1
|
Berzal G, García-García P, Señoráns FJ. Integrated Process for Schizochytrium Oil Extraction, Enzymatic Modification of Lipids and Concentration of DHA Fatty Acid Esters Using Alternative Methodologies. Mar Drugs 2024; 22:146. [PMID: 38667763 PMCID: PMC11051022 DOI: 10.3390/md22040146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Marine microalgae Schizochytrium sp. have a high content of docosahexaenoic acid (DHA), an omega-3 fatty acid that is attracting interest since it prevents certain neurodegenerative diseases. The obtention of a bioactive and purified DHA fatty acid ester using a whole-integrated process in which renewable sources and alternative methodologies are employed is the aim of this study. For this reason, lyophilized Schizochytrium biomass was used as an alternative to fish oil, and advanced extraction techniques as well as enzymatic modification were studied. Microalgal oil extraction was optimized via a surface-response method using pressurized liquid extraction (PLE) obtaining high oil yields (29.06 ± 0.12%) with a high concentration of DHA (51.15 ± 0.72%). Then, the enzymatic modification of Schizochytrium oil was developed by ethanolysis using immobilized Candida antarctica B lipase (Novozym® 435) at two reaction temperatures and different enzymatic loads. The best condition (40 °C and 200 mg of lipase) produced the highest yield of fatty acid ethyl ester (FAEE) (100%) after 8 h of a reaction attaining a cost-effective and alternative process. Finally, an enriched and purified fraction containing DHA-FAEE was obtained using open-column chromatography with a remarkably high concentration of 93.2 ± 1.3% DHA. The purified and bioactive molecules obtained in this study can be used as nutraceutical and active pharmaceutical intermediates of marine origin.
Collapse
Affiliation(s)
| | | | - Francisco Javier Señoráns
- Healthy-Lipids Group, Food Science Department, Faculty of Sciences, Universidad Autónoma de Madrid, Francisco Tomás y Valiente, 7, 28049 Madrid, Spain; (G.B.); (P.G.-G.)
| |
Collapse
|
2
|
Lima PJM, da Silva RM, Neto CACG, Gomes E Silva NC, Souza JEDS, Nunes YL, Sousa Dos Santos JC. An overview on the conversion of glycerol to value-added industrial products via chemical and biochemical routes. Biotechnol Appl Biochem 2022; 69:2794-2818. [PMID: 33481298 DOI: 10.1002/bab.2098] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/31/2020] [Indexed: 12/27/2022]
Abstract
Glycerol is a common by-product of industrial biodiesel syntheses. Due to its properties, availability, and versatility, residual glycerol can be used as a raw material in the production of high value-added industrial inputs and outputs. In particular, products like hydrogen, propylene glycol, acrolein, epichlorohydrin, dioxalane and dioxane, glycerol carbonate, n-butanol, citric acid, ethanol, butanol, propionic acid, (mono-, di-, and triacylglycerols), cynamoil esters, glycerol acetate, benzoic acid, and other applications. In this context, the present study presents a critical evaluation of the innovative technologies based on the use of residual glycerol in different industries, including the pharmaceutical, textile, food, cosmetic, and energy sectors. Chemical and biochemical catalysts in the transformation of residual glycerol are explored, along with the factors to be considered regarding the choice of catalyst route used in the conversion process, aiming at improving the production of these industrial products.
Collapse
Affiliation(s)
- Paula Jéssyca Morais Lima
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil
| | - Rhonyele Maciel da Silva
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil
| | | | - Natan Câmara Gomes E Silva
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil
| | - José Erick da Silva Souza
- Instituto de Engenharias e Desenvolvimento Sustentável - IEDS, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE, Brazil
| | - Yale Luck Nunes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil
| | - José Cleiton Sousa Dos Santos
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil.,Instituto de Engenharias e Desenvolvimento Sustentável - IEDS, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE, Brazil
| |
Collapse
|
3
|
|
4
|
Castejón N, Luna P, Señoráns FJ. Microencapsulation by spray drying of omega-3 lipids extracted from oilseeds and microalgae: Effect on polyunsaturated fatty acid composition. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Castejón N, Señoráns FJ. Integrated Green and Enzymatic Process to Produce Omega‐3 Acylglycerols from
Echium plantagineum
Using Immobilized Lipases. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Natalia Castejón
- Healthy‐Lipids Group, Sección Departamental de Ciencias de la Alimentación, Faculty of Sciences Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Francisco Javier Señoráns
- Healthy‐Lipids Group, Sección Departamental de Ciencias de la Alimentación, Faculty of Sciences Universidad Autónoma de Madrid 28049 Madrid Spain
| |
Collapse
|
6
|
Fernandes SS, Bernardino JCC, Owen PQ, Prentice C, Salas‐Mellado MDLM, Segura‐Campos MR. Effect of the use of ethanol and chia mucilage on the obtainment and techno‐functional properties of chia oil nanoemulsions. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Sibele Santos Fernandes
- Laboratory of Food Technology, School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| | | | | | - Carlos Prentice
- Laboratory of Food Technology, School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| | | | - Maira Rubi Segura‐Campos
- Laboratory of Food Science, Faculty of Chemical Engineering Autonomous University of Yucatán Mérida Mexico
| |
Collapse
|
7
|
Taheri-Kafrani A, Kharazmi S, Nasrollahzadeh M, Soozanipour A, Ejeian F, Etedali P, Mansouri-Tehrani HA, Razmjou A, Yek SMG, Varma RS. Recent developments in enzyme immobilization technology for high-throughput processing in food industries. Crit Rev Food Sci Nutr 2020; 61:3160-3196. [PMID: 32715740 DOI: 10.1080/10408398.2020.1793726] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The demand for food and beverage markets has increased as a result of population increase and in view of health awareness. The quality of products from food processing industry has to be improved economically by incorporating greener methodologies that enhances the safety and shelf life via the enzymes application while maintaining the essential nutritional qualities. The utilization of enzymes is rendered more favorable in industrial practices via the modification of their characteristics as attested by studies on enzyme immobilization pertaining to different stages of food and beverage processing; these studies have enhanced the catalytic activity, stability of enzymes and lowered the overall cost. However, the harsh conditions of industrial processes continue to increase the propensity of enzyme destabilization thus shortening their industrial lifespan namely enzyme leaching, recoverability, uncontrollable orientation and the lack of a general procedure. Innovative studies have strived to provide new tools and materials for the development of systems offering new possibilities for industrial applications of enzymes. Herein, an effort has been made to present up-to-date developments on enzyme immobilization and current challenges in the food and beverage industries in terms of enhancing the enzyme stability.
Collapse
Affiliation(s)
- Asghar Taheri-Kafrani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sara Kharazmi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Asieh Soozanipour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Ejeian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Parisa Etedali
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Amir Razmjou
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Samaneh Mahmoudi-Gom Yek
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran.,Department of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
8
|
Dulęba J, Siódmiak T, Marszałł MP. Amano Lipase PS from Burkholderia cepacia- Evaluation of the Effect of Substrates and Reaction Media on the Catalytic Activity. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200408092305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
:
Lipases in the native or immobilized form have commonly been used as catalysts
in the chemical and pharmaceutical industry. One of the widely available enzyme
catalysts on the market is lipase from Burkholderia cepacia (BCLs), previously called
Pseudomonas cepacia (PCLs). This enzyme is applied, among others, in the stereoselective
acylation of molecules to achieve chiral pure enantiomers of drugs or their building
blocks. In this study, Amano lipase PS (APS-BCL), which is a commercial lipase from
Burkholderia cepacia (BC) was tested. The lipolytic activity of APS-BCL by hydrolysis
of vegetable oils and enantioselective activity of APS-BCL by the kinetic resolution of
(R,S)-1-phenylethanol with using isopropenyl acetate as an acyl donor were evaluated. An
effect of reaction media with different logP values (t-butyl methyl ether, dichloromethane,
diisopropyl ether, toluene, cyclohexane, n-hexane, isooctane and n-heptane) on the enantioselective activity of
lipase was also studied. The high value of the enantiomeric ratio (E =308.5) with the utilization of isopropenyl
acetate was achieved. Whereas, the best reaction medium turned out to be diisopropyl ether, C =47.9%, eep
=98%, ees =90%, after 24 h of incubation. Moreover, the influence of ω6/ω9 polyunsaturated fatty acids (PUFAs)
ratio in commercial (peanut, camelina, rape, pumpkin seed, walnut, sesame, avocado, rice, corn, black
cumin, hemp, safflower, grape seed) oils was investigated for the lipase activity. For the first time, the cut-off
limit of ω6/ω9 ratio was proposed. The ratio equal to or higher than 2.3 allows achieving higher lipolytic activity.
Collapse
Affiliation(s)
- Jacek Dulęba
- Department of Medicinal Chemistry, Collegium Medicum in Bydgoszcz, Faculty of Pharmacy, Nicolaus Copernicus University in Torun, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Tomasz Siódmiak
- Department of Medicinal Chemistry, Collegium Medicum in Bydgoszcz, Faculty of Pharmacy, Nicolaus Copernicus University in Torun, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Michał Piotr Marszałł
- Department of Medicinal Chemistry, Collegium Medicum in Bydgoszcz, Faculty of Pharmacy, Nicolaus Copernicus University in Torun, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
9
|
Coelho ALS, Orlandelli RC. Immobilized microbial lipases in the food industry: a systematic literature review. Crit Rev Food Sci Nutr 2020; 61:1689-1703. [PMID: 32423294 DOI: 10.1080/10408398.2020.1764489] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Several studies describe the immobilization of microbial lipases aiming to evaluate the mechanical/thermal stability of the support/enzyme system, the appropriate method for immobilization, acid and alkaline stability, tolerance to organic solvents and specificity of fatty acids. However, literature reviews focus on application of enzyme/support system in food technology remains scarce. This current systematic literature review aimed to identify, evaluate and interpret available and relevant researches addressing the type of support and immobilization techniques employed over lipases, in order to obtain products for food industry. Fourteen selected articles were used to structure the systematic review, in which the discussion was based on six main groups: (i) synthesis/enrichment of polyunsaturated fatty acids; (ii) synthesis of structured lipids; (iii) flavors and food coloring; (iv) additives, antioxidants and antimicrobials; (v) synthesis of phytosterol esters and (vi) synthesis of sugar esters. In general, the studies discussed the synthesis of the enzyme/support system and the characteristics: surface area, mass transfer resistance, activity, stability (pH and temperature), and recyclability. Each immobilization technique is applicable for a specific production, depending mainly on the sensitivity and cost of the process.
Collapse
Affiliation(s)
- Ana Letícia Silva Coelho
- Specialization course in Biotechnology and Bioprocesses, Graduate Program in Environmental Biotechnology, Universidade Estadual de Maringá, Maringá, PR, Brazil.,Department of Chemical Engineering and Food Engineering, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Ravely Casarotti Orlandelli
- Specialization course in Biotechnology and Bioprocesses, Graduate Program in Environmental Biotechnology, Universidade Estadual de Maringá, Maringá, PR, Brazil.,Center of Humanities and Education Sciences, College of Biological Sciences, Universidade Estadual do Paraná, Paranavaí, PR, Brazil
| |
Collapse
|
10
|
Optimization of the Production of Enzymatic Biodiesel from Residual Babassu Oil (Orbignya sp.) via RSM. Catalysts 2020. [DOI: 10.3390/catal10040414] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Residual oil from babassu (Orbignya sp.), a low-cost raw material, was used in the enzymatic esterification for biodiesel production, using lipase B from Candida antarctica (Novozym® 435) and ethanol. For the first time in the literature, residual babassu oil and Novozym® 435 are being investigated to obtain biodiesel. In this communication, response surface methodology (RSM) and a central composite design (CCD) were used to optimize the esterification and study the effects of four factors (molar ratio (1:1–1:16, free fatty acids (FFAs) /alcohol), temperature (30–50 °C), biocatalyst content (0.05–0.15 g) and reaction time (2–6 h)) in the conversion into fatty acid ethyl esters. Under optimized conditions (1:18 molar ratio (FFAs/alcohol), 0.14 g of Novozym® 435, 48 °C and 4 h), the conversion into ethyl esters was 96.8%. It was found that after 10 consecutive cycles of esterification under optimal conditions, Novozym® 435 showed a maximum loss of activity of 5.8%, suggesting a very small change in the support/enzyme ratio proved by Fourier Transform Infrared (FTIR) spectroscopy and insignificant changes in the surface of Novozym® 435 proved by scanning electron microscopy (SEM) after the 10 consecutive cycles of esterification.
Collapse
|
11
|
Castejón N, Señoráns FJ. Enzymatic modification to produce health-promoting lipids from fish oil, algae and other new omega-3 sources: A review. N Biotechnol 2020; 57:45-54. [PMID: 32224214 DOI: 10.1016/j.nbt.2020.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 01/23/2023]
Abstract
Lipases are a versatile class of enzymes that have aroused great interest in the food and pharmaceutical industries due to their ability to modify and synthesize new lipids for functional foods. Omega-3 polyunsaturated fatty acids (omega-3 PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have shown important biological functions promoting human health, especially in the development and maintenance of brain function and vision. Lipases allow selective production of functional lipids enriched in omega-3 PUFAs and are unique enzymatic tools to improve the natural composition of lipids and provide specific bioactivities. This review comprises recent research trends on the enzymatic production of bioactive, structured lipids with improved nutritional characteristics, using new enzymatic processing technologies in combination with novel raw materials, including microalgal lipids and new seed oils high in omega-3 fatty acids. An extensive number of lipase applications in the synthesis of health-promoting lipids enriched in omega-3 fatty acids by enzymatic modification is reviewed, considering the main advances in recent years for production of ethyl esters, 2-monoacylglycerols and structured triglycerides and phospholipids with omega-3 fatty acids, in order to achieve bioactive lipids as new foods and drugs.
Collapse
Affiliation(s)
- Natalia Castejón
- Healthy-Lipids Group, Sección Departamental de Ciencias de la Alimentación, Faculty of Sciences, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Francisco J Señoráns
- Healthy-Lipids Group, Sección Departamental de Ciencias de la Alimentación, Faculty of Sciences, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
12
|
Wang H, Duan B, Li H, Li S, Lu Y, Liu Z, Su W. PEGylation and macroporous carrier adsorption enabled long-term enzymatic transesterification. NEW J CHEM 2020. [DOI: 10.1039/c9nj05265h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel enzyme catalyst with excellent stability and catalytic efficiency expected to be used in the ERD industry was prepared.
Collapse
Affiliation(s)
- Honghai Wang
- School of Chemical Engineering
- Hebei University of Technology
- Tianjin 300130
- China
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization
| | - Baoxuan Duan
- School of Chemical Engineering
- Hebei University of Technology
- Tianjin 300130
- China
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization
| | - Hao Li
- School of Chemical Engineering
- Hebei University of Technology
- Tianjin 300130
- China
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization
| | - Shihao Li
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yifan Lu
- School of Chemical Engineering
- Hebei University of Technology
- Tianjin 300130
- China
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization
| | - Zhiling Liu
- School of Chemical Engineering
- Hebei University of Technology
- Tianjin 300130
- China
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization
| | - Weiyi Su
- School of Chemical Engineering
- Hebei University of Technology
- Tianjin 300130
- China
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization
| |
Collapse
|
13
|
Knez Hrnčič M, Ivanovski M, Cör D, Knez Ž. Chia Seeds ( Salvia hispanica L.): An Overview-Phytochemical Profile, Isolation Methods, and Application. Molecules 2019; 25:E11. [PMID: 31861466 PMCID: PMC6994964 DOI: 10.3390/molecules25010011] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 11/16/2022] Open
Abstract
Chia (Salvia hispanica L.) is a small seed that comes from an annual herbaceous plant, Salvia hispanica L. In recent years, usage of Chia seeds has tremendously grown due to their high nutritional and medicinal values. Chia was cultivated by Mesopotamian cultures, but then disappeared for centuries until the middle of the 20th century, when it was rediscovered. Chia seeds contain healthy ω-3 fatty acids, polyunsaturated fatty acids, dietary fiber, proteins, vitamins, and some minerals. Besides this, the seeds are an excellent source of polyphenols and antioxidants, such as caffeic acid, rosmarinic acid, myricetin, quercetin, and others. Today, chia has been analyzed in different areas of research. Researches around the world have been investigating the benefits of chia seeds in the medicinal, pharmaceutical, and food industry. Chia oil is today one of the most valuable oils on the market. Different extraction methods have been used to produce the oil. In the present study, an extensive overview of the chemical composition, nutritional properties, and antioxidant and antimicrobial activities, along with extraction methods used to produce chia oil, will be discussed.
Collapse
Affiliation(s)
- Maša Knez Hrnčič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (M.I.); (D.C.)
| | - Maja Ivanovski
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (M.I.); (D.C.)
| | - Darija Cör
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (M.I.); (D.C.)
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (M.I.); (D.C.)
- Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| |
Collapse
|