1
|
Huang Q, Jiang F, Shuai L, Zhao C. Synthetic lignin derived from ferulic acid for UV-blocking sunscreen. Int J Biol Macromol 2024; 283:137694. [PMID: 39551324 DOI: 10.1016/j.ijbiomac.2024.137694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/04/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
Conventional lignin, a dehydrogenated polymer derived primarily from hydroxycinnamic alcohol monomers, exhibits relatively low antioxidant and ultraviolet (UV)-blocking activities due to its structural imperfection. Herein, we demonstrated that the dehydrogenated polymer of ferulic acid (an unconventional lignin precursor) (FAL) had excellent antioxidant and UV-blocking properties. Structural characterization showed that FAL contains abundant dihydrobenzofuran and butyrolactone structures, free phenolic hydroxyl groups, and cinnamic acid end groups. Such structural characteristics endow FAL with much higher antioxidant activity and broader and stronger UV absorptivity (especially UVA) than conventional lignins. Our investigation showed that FAL could significantly improve the UV-blocking property of commercial SPF30 and SPF50 and render a relatively light color. These versatile properties make the FAL a potential ingredient for application in sunscreen products. This work is enlightening not only for exploring better antioxidant and UV-blocking polymers from the dehydrogenated polymers of phenolic compounds but also for biosynthesizing more advantageous lignin in plants.
Collapse
Affiliation(s)
- Qing Huang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fei Jiang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Shuai
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Chengke Zhao
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Xu X, Shen F, Lv G, Lin J. Immobilization of laccase on mesoporous metal organic frameworks for efficient cross-coupling of ethyl ferulate. World J Microbiol Biotechnol 2024; 40:321. [PMID: 39279003 DOI: 10.1007/s11274-024-04125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 08/29/2024] [Indexed: 09/18/2024]
Abstract
Laccases act as green catalysts for oxidative cross-coupling of phenolic antioxidnt compounds, but low stability and non-recyclability limit its application. To address that, metal-organic frameworks Cu-BTC and Cr-MOF were synthesized as supports to immobilize the efficient laccase from Cerrena sp. HYB07. The Brunauer-Emmett-Teller surface area of Cu-BTC and Cr-MOF were 1213.2 and 907.1 m2/g, respectively. The two carriers respectively presented pore diameters of 1.2-10 nm and 1.4-12 nm as octahedron, indicating nano-scale mesoporosity. These Cu-BTC and Cr-MOF carriers could adsorb laccase with enzyme loading of 1933.2 and 1564.4 U/g carrier, respectively. The stability and organic solvent tolerance of Cu-BTC-laccase and Cr-MOF-laccase were both obviously improved compared to free laccase. Thermal inactivation kinetics showed that both the two immobilized laccases displayed lower thermal inactivation rate constants. Importantly, the Cu-BTC-laccase and Cr-MOF-laccase both showed much higher activity for cross-coupling of ethyl ferulate than free laccase, which had 2.5-fold higher cross-coupling efficiency than that by free laccase. The ethyl ferulate coupling product was also analyzed by mass spectroscopy and the synthesis pathway of ethyl ferulate dimer was proposed. The cross coupling of ethyl ferulate required the formation of radical intermediates of ethyl ferulate generated by laccase mediated oxidation. This work paved the way for MOFs immobilized laccase for cross coupling of antioxidant phenols.
Collapse
Affiliation(s)
- Xinqi Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Feng Shen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Gan Lv
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China
| | - Juan Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
3
|
Gao J, Song W, Tang X, Liu Y, Miao M. Feruloyl Glyceride Mitigates Tomato Postharvest Rot by Inhibiting Penicillium expansum Spore Germination and Enhancing Suberin Accumulation. Foods 2024; 13:1147. [PMID: 38672820 PMCID: PMC11049243 DOI: 10.3390/foods13081147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Postharvest rot, caused by Penicillium expansum, in tomatoes poses significant economic and health risks. Traditional control methods, such as the use of fungicides, raise concerns about pathogen resistance, food safety, and environmental impact. In search of sustainable alternatives, plant secondary metabolites, particularly phenolic compounds and their derivatives, have emerged as promising natural antimicrobials. Among these, feruloyl glyceride (FG), a water-soluble derivative of ferulic acid, stands out due to its antioxidant properties, antibacterial properties, and improved solubility. In this study, we provide evidence demonstrating FG is capable of inhibiting the spore germination of P. expansum and effectively reducing the incidence rate of Penicillium rot of tomatoes, without compromising quality. Electron microscopy observations combined with metabolite and transcriptomic analyses revealed that FG treatments resulted in enhanced suberin accumulation through promoting the expression of suberin synthesis related genes and, consequently, inhibited the growth and expansion of P. expansum on the fruits. This work sheds light on the mechanisms underlying FG's inhibitory effects, allowing its potential application as a natural and safe alternative to replace chemical fungicides for postharvest preservation.
Collapse
Affiliation(s)
- Jieyu Gao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (J.G.); (W.S.); (X.T.)
| | - Wu Song
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (J.G.); (W.S.); (X.T.)
| | - Xiaofeng Tang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (J.G.); (W.S.); (X.T.)
| | - Yongsheng Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (J.G.); (W.S.); (X.T.)
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Min Miao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (J.G.); (W.S.); (X.T.)
| |
Collapse
|
4
|
Razem M, Morozova K, Ding Y, Ferrentino G, Scampicchio M. Determination of free and bound antioxidants in Kamut® wheat by HPLC with triple detector (DAD-CAD-MS). Food Chem X 2024; 21:101216. [PMID: 38384689 PMCID: PMC10879663 DOI: 10.1016/j.fochx.2024.101216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024] Open
Abstract
Kamut® wheat (Triticum turgidum ssp. turanicum), an ancient, underutilized cereal, offers potential health benefits due to its phenolic compounds. This study aimed to investigate the antioxidant potential of Kamut® wheat's free and bound phenolic extracts using an HPLC system equipped with three detectors. The bound extracts, released after alkaline hydrolysis, exhibited higher total phenolic and flavonoid content compared to the free extracts (p < 0.05). The total antioxidant capacity of bound extracts was six-fold greater than in free extracts (p < 0.05). The main antioxidants in free extracts were tyrosine, phenylalanine, tryptophan, and apigenin. In bound extracts, ferulic acid, its dimers and trimer were present. Kamut® wheat exhibited a source of dietary antioxidants and should be considered a potential ingredient for the development of functional foods. Also, the HPLC-triple detector system is effective for in-depth profiling of antioxidant compounds, paving the way for future research on similar grains.
Collapse
Affiliation(s)
- Mutasem Razem
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| | - Ksenia Morozova
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| | - Yubin Ding
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| | - Giovanna Ferrentino
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| | - Matteo Scampicchio
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| |
Collapse
|
5
|
Akbari V, Ghobadi S. Evaluation of the effect of phenylpropanoids on the binding of heparin to human serum albumin and glycosylated human serum albumin concerning anticoagulant activity: A comparison study. Int J Biol Macromol 2024; 257:128732. [PMID: 38092116 DOI: 10.1016/j.ijbiomac.2023.128732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
The nonenzymatic advanced glycation end products (AGEs) and the accumulation of AGEs are the two main factors associated with the long-term pathogenesis of diabetes. Human serum albumin (HSA) as the most abundant serum protein has a higher fortuity to be modified by nonenzymatic glycation. In this study, the interaction of three phenylpropanoids (caffeic acid (Caf), p-coumaric acid (Cou), and cinnamic acid (Cin)) toward HSA and glycosylated HSA (gHSA) was analyzed by multiple spectroscopic techniques combined with molecular docking. The formation of fibrils in HSA and gHSA was confirmed by the Thioflavin T (ThT) assay. The phenylpropanoids have shown anti-fibrillation properties in vitro. The obtained thermodynamic parameters indicated that hydrogen bonding and van der Waals forces are the main forces in the binding interaction, and the quenching mechanism of the protein fluorescence is static. Molecular docking results, as well as the in vitro results, showed that Caf, Cou, and Cin exhibit more stable interactions with HSA, respectively. In addition, molecular docking analysis showed that Caf and Cou interact well with K199. Given the critical role of K199 in HSA glycosylation in diabetic patients, this process inhibits the interaction of stabilizer compounds and thus accelerates gHSA aggregation.
Collapse
Affiliation(s)
- Vali Akbari
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran.
| | - Sirous Ghobadi
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran.
| |
Collapse
|
6
|
Marquez-Escalante JA, Carvajal-Millan E, Martínez-López AL, Martínez-Robinson KG, Campa-Mada AC, Rascon-Chu A. Fine structural features and antioxidant capacity of ferulated arabinoxylans extracted from nixtamalized maize bran. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4584-4591. [PMID: 36852427 DOI: 10.1002/jsfa.12531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 02/07/2023] [Accepted: 02/27/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND The nixtamalization process improves the nutritional and technological properties of maize. This process generates nixtamalized maize bran as a by-product, which is a source of arabinoxylans (AX). AX are polysaccharides constituted of a xylose backbone with mono- or di-arabinose substitutions, which can be ester-linked to ferulic acid (FA). The present study investigated the fine structural features and antioxidant capacity (AC) of nixtamalized maize bran arabinoxylans (MBAX) to comprehend the structure-radical scavenging capacity relationship in this polysaccharide deeply. RESULTS MBAX presented a molecular weight, intrinsic viscosity, and hydrodynamic radius of 674 kDa, 1.8 dL g-1 , and 24.6 nm, respectively. The arabinose-to-xylose ratio (A/X) and FA content were 0.74 and 0.25 g kg-1 polysaccharide, respectively. MBAX contained dimers (di-FA) and trimer (tri-FA) of FA (0.14 and 0.07 g kg-1 polysaccharide, respectively). The main di-FA isomer was the 8-5' structure (80%). Fourier transform infrared spectroscopy confirmed MBAX molecular identity, and the second derivate of the spectral data revealed a band at 958 cm-1 related to the presence of arabinose disubstitution. 1 H-Nuclear magnetic resonance spectroscopy showed mono- and di-arabinose substitution in the xylan backbone with more monosubstituted residues. MBAX registered an AC of 25 and 20 μmol Trolox equivalents g-1 polysaccharide despite a low FA content, using ABTS (2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid) and DPPH (1,1-diphenyl-2-picrylhydrazyl) methods, respectively. CONCLUSION AC in MBAX could be related to the high A/X ratio (mainly monosubstitution) and the high 8-5' di-FA proportion in this polysaccharide. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jorge A Marquez-Escalante
- Biopolymers Laboratory, Research Center for Food and Development (CIAD, AC), Hermosillo, Sonora, Mexico
| | - Elizabeth Carvajal-Millan
- Biopolymers Laboratory, Research Center for Food and Development (CIAD, AC), Hermosillo, Sonora, Mexico
| | - Ana L Martínez-López
- NANO-VAC Research Group, Department of Pharmacy and Pharmaceutical Technology, University of Navarra, Pamplona, Spain
| | - Karla G Martínez-Robinson
- Biopolymers Laboratory, Research Center for Food and Development (CIAD, AC), Hermosillo, Sonora, Mexico
| | - Alma C Campa-Mada
- Biopolymers Laboratory, Research Center for Food and Development (CIAD, AC), Hermosillo, Sonora, Mexico
| | - Agustín Rascon-Chu
- Biotechnology Laboratory, Research Center for Food and Development (CIAD, AC), Hermosillo, Sonora, Mexico
| |
Collapse
|
7
|
Sartiva H, Nishiwaki H, Akiyama K, Yamauchi S. Regiospecific and Enantiospecific Effects of the β-Benzyl-α-benzylidene-γ-butyrolactone Structure on Phytotoxic Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6738-6746. [PMID: 37083414 DOI: 10.1021/acs.jafc.3c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Novel derivatives of E-β-benzyl-α-benzylidene-γ-butyrolactone (3-benzyl-2-benzylidene-4-butanolide) with lignano-9,9'-lactone structures were developed as anti-phytopathogenic fungal compounds. Their regiospecific and enantiospecific characteristics were determined, with the E-form and 3R-configuration showing higher activities against the Alternaria alternata Japanese pear pathotype. By the syntheses of benzyl compounds instead of benzylidene and aromatic derivatives, followed by an bioassay experiment, the importance of the benzylidene structure and effects of the substituents of the aromatic ring were clarified. The (2-OCH3, 4'-CH3/4'-CF3)-derivatives, 19 and 25, and (2-OCH3, 6-CH3/6-F/6-Br, 4'-OCH3)-derivatives, 34, 38, and 42, were more effective with EC50 values of 0.1-0.3 μM. It was assumed that the 2-OCH3 group, a hydrophobic group at the 6-position, and some size of the hydrophobic group at the 4'-position were necessary for the increased activity.
Collapse
Affiliation(s)
- Hazna Sartiva
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Hisashi Nishiwaki
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Koichi Akiyama
- Integrated Center for Sciences, Ehime University, 3-5-7 Tarumi, Tarumi Station, Matsuyama, Ehime 790-8566, Japan
| | - Satoshi Yamauchi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| |
Collapse
|
8
|
Lin S, Hunt CJ, Holck J, Brask J, Krogh KBRM, Meyer AS, Wilkens C, Agger JW. Fungal feruloyl esterases can catalyze release of diferulic acids from complex arabinoxylan. Int J Biol Macromol 2023; 232:123365. [PMID: 36690236 DOI: 10.1016/j.ijbiomac.2023.123365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Feruloyl esterases (FAEs, EC 3.1.1.73) catalyze the hydrolytic cleavage of ester bonds between feruloyl and arabinosyl moieties in arabinoxylans. Recently, we discovered that two bacterial FAEs could catalyze release of diferulic acids (diFAs) from highly substituted, cross-linked corn bran arabinoxylan. Here, we show that several fungal FAEs, notably AnFae1 (Aspergillus niger), AoFae1 (A. oryzae), and MgFae1 (Magnaporthe oryzae (also known as M. grisae)) also catalyze liberation of diFAs from complex arabinoxylan. By comparing the enzyme kinetics of diFA release to feruloyl esterase activity of the enzymes on methyl- and arabinosyl-ferulate substrates we demonstrate that the diFA release activity cannot be predicted from the activity of the enzymes on these synthetic substrates. A detailed structure-function analysis, based on AlphaFold2 modeled enzyme structures and docking with the relevant di-feruloyl ligands, reveal how distinct differences in the active site topology and surroundings may explain the diFA releasing action of the enzymes. Interestingly, the analysis also unveils that the carbohydrate binding module of the MgFae1 may play a key role in the diFA releasing ability of this enzyme. The findings contribute further understanding of the function of FAEs in the deconstruction of complex arabinoxylans and provide new opportunities for enzyme assisted upgrading of complex bran arabinoxylans.
Collapse
Affiliation(s)
- Shang Lin
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby, Denmark
| | - Cameron J Hunt
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby, Denmark
| | - Jesper Holck
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby, Denmark
| | - Jesper Brask
- Novozymes A/S, Biologiens Vej 2, DK-2800 Kgs. Lyngby, Denmark
| | | | - Anne S Meyer
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby, Denmark.
| | - Casper Wilkens
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby, Denmark
| | - Jane W Agger
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
9
|
Chen H, Duan X, Xu J, Wang B, Xiang S, Wang X. Thermal-assisted synthesis of ferulic acid-chitosan complex in water and its application as safe antioxidant. Int J Biol Macromol 2023; 227:384-390. [PMID: 36543292 DOI: 10.1016/j.ijbiomac.2022.12.184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Safe antioxidants are highly demanded in food preservation, yet existing preparation methods of typical bio-based antioxidants all suffer from either toxic catalysts or poor water solubility of the products. Herein, a water-soluble safe antioxidant, ferulic acid-chitosan complex, was facilely prepared in water with the assistance of mild-temperature heating. The chemical structure of ferulic acid-chitosan complex was determined by spectroscopy, and its thermal stability and rheological properties were studied in detail. Different from its precursors, the ferulic acid-chitosan complex exhibits much improved water solubility, thanks to its ionic structure. The as-prepared chitosan-ferulic acid complex displays higher antioxidative property than free ferulic acid, which was illustrated by the good preservation of freshly prepared apple juice. Such thermal-assisted synthesis strategy is demonstrated as an effective approach to prepare hydrophilic chitosan complex bearing hydrophobic organic acid, which enables great feasibility to the development of chitosan-based functional biomaterials.
Collapse
Affiliation(s)
- Heng Chen
- Research Institute of Interdisciplinary Science & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China; Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Xiao Duan
- Department of Pharmacy, Changzhi Medical College, Changzhi 046000, China
| | - Jianbin Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Biao Wang
- Research Institute of Interdisciplinary Science & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Sihan Xiang
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Xin Wang
- Songshan Lake Materials Laboratory, Dongguan 523808, China.
| |
Collapse
|
10
|
Jomhori M, Mosaddeghi H. Molecular modeling of natural and synthesized inhibitors against SARS-CoV-2 spike glycoprotein. RESEARCH ON BIOMEDICAL ENGINEERING 2022. [PMCID: PMC7779244 DOI: 10.1007/s42600-020-00122-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose Viral diseases increasingly endanger the world public health because of the transient efficacy of antiviral therapies. The novel coronavirus disease 2019 (COVID-19) has been recently identified as caused by a new type of coronaviruses. This type of coronavirus binds to the human receptor through the Spike glycoprotein (S) Receptor Binding Domain (RBD). The spike protein is found in inaccessible (closed) or accessible (open) conformations in which the accessible conformation causes severe infection. Thus, this receptor is a significant target for antiviral drug design. Methods An attempt was made to recognize 111 natural and synthesized compounds in order to utilize them against SARS-CoV-2 spike glycoprotein to inhibit Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using simulation methods, such as molecular docking. The FAF-Drugs3, Pan-Assay Interference Compounds (PAINS), ADME (absorption, distribution, metabolism, excretion) databases along with Lipinski’s rules were used to evaluate the drug-like properties of the identified ligands. In order to analyze and identify the residues critical in the docking process of the spike glycoprotein, the interactions of proposed ligands with both conformations of the spike glycoprotein was simulated. Results The results showed that among the available ligands, seven ligands had significant interactions with the binding site of the spike glycoprotein, in which angiotensin-converting enzyme 2 (ACE2) is bounded. Out of seven candidate molecules, six ligands exhibited drug-like characteristics. The results also demonstrated that fluorophenyl and propane groups of ligands had optimal interactions with the binding site of the spike glycoprotein. Conclusion According to the results, our findings indicated the ability of six ligands to prevent the binding of the SARS-CoV-2 spike glycoprotein to its cognate receptor, providing novel compounds for the treatment of COVID-19. Supplementary Information The online version contains supplementary material available at 10.1007/s42600-020-00122-3.
Collapse
Affiliation(s)
| | - Hamid Mosaddeghi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111 Iran
| |
Collapse
|
11
|
Phenolic Thiazoles with Antioxidant and Antiradical Activity. Synthesis, In Vitro Evaluation, Toxicity, Electrochemical Behavior, Quantum Studies and Antimicrobial Screening. Antioxidants (Basel) 2021; 10:antiox10111707. [PMID: 34829578 PMCID: PMC8615111 DOI: 10.3390/antiox10111707] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress represents the underlying cause of many chronic diseases in human; therefore, the development of potent antioxidant compounds for preventing or treating such conditions is useful. Starting from the good antioxidant and antiradical properties identified for the previously reported Dihydroxy-Phenyl-Thiazol-Hydrazinium chloride (DPTH), we synthesized a congeneric series of phenolic thiazoles. The radical scavenging activity, and the antioxidant and chelation potential were assessed in vitro, a series of quantum descriptors were calculated, and the electrochemical behavior of the synthesized compounds was studied to evaluate the impact on the antioxidant and antiradical activities. In addition, their antibacterial and antifungal properties were evaluated against seven aerobic bacterial strains and a strain of C. albicans, and their cytotoxicity was assessed in vitro. Compounds 5a-b, 7a-b and 8a-b presented remarkable antioxidant and antiradical properties, and compounds 5a-b, 7a and 8a displayed good Cu+2 chelating activity. Compounds 7a and 8a were very active against P. aeruginosa ATCC 27853 compared to norfloxacin, and proved less cytotoxic than ascorbic acid against the human keratinocyte cell line (HaCaT cells, CLS-300493). Several phenolic compounds from the synthesized series presented excellent antioxidant activity and notable anti-Pseudomonas potential.
Collapse
|
12
|
Ma F, Luo L, Gao X. Metabolite and transcriptome analyses revealed the modulation of fructo-oligosaccharide on ileum metabolism of Taiping chickens. J Appl Microbiol 2021; 132:2249-2261. [PMID: 34608718 DOI: 10.1111/jam.15319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 01/08/2023]
Abstract
AIM The metabolic markers and differentially expressed genes (DEGs) related to fructo-oligosaccharide (FOS) were screened, and the response of FOS to the ileum metabolic pathway of Taiping chickens was analysed. METHODS AND RESULTS Prebiotic are widely used in agricultural breeding for care and maintenance of animal health, especially FOS. Metabonomics evaluation of ileum of Taiping chicken ultra-performance liquid chromatography-quadruple time of-flight high-sensitivity mass spectrometry showed that 93 differentially altered metabolites were identified and divided into eight categories, of which organic acids and derivatives was the most important one. Transcriptomic analysis showed that DEGs were mainly enriched in drug metabolism-cytochrome p450, metabolism of xenobiotics by cytochrome p450, retinol metabolism and fat digestion and absorption. Integrated analysis of metabolite profiles and gene expression revealed that the significantly up-regulated GSTT1 was significantly correlated with most of the different lipid metabolites, suggesting that GSTT1 may play an important role in FOS regulation of lipid metabolism. CONCLUSIONS The results of this study suggest that supplementation of FOS can have a positive effect on gut metabolites, which may contribute to the overall health with indigenous chickens. SIGNIFICANCE AND IMPACT OF THE STUDY Insight into the responses of intestinal prebiotics of Taiping chicken is helpful to understand the role of prebiotics in maintaining intestinal microflora balance and improving immune response and productivity of poultry from the molecular and metabolic levels.
Collapse
Affiliation(s)
- Fang Ma
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, China
| | - Lintong Luo
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, China
| | - Xiang Gao
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, China
| |
Collapse
|
13
|
De Anda-Flores Y, Carvajal-Millan E, Lizardi-Mendoza J, Rascon-Chu A, Tanori-Cordova J, Martínez-López AL, Burgara-Estrella AJ, Pedroza-Montero MR. Conformational Behavior, Topographical Features, and Antioxidant Activity of Partly De-Esterified Arabinoxylans. Polymers (Basel) 2021; 13:2794. [PMID: 34451333 PMCID: PMC8398917 DOI: 10.3390/polym13162794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 11/23/2022] Open
Abstract
This study aimed to investigate the effect of arabinoxylans (AX) partial de-esterification with feruloyl esterase on the polysaccharide conformational behavior, topographical features, and antioxidant activity. After enzyme treatment, the ferulic acid (FA) content in AX was reduced from 7.30 to 5.48 µg FA/mg polysaccharide, and the molecule registered a small reduction in radius of gyration (RG), hydrodynamic radius (Rh), characteristic ratio (C∞), and persistence length (q). A slight decrease in α and a small increase in K constants in the Mark-Houwink-Sakurada equation for partially de-esterified AX (FAX) suggested a reduction in molecule structural rigidity and a more expanded coil conformation, respectively, in relation to AX. Fourier transform infrared spectroscopy spectra of AX and FAX presented a pattern characteristic for this polysaccharide. Atomic force microscopy topographic analysis of FAX showed a more regular surface without larger hollows in relation to AX. The antioxidant activity of FAX, compared to AX, was reduced by 30 and 41% using both 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS+) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) methods, respectively. These results suggest that feruloyl esterase treatment of AX could offer a strategy to tailor AX chains conformation, morphological features, and antioxidant activity, impacting the development of advanced biomaterials for biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Yubia De Anda-Flores
- Biopolymers-CTAOA, Research Center for Food and Development (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas No. 46, Hermosillo 83304, Mexico; (Y.D.A.-F.); (J.L.-M.)
| | - Elizabeth Carvajal-Millan
- Biopolymers-CTAOA, Research Center for Food and Development (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas No. 46, Hermosillo 83304, Mexico; (Y.D.A.-F.); (J.L.-M.)
| | - Jaime Lizardi-Mendoza
- Biopolymers-CTAOA, Research Center for Food and Development (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas No. 46, Hermosillo 83304, Mexico; (Y.D.A.-F.); (J.L.-M.)
| | - Agustin Rascon-Chu
- Biotechnology-CTAOV, Research Center for Food and Development (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas No. 46, Hermosillo 83304, Mexico;
| | - Judith Tanori-Cordova
- Department of Polymers and Materials Research, University of Sonora, Hermosillo 83000, Mexico;
| | - Ana Luisa Martínez-López
- NANO-VAC Research Group, Department of Chemistry and Pharmaceutical Technology, University of Navarra, 31008 Pamplona, Spain;
| | - Alexel J. Burgara-Estrella
- Department of Physics Research, University of Sonora, Hermosillo 83000, Mexico; (A.J.B.-E.); (M.R.P.-M.)
| | - Martin R. Pedroza-Montero
- Department of Physics Research, University of Sonora, Hermosillo 83000, Mexico; (A.J.B.-E.); (M.R.P.-M.)
| |
Collapse
|
14
|
Identification of the DPPH radical scavenging reaction adducts of ferulic acid and sinapic acid and their structure-antioxidant activity relationship. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111411] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Bento-Silva A, Duarte N, Mecha E, Belo M, Serra AT, Vaz Patto MC, Bronze MR. Broa, an Ethnic Maize Bread, as a Source of Phenolic Compounds. Antioxidants (Basel) 2021; 10:672. [PMID: 33925894 PMCID: PMC8145897 DOI: 10.3390/antiox10050672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 11/21/2022] Open
Abstract
Maize is an important source of phenolic compounds, specially hydroxycinnamic acids, which are widely known for their antioxidant activity and associated health benefits. However, these effects depend on their bioaccessibility, which is influenced by the different techniques used for food processing. Several traditional products can be obtained from maize and, in Portugal, it is used for the production of an ethnic bread called broa. In order to evaluate the effect of processing on maize phenolic composition, one commercial hybrid and five open-pollinated maize flours and broas were studied. The total phenolic content and antioxidant activity were evaluated by the Folin-Ciocalteu and ORAC assays, respectively. The major phenolics, namely ferulic and p-coumaric acids (in their soluble-free, soluble-conjugated and insoluble forms), insoluble ferulic acid dimers and soluble hydroxycinnamic acid amides were quantitated. Results show that the total phenolic content, antioxidant activity and hydroxycinnamic acids resisted traditional processing conditions used in the production of broas. The content in soluble-free phenolics increased after processing, meaning that their bioaccessibility improved. Portuguese traditional broas, produced with open-pollinated maize varieties, can be considered an interesting dietary source of antioxidant compounds due to the higher content in hydroxycinnamic acids and derivatives.
Collapse
Affiliation(s)
- Andreia Bento-Silva
- FCT NOVA, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (E.M.); (M.B.); (M.C.V.P.)
- FFULisboa, Faculdade de Farmácia da Universidade de Lisboa, Av. das Forças Armadas, 1649-019 Lisboa, Portugal
| | - Noélia Duarte
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Elsa Mecha
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (E.M.); (M.B.); (M.C.V.P.)
| | - Maria Belo
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (E.M.); (M.B.); (M.C.V.P.)
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta-do-Marquês, Estação Agronómica Nacional, Apartado 12, 2780-157 Oeiras, Portugal;
| | - Maria Carlota Vaz Patto
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (E.M.); (M.B.); (M.C.V.P.)
| | - Maria Rosário Bronze
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (E.M.); (M.B.); (M.C.V.P.)
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta-do-Marquês, Estação Agronómica Nacional, Apartado 12, 2780-157 Oeiras, Portugal;
| |
Collapse
|
16
|
Birsan RI, Wilde P, Waldron KW, Rai DK. Anticholinesterase Activities of Different Solvent Extracts of Brewer's Spent Grain. Foods 2021; 10:foods10050930. [PMID: 33922726 PMCID: PMC8145039 DOI: 10.3390/foods10050930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 01/17/2023] Open
Abstract
Cholinesterases, involved in acetylcholine catabolism in the central and peripheral nervous system, have been strongly linked with neurodegenerative diseases. Current therapeutic approaches using synthetic drugs present several side effects. Hence, there is an increasing research interest in naturally-occurring dietary polyphenols, which are also considered efficacious. Food processing by-products such as brewer’s spent grain (BSG) would be a potential bio-source of polyphenols. In this study, polyphenol-rich BSG extracts using 60% acetone and 0.75% NaOH solutions were generated, which were further subjected to liquid–liquid partitioning using various organic solvents. The water-partitioned fractions of the saponified extracts had the highest total polyphenol content (6.2 ± 2.8 mgGAE/g dw) as determined by Folin–Ciocalteu reagent, while the LC-MS/MS showed ethyl acetate fraction with the highest phenolics (2.9 ± 0.3 mg/g BSG dw). The best inhibitions of acetyl- (37.9 ± 2.9%) and butyryl- (53.6 ± 7.7%) cholinesterases were shown by the diethyl ether fraction of the saponified extract. This fraction contained the highest sum of quantified phenolics (99 ± 21.2 µg/mg of extract), and with significant (p < 0.01) inhibitory contribution of decarboxylated-diferulic acid. Amongst the standards, caffeic acid presented the highest inhibition for both cholinesterases, 25.5 ± 0.2% for acetyl- and 52.3 ± 0.8% for butyryl-cholinesterase, respectively, whilst the blends insignificantly inhibited both cholinesterases. The results showed that polyphenol-rich BSG fractions have potentials as natural anti-cholinesterase agents.
Collapse
Affiliation(s)
- Rares I. Birsan
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, D15KN3K Dublin, Ireland;
- Food Innovation and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Colney NR4 7UQ, UK;
| | - Peter Wilde
- Food Innovation and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Colney NR4 7UQ, UK;
| | - Keith W. Waldron
- Anglia Science Writing Ltd., Wramplingham, Norfolk NR18 0RU, UK;
| | - Dilip K. Rai
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, D15KN3K Dublin, Ireland;
- Correspondence: ; Tel.: +353-018-059-500
| |
Collapse
|
17
|
Structural elucidation, distribution and antioxidant activity of bound phenolics from whole grain brown rice. Food Chem 2021; 358:129872. [PMID: 33965743 DOI: 10.1016/j.foodchem.2021.129872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 01/31/2023]
Abstract
Chemical profiles, distribution, and antioxidant activity of bound phenolics from brown rice were investigated. Four new dehydrodiferulic acid dimers (DFA) along with eighteen known phenolics were isolated from brown rice bound phenolic extracts and their structures were determined by multiple spectroscopic methods. Among them, ferulic acid and 8-5' DFA were the most abundant monomeric and dimeric bound phenolics in brown rice, rice bran and polished rice. In whole brown rice, polished rice contributed more than 50% of three phenolic monomers and six phenolic dimers, while rice bran contributed more than half of the other thirteen phenolics including eight monomers, four dimers, and one trimer. All the isolated compounds exhibited oxygen radical absorbance capacity. Thomasidioic acid, caffeic acid, methyl caffeate, and 8-5' DC DFA displayed potent peroxyl radical scavenging capacity, and the last three compounds also showed moderate cellular antioxidant activity.
Collapse
|
18
|
Lin S, Agger JW, Wilkens C, Meyer AS. Feruloylated Arabinoxylan and Oligosaccharides: Chemistry, Nutritional Functions, and Options for Enzymatic Modification. Annu Rev Food Sci Technol 2021; 12:331-354. [PMID: 33472016 DOI: 10.1146/annurev-food-032818-121443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cereal brans and grain endosperm cell walls are key dietary sources of different types of arabinoxylan. Arabinoxylan is the main group of hemicellulosic polysaccharides that are present in the cell walls of monocot grass crops and hence in cereal grains. The arabinoxylan polysaccharides consist of a backbone of β-(1→4)-linked xylopyranosyl residues, which carry arabinofuranosyl moieties, hence the term arabinoxylan. Moreover, the xylopyranosyl residues can be acetylated or substituted by 4-O-methyl-d-glucuronic acid. The arabinofuranosyls may be esterified with a feruloyl group. Feruloylated arabinoxylo-oligosaccharides exert beneficial bioactivities via prebiotic, immunomodulatory, and/or antioxidant effects. New knowledge on microbial enzymes that catalyze specific structural modifications of arabinoxylans can help us understand how these complex fibers are converted in the gut and provide a foundation for the production of feruloylated arabinoxylo-oligosaccharides from brans or other cereal grain processing sidestreams as functional food ingredients. There is a gap between the structural knowledge, bioactivity data, and enzymology insight. Our goal with this review is to present an overview of the structures and bioactivities of feruloylated arabinoxylo-oligosaccharides and review the enzyme reactions that catalyze specific changes in differentially substituted arabinoxylans.
Collapse
Affiliation(s)
- Shang Lin
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark;
| | - Jane W Agger
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark;
| | - Casper Wilkens
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark;
| | - Anne S Meyer
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark;
| |
Collapse
|
19
|
Bioevaluation and molecular docking analysis of novel phenylpropanoid derivatives as potent food preservative and anti-microbials. 3 Biotech 2021; 11:70. [PMID: 33489687 DOI: 10.1007/s13205-020-02636-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022] Open
Abstract
Novel derivatives were synthesized using natural scaffold, like phenylpropanoids C6-C3 backbone to reduce unfavorable browning of food due to tyrosinase and oxidative spoilage. Most of the compounds displayed mushroom tyrosinase inhibition better than kojic acid. Compound CE48 exhibited better anti-tyrosinase (IC50-29.64 μM) and antioxidant (EC50-12.67 μM) activity than the reference compounds, kojic acid (IC50-50.30 μM) and ascorbic acid (EC50-14.55 μM), respectively. Compounds SAM30, SE78, 11F, and CE48 showed better anti-B. subtilis, anti-S. aureus, and anti-A. niger activity, respectively, compared to their parents. Molecular docking studies between inhibitors and mushroom tyrosinase corroborated the experimental reports, except SAM30 (glide score - 8.117) and SE78 (glide score - 6.151). In silico absorption, distribution, metabolism, excretion/toxicity (ADME/T) and toxicological studies of these newly synthesized compounds exhibited acceptable pharmacokinetic and safety profiles, like good aqueous solubility (- 3.34 to - 7.57), low human oral absorption (e.g., SAM30, SE78, FAM34), low gut-blood barrier permeability [36.67-209.88 nm/s in Cancer coli-2 (Caco-2) cells] and [19.45-91.51 nm/s in Madin-Darby Canine Kidney (MDCK) cells], low blood-brain barrier penetration, non-mutagenicity, and non-carcinogenicity. Interestingly, the synthesized compounds also possessed multifunctional properties, like microbial growth inhibitor, free radicals scavenger, and it also prevented browning of raw fruits and vegetables by inhibiting tyrosinase enzyme. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02636-0.
Collapse
|
20
|
Song DW, Liu GL, Xue MY, Qiu TX, Wang H, Shan LP, Liu L, Chen J. In vitro and in vivo evaluation of antiviral activity of a phenylpropanoid derivative against spring viraemia of carp virus. Virus Res 2020; 291:198221. [PMID: 33152382 DOI: 10.1016/j.virusres.2020.198221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
Phenylpropanoids, common natural compounds, possess many different biological activities such as antioxidant, anti-inflammatory and antiviral. Spring viraemia of carp virus (SVCV) can cause a high mortality in common carp (Cyprinus carpio). However, there are currently no licenced drugs that effectively cure this disease. In this study, we designed and synthesized a phenylpropanoid derivative 4-(4-methoxyphenyl)-3,4-dihydro-2H-chromeno[4,3-d]pyrimidine-2,5(1 H)-dione (E2), and explored the antiviral effect against SVCV in vitro and in vivo. Up to 25 mg/L of E2 significantly inhibited the expression levels of SVCV protein genes in the epithelioma papulosum cyprini (EPC) cell line by a maximum inhibitory rate of >90%. As expected, E2 remarkably declined the apoptotic of SVCV-infected cells and suppressed potential enhancement of the mitochondrial membrane potential (ΔΨm), these data implied that E2 could protect mitochondria from structural damage in response to SVCV. Meanwhile, E2 was added to EPC cells under four different conditions: time-of-addition, time-of-removal, pre-treatment of viruses and pre-treatment of cells indicated that E2 may block the post-entry transport process of the virus. Additionally, the up-regulation of six interferon (IFN)-related genes also demonstrated that E2 indirectly activated IFNs for the clearance of SVCV in common carp. Drug cure effect showed that treatment with E2 at 0.5 d post infection (dpi) is more effective than at 0, 1 or 2 dpi. Most importantly, intraperitoneal therapy of E2 markedly improved common carp survival rate and reduced virus copies in body. Therefore, the E2 has potential to be developed into a novel anti-SVCV agent.
Collapse
Affiliation(s)
- Da-Wei Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Guang-Lu Liu
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Ming-Yang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Tian-Xiu Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Huan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Li-Peng Shan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Lei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
21
|
Bento-Silva A, Duarte N, Mecha E, Belo M, Vaz Patto MC, Bronze MDR. Hydroxycinnamic Acids and Their Derivatives in Broa, a Traditional Ethnic Maize Bread. Foods 2020; 9:foods9101471. [PMID: 33076483 PMCID: PMC7602622 DOI: 10.3390/foods9101471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
Maize is one of the most interesting dietary sources of hydroxycinnamic acids, widely known for their beneficial health effects, namely antioxidant properties. This work aims to identify hydroxycinnamic acids and their derivatives in broa, a Portuguese traditional ethnic maize bread, and corresponding maize flours. Soluble and insoluble phenolic fractions of diverse maize flours and corresponding broas were prepared and analysed by HPLC-DAD-MS/MS (high-performance liquid chromatography coupled with diode array detector and tandem mass spectrometry). Besides free hydroxycinnamic acids, mainly ferulic and p-coumaric acids, several structural isomers and stereoisomers of insoluble ferulic acid dehydrodimers (n = 18) and trimers (n = 11), were also identified. Hydroxycinnamic acid amides consisting of coumaroyl and feruloyl conjugates (n = 22) were present in both soluble and insoluble fractions of maize flours and breads, in different isomeric forms. A new compound was putatively identified as bis-N,N′-diferuloyl putrescine. Additionally, more complex and insoluble hydroxycinnamic acid amides, derived from ferulic acid dehydrodimers (n = 47) and trimers (n = 18), were also putatively identified for the first time, suggesting that hydroxycinnamic acid amides are also linked to maize cell walls. Since hydroxycinnamic derivatives were not only identified in maize flours, but also in broas, they can contribute to the antioxidant properties and beneficial health effects of maize-based foods.
Collapse
Affiliation(s)
- Andreia Bento-Silva
- FCT NOVA, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (E.M.); (M.B.); (M.C.V.P.)
- FFULisboa, Faculdade de Farmácia da Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Noélia Duarte
- iMed.ULisboa, Faculdade de Farmácia, Research Institute for Medicines, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Elsa Mecha
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (E.M.); (M.B.); (M.C.V.P.)
| | - Maria Belo
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (E.M.); (M.B.); (M.C.V.P.)
| | - Maria Carlota Vaz Patto
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (E.M.); (M.B.); (M.C.V.P.)
| | - Maria do Rosário Bronze
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (E.M.); (M.B.); (M.C.V.P.)
- iMed.ULisboa, Faculdade de Farmácia, Research Institute for Medicines, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal;
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- Correspondence: ; Tel.: +351-217-946-400
| |
Collapse
|
22
|
Ouyang X, Li X, Liu J, Liu Y, Xie Y, Du Z, Xie H, Chen B, Lu W, Chen D. Structure-activity relationship and mechanism of four monostilbenes with respect to ferroptosis inhibition. RSC Adv 2020; 10:31171-31179. [PMID: 35520676 PMCID: PMC9056428 DOI: 10.1039/d0ra04896h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/08/2020] [Indexed: 12/20/2022] Open
Abstract
Erastin-treated bone marrow-derived mesenchymal stem cells (bmMSCs) were prepared and used to compare the ferroptosis inhibitory bioactivities of four monostilbenes, including rhapontigenin (1a), isorhapontigenin (1b), piceatannol-3'-O-glucoside (1c), and rhapontin (1d). Their relative levels were 1c ≈ 1b > 1a ≈ 1d in 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid (C11-BODIPY), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and flow cytometric assays. The comparison highlighted two 4'-OH-containing monostilbenes (1c and 1b) in ferroptosis inhibitory bioactivity. Similar structure-activity relationships were also observed in antioxidant assays, including 1,1-diphenyl-2-picryl-hydrazl radical (DPPH˙)-trapping, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO˙)-trapping, and Fe3+-reducing assays. UPLC-ESI-Q-TOF-MS analysis of the DPPH˙-trapping reaction of the monostilbenes revealed that they can inhibit ferroptosis in erastin-treated bmMSCs through a hydrogen donation-based antioxidant pathway. After hydrogen donation, these monostilbenes usually produce the corresponding stable dimers; additionally, the hydrogen donation potential was enhanced by the 4'-OH. The enhancement by 4'-OH can be attributed to the transannular resonance effect. This effect can be used to predict the inhibition potential of other π-π conjugative phenolics.
Collapse
Affiliation(s)
- Xiaojian Ouyang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Jie Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine Guangzhou 510006 China
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Yangping Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine Guangzhou 510006 China
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Yulu Xie
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Zhongcun Du
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Hong Xie
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Ban Chen
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Wenbiao Lu
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Dongfeng Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine Guangzhou 510006 China
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| |
Collapse
|
23
|
Compton DL, Appell M. Rapid Raman spectroscopic determination of 1-feruloyl-sn-glycerol and 1,3-diferuloyl-sn-glycerol. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:118020. [PMID: 31923794 DOI: 10.1016/j.saa.2019.118020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/28/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Ferulic acid and its derivatives are important natural products found throughout the plant kingdom and are of special interest due to their health benefits. 1-Feruloyl-sn-glycerol (FG) and 1,3-diferuloyl-sn-glycerol (F2G) are two common bioproducts of ferulic acid that co-occur in nature and during the biocatalytic production of feruloylated lipids. In this paper, we report a comprehensive characterization of FG and F2G using Raman and UV spectroscopies and theoretical density functional theory calculations at the B3LYP/6-311+G** level. UV spectroscopy produced spectra for FG and F2G with similar peak shape, but difference intensities. The vibrational frequency calculations aided in the assignment of the Raman bands. The Raman analysis demonstrates that Raman spectroscopy is a rapid label free method to clearly distinguish between FG and F2G.
Collapse
Affiliation(s)
- David L Compton
- Renewable Product Technology, United States Department of Agriculture, Agricultural Utilization Research, National Center for Agricultural Utilizations Research, 1815 N. University St., Peoria, IL 61604, United States of America
| | - Michael Appell
- Mycotoxin Prevention and Applied Microbiology Research, United States Department of Agriculture, Agricultural Utilization Research, National Center for Agricultural Utilizations Research, 1815 N. University St., Peoria, IL 61604, United States of America.
| |
Collapse
|
24
|
Liu J, Li X, Cai R, Ren Z, Zhang A, Deng F, Chen D. Simultaneous Study of Anti-Ferroptosis and Antioxidant Mechanisms of Butein and ( S)-Butin. Molecules 2020; 25:E674. [PMID: 32033283 PMCID: PMC7036861 DOI: 10.3390/molecules25030674] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
To elucidate the mechanism of anti-ferroptosis and examine structural optimization in natural phenolics, cellular and chemical assays were performed with 2'-hydroxy chalcone butein and dihydroflavone (S)-butin. C11-BODIPY staining and flow cytometric assays suggest that butein more effectively inhibits ferroptosis in erastin-treated bone marrow-derived mesenchymal stem cells than (S)-butin. Butein also exhibited higher antioxidant percentages than (S)-butin in five antioxidant assays: linoleic acid emulsion assay, Fe3+-reducing antioxidant power assay, Cu2+-reducing antioxidant power assay, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•)-trapping assay, and α,α-diphenyl-β-picrylhydrazyl radical (DPPH•)-trapping assay. Their reaction products with DPPH• were further analyzed using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS). Butein and (S)-butin produced a butein 5,5-dimer (m/z 542, 271, 253, 225, 135, and 91) and a (S)-butin 5',5'-dimer (m/z 542, 389, 269, 253, and 151), respectively. Interestingly, butein forms a cross dimer with (S)-butin (m/z 542, 523, 433, 419, 415, 406, and 375). Therefore, we conclude that butein and (S)-butin exert anti-ferroptotic action via an antioxidant pathway (especially the hydrogen atom transfer pathway). Following this pathway, butein and (S)-butin yield both self-dimers and cross dimers. Butein displays superior antioxidant or anti-ferroptosis action to (S)-butin. This can be attributed the decrease in π-π conjugation in butein due to saturation of its α,β-double bond and loss of its 2'-hydroxy group upon biocatalytical isomerization.
Collapse
Affiliation(s)
- Jie Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (R.C.); (Z.R.); (A.Z.); (F.D.)
| | - Rongxin Cai
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (R.C.); (Z.R.); (A.Z.); (F.D.)
| | - Ziwei Ren
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (R.C.); (Z.R.); (A.Z.); (F.D.)
| | - Aizhen Zhang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (R.C.); (Z.R.); (A.Z.); (F.D.)
| | - Fangdan Deng
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (R.C.); (Z.R.); (A.Z.); (F.D.)
| | - Dongfeng Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
25
|
Amić A, Marković Z, Dimitrić Marković JM, Milenković D, Stepanić V. Antioxidative potential of ferulic acid phenoxyl radical. PHYTOCHEMISTRY 2020; 170:112218. [PMID: 31812108 DOI: 10.1016/j.phytochem.2019.112218] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
The vast majority of previous studies dealing with antioxidant potency of (poly)phenols does not investigate the fate of phenoxyl radical obtained after single free radical scavenging. We investigated possible pathways of inactivation of ferulic acid phenoxyl radical (FAPR) using DFT method. Direct coupling with a set of 10 physiologically important free radicals, H-atom donation and dimerization were analysed by estimation of Gibbs free energy changes related to these processes. The former two processes are thermodynamically feasible to inactivate more dangerous free radicals such as hydroxyl, alkoxyl and carbon-centered radicals. Among dimerization reactions, the least energy demanding is formation of C-5-C-5 dimer of ferulic acid (FA), which has higher antiradical potency than FA itself. Obtained results reveal that FAPR, a priori considered as stable and unreactive, may contribute to the overall antioxidant activity of FA. This is a beneficial behavior, which makes FA a particularly valuable protector against oxidative stress. Hence, the contribution of phenoxyl radicals to the antioxidant activity of (poly)phenolic compounds should be taken into account, what has been scarcely considered until now.
Collapse
Affiliation(s)
- Ana Amić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8a, 31000, Osijek, Croatia.
| | - Zoran Marković
- Department of Chemical-Technological Sciences, State University of Novi Pazar, Vuka Karadžića bb, 36300, Novi Pazar, Serbia
| | | | - Dejan Milenković
- Bioengineering Research and Development Center, Prvoslava Stojanovića 6, 34000, Kragujevac, Serbia
| | - Višnja Stepanić
- Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| |
Collapse
|
26
|
He Y, Jia Y, Lu F. New Products Generated from the Transformations of Ferulic Acid Dilactone. Biomolecules 2020; 10:E175. [PMID: 31979323 PMCID: PMC7072328 DOI: 10.3390/biom10020175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 01/22/2023] Open
Abstract
Various ferulic acid (FA) dimers occurring in plant cell walls, such as 8-5-, 8-O-4-, 5-5-, and 8-8- coupled dimers, are effective antioxidants and potential antimicrobials. It is necessary to access these diferulates as reference compounds to validate those isolated from plants. 3,6-bis(4-hydroxy-3-methoxyphenyl)-tetrahydrofuro-[3,4-c]furan-1,4-dione, a 8-8-coupled FA dilactone generated from ferulic acid via radical coupling, has been used to synthesize 8-8-coupled FA dimers although few reports investigated the distribution of products and mechanisms involved in the transformation of FA dilactone. In this work, the FA dilactone, obtained from FA by a peroxidase-catalyzed radical coupling, was reacted under various base/acid conditions. Effects of reaction conditions and workup procedures on the distribution of products were investigated by GC-MS. The isolated products from such treatments of FA dilactone were characterized by NMR. New derivatives of FA dimer including 2-(4-hydroxy-3-methoxybenzylidene)-3-(hydroxyl-(4-hydroxy-3-methoxyphenyl)methyl)succinic acid and 2-(bis(4-hydroxy-3-methoxyphenyl)-methyl)-succinic acid were produced from NaOH treatment. Another novel 8-8-coupled cyclic FA dimer, diethyl 6-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-7-methoxy-1,2-dihydronaphthalene-2,3-dicarboxylate was identified in products from FA dilactone treated by dry HCl in absolute ethanol. Mechanisms involved in such transformations were proposed.
Collapse
Affiliation(s)
- Ying He
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Rd., Tianhe District, Guangzhou 510640, China;
| | - Yuan Jia
- Guangdong Engineering Research Center for Green Fine Chemicals, Guangzhou 510640, China;
| | - Fachuang Lu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Rd., Tianhe District, Guangzhou 510640, China;
- Guangdong Engineering Research Center for Green Fine Chemicals, Guangzhou 510640, China;
| |
Collapse
|
27
|
Compton DL, Appell M, Kenar JA, Evans KO. Enzymatic Synthesis and Flash Chromatography Separation of 1,3-Diferuloyl- sn-Glycerol and 1-Feruloyl- sn-Glycerol. Methods Protoc 2020; 3:E8. [PMID: 31963292 PMCID: PMC7189784 DOI: 10.3390/mps3010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 11/16/2022] Open
Abstract
Ethyl ferulate was transesterified with Enova Oil (a soy-based vegetable oil containing 80-85% diacylglycerol) using Novozym 435 at 60 °C. The resultant feruloylated vegetable oil reaction product produced a precipitate (96.4 g, 4.02 wt%) after 7 d of standing at room temperature. Preliminary characterization of the precipitate identified the natural phenylpropenoids 1,3-diferuloyl-sn-glycerol (F2G) and 1-feruloyl-sn-glycerol (FG) as the major components. A flash chromatography method was developed and optimized (e.g., mass of sample load, flow rate, binary solvent gradient slope, and separation run length) using a binary gradient of hexane and acetone mobile phase and silica gel stationary phase to separate and isolate F2G and FG. The optimized parameters afforded F2G (1.188 ± 0.052 g, 39.6 ± 1.7%) and FG (0.313 ± 0.038 g, 10.4 ± 1.3%) from 3.0 g of the transesterification precipitate, n = 10 trials. Overall, all flash chromatography separations combined, F2G (39.1 g, 40.6%) and FG (9.4 g, 9.8%) were isolated in a combined yield of 48.5 g (51.4%), relative to the 96.4 g of transesterification precipitate collected. The optimized flash chromatography method was a necessary improvement over previously reported preparative HPLC and column chromatography methods used to purify milligram to low gram quantities of F2G and FG to be able to process ~100 g of material in a timely, efficient manner.
Collapse
Affiliation(s)
- David L. Compton
- Renewable Product Technology Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University Street, Peoria, IL 61604, USA;
| | - Michael Appell
- Mycotoxin Prevention and Applied Microbiology, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University Street, Peoria, IL 61604, USA;
| | - James A. Kenar
- Functional Foods Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604, USA;
| | - Kervin O. Evans
- Renewable Product Technology Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University Street, Peoria, IL 61604, USA;
| |
Collapse
|
28
|
Feruloylated Arabinoxylans from Maize Distiller’s Dried Grains with Solubles: Effect of Feruloyl Esterase on their Macromolecular Characteristics, Gelling, and Antioxidant Properties. SUSTAINABILITY 2019. [DOI: 10.3390/su11226449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Distiller’s dried grains with solubles (DDGS) are co-products of the maize ethanol industry. DDGS contains feruloylated arabinoxylans (AXs), which can present gelling, antioxidant, and health-promoting effects. However, AXs presenting high ferulic acid (FA) content can exhibit delayed fermentation by the colonic microbiota. Therefore, partial deferuloylation of AXs from DDGS while preserving the polysaccharide gelling and antioxidant properties could add value and favor the sustainable development of bioethanol plants. The aim of this work was to partially deferuloylated AXs from DDGS using feruloyl esterase and to evaluate the polysaccharide macromolecular characteristics, gelling, and antioxidant properties. The AXs presented FA and FA dimer contents of 3.27 and 0.30 µg/mg polysaccharide, respectively, which decreased to 1.26 and 0.20 µg/mg polysaccharide, respectively, in feruloyl esterase-treated AXs (FAXs). The molecular weight and intrinsic viscosity of FAXs were slightly less than those of AXs. The Fourier transform infrared spectroscopy data of AXs and FAXs were similar, confirming that the enzyme did not modify the polysaccharide molecular identity. FAX gels (2% w/v) exhibited a decrease in elasticity by 43% in relation to that of AXs gels. The antioxidant capacity of FAXs was reduced by 32% and 43% (DPPH and ABTS method, respectively), compared with that of AXs. The FAX gelling and antioxidant properties were -comparable to those reported for other AXs in the literature. Feruloyl esterase may offer an interesting approach for the design of functional FAXs as value-added products recovered from DDGS.
Collapse
|
29
|
Buravlev EV, Dvornikova IA, Schevchenko OG, Kutchin AV. Synthesis and Antioxidant Ability of Novel Derivatives Based on
para
‐Coumaric Acid Containing Isobornyl Groups. Chem Biodivers 2019; 16:e1900362. [DOI: 10.1002/cbdv.201900362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/10/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Evgeny V. Buravlev
- Institute of Chemistry, Komi Scientific CenterUral Branch of the Russian Academy of Sciences, 48 Pervomayskaya St. 167000 Syktyvkar, Komi Republic Russian Federation
| | - Irina A. Dvornikova
- Institute of Chemistry, Komi Scientific CenterUral Branch of the Russian Academy of Sciences, 48 Pervomayskaya St. 167000 Syktyvkar, Komi Republic Russian Federation
| | - Oksana G. Schevchenko
- Institute of Biology, Komi Scientific CenterUral Branch of the Russian Academy of Sciences, 28 Kommunisticheskaya St. 167982 Syktyvkar, Komi Republic Russian Federation
| | - Aleksandr V. Kutchin
- Institute of Chemistry, Komi Scientific CenterUral Branch of the Russian Academy of Sciences, 48 Pervomayskaya St. 167000 Syktyvkar, Komi Republic Russian Federation
| |
Collapse
|
30
|
Neelam, Khatkar A, Sharma KK. Phenylpropanoids and its derivatives: biological activities and its role in food, pharmaceutical and cosmetic industries. Crit Rev Food Sci Nutr 2019; 60:2655-2675. [PMID: 31456411 DOI: 10.1080/10408398.2019.1653822] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phenylpropanoids and their derivatives are plant secondary metabolites widely present in fruits, vegetables, cereal grains, beverages, spices and herbs. They are known to have multifaceted effects which include antimicrobial, antioxidant, anti-inflammatory, antidiabetic, anticancer activities and as well as exhibits renoprotective, neuroprotective, cardioprotective and hepatoprotective effects. Owing to their antioxidant, antimicrobial and photoprotective properties, these compounds have wide application in the food (preservation, packaging films and edible coating), pharmaceutical, cosmetic and other industries such as textile (colorant), biofuel (antioxidant additive) and sensors (sensing biologically relevant molecules). Phenylpropanoids are present in commercially available dietary supplements and skin care products. In this review, we have presented the current knowledge on the biosynthesis, occurrence, biological activities of phenylpropanoids and their derivatives, along with the mechanism of action and their potential applications in various industries.
Collapse
Affiliation(s)
- Neelam
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Anurag Khatkar
- Department of Pharmaceutical sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Krishna Kant Sharma
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
31
|
Influence of carboxymethylation on the gelling capacity, rheological properties, and antioxidant activity of feruloylated arabinoxylans from different sources. J Appl Polym Sci 2019. [DOI: 10.1002/app.48325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
A stoichio-kinetic model for a DPPH∙ -ferulic acid reaction. Talanta 2019; 196:284-292. [DOI: 10.1016/j.talanta.2018.12.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 11/20/2022]
|
33
|
Li Y, Guo S, Zhu Y, Yan H, Qian DW, Wang HQ, Yu JQ, Duan JA. Flowers of Astragalus membranaceus var. mongholicus as a Novel High Potential By-Product: Phytochemical Characterization and Antioxidant Activity. Molecules 2019; 24:molecules24030434. [PMID: 30691074 PMCID: PMC6384981 DOI: 10.3390/molecules24030434] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 01/19/2023] Open
Abstract
The root of Astragalus membranaceus var. mongholicus is one of the most popular herbal medicines worldwide. In order to increase the yield of underground roots of A.membranaceus var. mongholicus, its flowers (AMF) have often been removed in their flowering stage, which produces the flowers as waste being discarded. To explore its phytochemicals and potential value for utilization, the antioxidant activities of extracts from AMF were evaluated by a free radical scavenging assay and reducing power assay. The total phenols and flavonoids, as well as the individual compounds, in different extracts of AMF were also investigated. The results showed that the extract ME obtained from AMF through macroporous resins separation exhibited strong antioxidant activities, which were close to those of positive control BHT. ME was rich in phenolic acids and flavonoids, and the contents reached 108.42 mg gallic acid equivalents/g and 265.70 mg rutin equivalents/g, respectively. A total of 31 compounds, including four phenolic acids, nineteen flavonoids, three isoflavones, two pterocarpans, and three saponins, were identified using UPLC-QTOF-MS in ME. Quantitative analysis of sixteen components in the extracts of AMF showed that flavonoids were the predominant constituents, especially for the compounds of hyperoside, rutin, and isorhamnetin-3-O-β-d-glucoside.
Collapse
Affiliation(s)
- Yuan Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yue Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Han-Qing Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750021, China.
| | - Jian-Qiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750021, China.
| | - Jin-Ao Duan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750021, China.
| |
Collapse
|
34
|
Ye S, Zhu Z, Wen Y, Su C, Jiang L, He S, Shao W. Facile and Green Preparation of Pectin/Cellulose Composite Films with Enhanced Antibacterial and Antioxidant Behaviors. Polymers (Basel) 2019; 11:E57. [PMID: 30960041 PMCID: PMC6401856 DOI: 10.3390/polym11010057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 02/02/2023] Open
Abstract
Novel bioactive films based on pectin and cellulose (PC) with different loadings of tea polyphenols and cinnamaldehyde were successfully prepared. A thermal stability was tested, and the results showed that the thermal stability decreased slightly after loading with cinnamaldehyde and tea polyphenols, compared to PC films. The antimicrobial and antioxidant capacities were also investigated. Results showed that PC composite films had good DPPH radical and hydroxyl radical scavenging activities and excellent antibacterial activities against Escherichia coli, Candida albicans and Staphylococcus aureus. Based on the results, the great antioxidant and antibacterial activities of the tea polyphenol and cinnamaldehyde loaded PC films make them suitable for food packaging and preservation.
Collapse
Affiliation(s)
- Shan Ye
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
- Jiangsu Key Lab for the Chemistry and Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China.
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhongjie Zhu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yanyi Wen
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Chen Su
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Lei Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shu He
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Wei Shao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
- Jiangsu Key Lab for the Chemistry and Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China.
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
35
|
Sánchez-Carvajal AL, Alatorre-Santamaría S, Valerio-Alfaro G, Hérnández-Vázquez L, Navarro-Ocaña A. Waste residues from Opuntia ficus indica for peroxidase-mediated preparation of phenolic dimeric compounds. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2018; 20:e00291. [PMID: 30568885 PMCID: PMC6288046 DOI: 10.1016/j.btre.2018.e00291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/18/2018] [Accepted: 11/01/2018] [Indexed: 11/25/2022]
Abstract
A methodology to detect peroxidase activity in Opuntia ficus indica cladodes waste extracts was performed and then used towards phenolic compounds. The extracts were able to dimerize three different molecules. Dimeric compounds were produced with yields ranging from 11% to 55%. The influence of H2O2 concentration was also tested, finding better yields when the peroxide-to-substrate ratio was 1:1. Some water-miscible solvents were used trying to increase overall yields, but no-significant positive results were found. In fact, one of them, THF, seemed to inhibit dimerization reaction. Hence, we have tested an alternative natural peroxidase source obtained from the wastes of a local highly-consumed vegetable and studied their enzymatic activity towards the preparation of biologically active, valuable compounds.
Collapse
Affiliation(s)
| | | | - Gerardo Valerio-Alfaro
- UNIDA, Instituto Tecnológico de Veracruz, 2779 Miguel A. de Quevedo Ave., Veracruz, 91897, Mexico
| | | | - Arturo Navarro-Ocaña
- Food and Biotechnology Department,Chemistry Faculty, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, 04510, Mexico
| |
Collapse
|
36
|
Angelica Stem: A Potential Low-Cost Source of Bioactive Phthalides and Phytosterols. Molecules 2018; 23:molecules23123065. [PMID: 30477097 PMCID: PMC6321507 DOI: 10.3390/molecules23123065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 12/31/2022] Open
Abstract
Chinese Angelica is a significant medical plant due to the various therapeutic constituents in its root; whereas the aerial part is considered worthless and often discarded as agricultural waste. In this work, phytochemicals from the stem were first systematically analyzed by means of GC–MS after derivatization and HPLC–MS/MS in multiple reaction monitoring (MRM) mode. Phthalides, ferulic acid, and coniferyl ferulate were detected in the stem; although their content is relatively low in comparison with the root. Some specific compounds, such as p-hydroxybenzoic acid, vanillic acid, protocatechuic acid, caffeic acid, 4-hydroxyphenyl-1, 2-ethanediol, thymol-β-d-glucopyranoside, etc. and a significant amount of phytosterols (1.36 mg/g stem, mainly β-sitosterol) were detected in the stem. The extracted oil from the stem contained a considerable amount of phthalides (48.5 mg/g), β-sitosterol (56.21 mg/g), and stigmasterol (14.03 mg/g); no other bioactive compounds were found that could be potentially used as pharmaceuticals or additives to healthcare food.
Collapse
|