased from 61% to over 83% after optimization. The enzymatic hydrolysis method could be used for the industrialized production of icariin. At the same time, this enzyme could also cleave the α-1,2 glycosidic linkage between glucoside and rhamnoside in naringin and neohesperidin, which could be applicable in other biotechnological processes.
Collapse
Affiliation(s)
| | | | | | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (X.L.); (S.L.)
| |
Collapse
|
7
|
Borzova N, Gudzenko O, Varbanets L. α-L-rhamnosidase from Penicillium tardum and Its Application for Biotransformation of Citrus Rhamnosides. Appl Biochem Biotechnol 2022; 194:4915-4929. [PMID: 35670906 DOI: 10.1007/s12010-022-04008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
Abstract
Enzymatic deramnosylation of flavonoids is a convenient tool for improving the quality of citrus juices. α-L-rhamnosidase with a specific activity of 33.1 units/mg was isolated and characterized from the culture liquid of Penicillium tardum. The molecular weight of the enzyme was 95 kDa according to the data of gel filtration on Sepharose 6B and gel electrophoresis in SDS-PAGE. The pH optimum of the enzyme activity was 5.0, and the thermo optimum was 60 °C. Enzyme showed high stability in the temperature range of 45-50 and at 60-70 °C. It retained 80 to 50% of the initial activity for 90 min. The half-life of α-L-rhamnosidase at 70 °C increased twofold in the presence of 20-40% glycerol and 2.3-fold in the presence of 4 M sorbitol. The enzyme was completely inhibited in the presence of 10-3 M Ag+ and Cd2+ and approximately by 90% in the presence of Fe2+, Fe3+, and Al3+ ions. More than 60%, the enzyme activity was inhibited by Hg2+, Co2+, and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide methiodide. Activating effect of Ca2+ ions was also noted. Km and Vmax for the hydrolysis of p-nitrophenyl-α-L-rhamnopyranoside and naringin were 0.7 mM and 38.3 µM/min/mg and 1.34 mM and 43.7 µM/min/mg, respectively. Penicillium tardum α-L-rhamnosidase hydrolyzed naringin, neohesperidin, hesperidin, rutin, and narirutin at high rate, which allowed us to consider it as an effective tool for transformation of bioflavonoids in food industry.
Collapse
Affiliation(s)
- Nataliya Borzova
- Department of Biochemistry of Microorganisms, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154 Zabolotny st, Kyiv, 03143, Ukraine.
| | - Olena Gudzenko
- Department of Biochemistry of Microorganisms, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154 Zabolotny st, Kyiv, 03143, Ukraine
| | - Lyudmila Varbanets
- Department of Biochemistry of Microorganisms, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154 Zabolotny st, Kyiv, 03143, Ukraine
| |
Collapse
|
8
|
Homologous Expression and Characterization of α-L-rhamnosidase from Aspergillus niger for the Transformation of Flavonoids. Appl Biochem Biotechnol 2022; 194:3453-3467. [PMID: 35366188 DOI: 10.1007/s12010-022-03894-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/14/2022] [Indexed: 11/02/2022]
Abstract
Aspergillus niger has been used for homologous and heterologous expressions of many protein products. In this study, the α-L-rhamnosidase from A. niger (Rha-N1, GenBank XP_001389086.1) was homologously expressed in A. niger 3.350 by Agrobacterium tumefaciens-mediated transformation. The enzyme activity of Rha-N1 was 0.658 U/mL, which was obtained by cultivation of engineered A. niger in a 5-L bioreactor. Rha-N1 was purified by affinity chromatography and characterized. The optimum temperature and optimum pH for Rha-N1 were 60 °C and 4.5, respectively. Enzyme activity was promoted by Al3+, Li+, Mg2+, and Ba2+ and was inhibited by Mn2+, Fe3+, Ca2+, Cu2+, and organic solvents. The result indicated that rutin was the most suitable substrate for Rha-N1 by comparison with the other two flavonoid substrates hesperidin and naringin. The transformed products of isoquercitrin, hesperetin-7-O-glucoside, and prunin were identified by LC-MS and 1H-NMR.
Collapse
|
9
|
Xie J, Zhao J, Zhang N, Xu H, Yang J, Ye J, Jiang J. Efficient Production of Isoquercitin, Icariin and Icariside II by A Novel Thermostable α-l-Rhamnosidase PodoRha from Paenibacillus odorifer with High α-1, 6- / α-1, 2- Glycoside Specificity. Enzyme Microb Technol 2022; 158:110039. [DOI: 10.1016/j.enzmictec.2022.110039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/03/2022]
|
10
|
Lou H, Hu L, Lu H, Wei T, Chen Q. Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: A Review. Molecules 2021; 26:4522. [PMID: 34361675 PMCID: PMC8348848 DOI: 10.3390/molecules26154522] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/15/2021] [Accepted: 07/25/2021] [Indexed: 12/17/2022] Open
Abstract
Flavonoids belong to a class of plant secondary metabolites that have a polyphenol structure. Flavonoids show extensive biological activity, such as antioxidative, anti-inflammatory, anti-mutagenic, anti-cancer, and antibacterial properties, so they are widely used in the food, pharmaceutical, and nutraceutical industries. However, traditional sources of flavonoids are no longer sufficient to meet current demands. In recent years, with the clarification of the biosynthetic pathway of flavonoids and the development of synthetic biology, it has become possible to use synthetic metabolic engineering methods with microorganisms as hosts to produce flavonoids. This article mainly reviews the biosynthetic pathways of flavonoids and the development of microbial expression systems for the production of flavonoids in order to provide a useful reference for further research on synthetic metabolic engineering of flavonoids. Meanwhile, the application of co-culture systems in the biosynthesis of flavonoids is emphasized in this review.
Collapse
Affiliation(s)
- Hanghang Lou
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (H.L.); (T.W.)
| | - Lifei Hu
- Hubei Key Lab of Quality and Safety of Traditional Chinese Medicine & Health Food, Huangshi 435100, China;
| | - Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (H.L.); (T.W.)
| | - Tianyu Wei
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (H.L.); (T.W.)
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (H.L.); (T.W.)
| |
Collapse
|
11
|
Xia XK, Zhang YE, Lei SJ, Hu B, Fu CX. Optimization of process parameters for naringinase production by Aspergillus tubingensis UA13 and pilot scale-up study. Prep Biochem Biotechnol 2021; 52:226-233. [PMID: 34033527 DOI: 10.1080/10826068.2021.1925914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
To improve the naringinase production of Aspergillus tubingensis UA13, shorten the fermentation period, and verify its industrial application value, naringinase production conditions were optimized, and 5 L scale-up study in stirred tank bioreactor was carried out. Parameters, including carbon, nitrogen sources and inducer, optimal seed age, inoculum amount, temperature and pH, were adjusted and optimized in shaking flask. Keeping pH at the optimal value 6 in bioreactor, dissolved oxygen was monitored during the fermentation and the optimal stirring rate was investigated. In 5 L scale-up study, the highest naringinase activity was 72.62 U/mL, which was 1.75 times higher than that (41.52 U/mL) in shaking flask and the fermentation period was shortened by 24 h.
Collapse
Affiliation(s)
- Xin-Ke Xia
- College ofBiological and Pharmaceutical, China Three Gorges University, Yichang China
| | - Yuan-E Zhang
- College ofBiological and Pharmaceutical, China Three Gorges University, Yichang China
| | - Sheng-Jiao Lei
- College ofBiological and Pharmaceutical, China Three Gorges University, Yichang China
| | - Biao Hu
- College ofBiological and Pharmaceutical, China Three Gorges University, Yichang China
| | - Cai-Xia Fu
- Research and Development Center, Hubei Tulaohan Flavouring and Food Co., Ltd, Yichang, China
| |
Collapse
|
12
|
Mayer M, Hahn M, Gerstl F, Köwer T, Rink S, Kunz W, Duerkop A, Baeumner AJ. Shedding Light on the Diversity of Surfactant Interactions with Luminol Electrochemiluminescence for Bioanalysis. Anal Chem 2019; 91:13080-13087. [PMID: 31524378 DOI: 10.1021/acs.analchem.9b03275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Luminol is a major probe for chemiluminescence (CL) and electrochemiluminescence (ECL) detection technologies in (bio)analysis. Surfactants are added to ECL assay cocktails to enhance signals or are present, owing to given bioassay protocols, yet little is known regarding their effects on luminol ECL. In-depth understanding is provided here through a broad study with bioanalytically relevant surfactants (cationic, anionic, and nonionic), four common electrode materials, and two luminol derivatives. Naturally, in ECL, surface effects are dominant; however, bulk solution, diffusion, and luminescence-stabilization processes also contribute significantly to the overall reaction. It was found that in contrast to CL the effect surfactants have on luminol ECL cannot be linked to general surfactant characteristics such as ionic nature, hydrophilic lipophilic balance (HLB) value, and critical micellar concentration (CMC). Instead, surfactants act in an all-encompassing mechanism, including surface electrochemistry, their solution and interfacial phases, and the chemical luminescence pathway. This leads to dramatic differences in signals obtained, ranging from 5-fold increases to total quenching. Within this complexity, we defined six guiding principles that are extrapolated from the underlying mechanisms and selection guides for surfactant, electrode, and environmental condition combinations. Those will now assist in developing highly sensitive luminol-ECL-based bioassays, because the surfactant selection can be based not only on properties needed for the assay protocol but also on identifying the optimal electrode-surfactant pair to maximize detection efficiency.
Collapse
Affiliation(s)
- Michael Mayer
- Institute of Analytical Chemistry, Chemo- and Biosensors , University of Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany
| | - Maximilian Hahn
- Institute of Physical and Theoretical Chemistry , University of Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany
| | - Florian Gerstl
- Institute of Analytical Chemistry, Chemo- and Biosensors , University of Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany
| | - Thomas Köwer
- Institute of Analytical Chemistry, Chemo- and Biosensors , University of Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany
| | - Simone Rink
- Institute of Analytical Chemistry, Chemo- and Biosensors , University of Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany
| | - Werner Kunz
- Institute of Physical and Theoretical Chemistry , University of Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany
| | - Axel Duerkop
- Institute of Analytical Chemistry, Chemo- and Biosensors , University of Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors , University of Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany
| |
Collapse
|
13
|
Xanthobacter-dominated biofilm as a novel source for high-value rhamnose. Appl Microbiol Biotechnol 2019; 103:4525-4538. [DOI: 10.1007/s00253-019-09765-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 10/27/2022]
|
14
|
Li L, Gong J, Wang S, Li G, Gao T, Jiang Z, Cheng YS, Ni H, Li Q. Heterologous Expression and Characterization of a New Clade of Aspergillus α-L-Rhamnosidase Suitable for Citrus Juice Processing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2926-2935. [PMID: 30789260 DOI: 10.1021/acs.jafc.8b06932] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
α-L-Rhamnosidase is a glycoside hydrolase capable of removing naringin from citrus juice. However, α-L-rhamnosidases always have broad substrate spectra, causing negative effects on citrus juice. In this study, a α-L-rhamnosidase-expressing fungal strain, JMU-TS529, was identified, and its α-L-rhamnosidase was characterized. As a result, JMU-TS529 was identified as Aspergillus tubingensis via morphological and molecular characteristics. The predicted protein sequence shared an amino acid identity of less than 30% with previously characterized α-L-rhamnosidases. The optimal pH and temperature were 4.0 and 50-60 °C, respectively. Most importantly, the α-L-rhamnosidase showed a strong ability to hydrolyze naringin but scarcely acted on other substrates. Furthermore, the enzyme could efficiently remove naringin from pomelo juice without changing its attractive aroma. These results indicate that the present enzyme represents a new clade of Aspergillus α-L-rhamnosidase that is desirable for debittering citrus juice, providing a better alternative for improving the quality of citrus juice.
Collapse
Affiliation(s)
- Lijun Li
- College of Food and Biological Engineering , Jimei University , Xiamen , Fujian Province 361021 , China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering , Xiamen , Fujian Province 361021 , China
- Research Center of Food Biotechnology of Xiamen City , Xiamen , Fujian Province 361021 , China
| | - Jianye Gong
- College of Food and Biological Engineering , Jimei University , Xiamen , Fujian Province 361021 , China
| | - Song Wang
- College of Food and Biological Engineering , Jimei University , Xiamen , Fujian Province 361021 , China
| | - Guiling Li
- College of Food and Biological Engineering , Jimei University , Xiamen , Fujian Province 361021 , China
| | - Ting Gao
- College of Food and Biological Engineering , Jimei University , Xiamen , Fujian Province 361021 , China
| | - Zedong Jiang
- College of Food and Biological Engineering , Jimei University , Xiamen , Fujian Province 361021 , China
| | - Yi-Sheng Cheng
- Department of Life Science , National Taiwan University , Taipei 10617 , Taiwan
- Institute of Plant Biology , National Taiwan University , Taipei 10617 , Taiwan
| | - Hui Ni
- College of Food and Biological Engineering , Jimei University , Xiamen , Fujian Province 361021 , China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering , Xiamen , Fujian Province 361021 , China
- Research Center of Food Biotechnology of Xiamen City , Xiamen , Fujian Province 361021 , China
| | - Qingbiao Li
- College of Food and Biological Engineering , Jimei University , Xiamen , Fujian Province 361021 , China
| |
Collapse
|