1
|
Lee I, Kim HY. Lab-on-a-Chip Devices for Nucleic Acid Analysis in Food Safety. MICROMACHINES 2024; 15:1524. [PMID: 39770277 PMCID: PMC11677256 DOI: 10.3390/mi15121524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Lab-on-a-chip (LOC) devices have been developed for nucleic acid analysis by integrating complex laboratory functions onto a miniaturized chip, enabling rapid, cost-effective, and highly sensitive on-site testing. This review examines the application of LOC technology in food safety, specifically in the context of nucleic acid-based analyses for detecting pathogens and contaminants. We focus on microfluidic-based LOC devices that optimize nucleic acid extraction and purification on the chip or amplification and detection processes based on isothermal amplification and polymerase chain reaction. We also explore advancements in integrated LOC devices that combine nucleic acid extraction, amplification, and detection processes within a single chip to minimize sample preparation time and enhance testing accuracy. The review concludes with insights into future trends, particularly the development of portable LOC technologies for rapid and efficient nucleic acid testing in food safety.
Collapse
Affiliation(s)
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea;
| |
Collapse
|
2
|
Wang Y, Yang F, Fu Y, He X, Tian H, Yang L, Wu M, Cao J, Liu J. A point-of-care testing platform for on-site identification of genetically modified crops. LAB ON A CHIP 2024; 24:2622-2632. [PMID: 38644672 DOI: 10.1039/d4lc00040d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Genetically modified (GM) food is still highly controversial nowadays. Due to the disparate policies and attitudes worldwide, demands for a rapid, cost-effective and user-friendly GM crop identification method are increasingly significant for import administration, market supervision, etc. However, as the most-recognized methods, nucleic acid-based identification approaches require bulky instruments, long turn-around times and trained personnel, which are only suitable in laboratories. To fulfil the urgent needs of on-site testing, we develop a point-of-care testing platform that is able to identify 12 types of GM crops in less than 40 minutes without using laboratory settings. Our system integrates sample pre-treatment modules in a microfluidic chip, performs DNA amplification via a battery-powered portable kit, and presents results via eye-recognized colorimetric change. A paraffin-based reflow method and a slip plate-based fluid switch are developed to encapsulate and release amplification primers in individual microwells on demand, thus enabling identification of varied targets simultaneously. Our system offers an efficient, affordable and convenient tool for GM crop identification, thus it will not only benefit customs and market administration bureaus, but also satisfy demands of numerous consumers.
Collapse
Affiliation(s)
- Yangyang Wang
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Furui Yang
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Yingyi Fu
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Xin He
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Haowei Tian
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Lili Yang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Mengxi Wu
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Junshan Liu
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning, 116024, China
| |
Collapse
|
3
|
Julius L, Saeed MM, Kuijpers T, Sandu S, Henihan G, Dreo T, Schoen CD, Mishra R, Dunne NJ, Carthy E, Ducrée J, Kinahan DJ. Low-High-Low Rotationally Pulse-Actuated Serial Dissolvable Film Valves Applied to Solid Phase Extraction and LAMP Isothermal Amplification for Plant Pathogen Detection on a Lab-on-a-Disc. ACS OMEGA 2024; 9:3262-3275. [PMID: 38284094 PMCID: PMC10809376 DOI: 10.1021/acsomega.3c05117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024]
Abstract
The ability of the centrifugal Lab-on-a-Disc (LoaD) platform to closely mimic the "on bench" liquid handling steps (laboratory unit operations (LUOs)) such as metering, mixing, and aliquoting supports on-disc automation of bioassay without the need for extensive biological optimization. Thus, well-established bioassays, normally conducted manually using pipettes or using liquid handling robots, can be relatively easily automated in self-contained microfluidic chips suitable for use in point-of-care or point-of-use settings. The LoaD's ease of automation is largely dependent on valves that can control liquid movement on the rotating disc. The optimum valving strategy for a true low-cost and portable device is rotationally actuated valves, which are actuated by changes in the disc spin-speed. However, due to tolerances in disc manufacturing and variations in reagent properties, most of these valving technologies have inherent variation in their actuation spin-speed. Most valves are actuated through stepped increases in disc spin-speed until the motor reaches its maximum speed (rarely more than 6000 rpm). These manufacturing tolerances combined with this "analogue" mechanism of valve actuation limits the number of LUOs that can be placed on-disc. In this work, we present a novel valving mechanism called low-high-low serial dissolvable film (DF) valves. In these valves, a DF membrane is placed in a dead-end pneumatic chamber. Below an actuation spin-speed, the trapped air prevents liquid wetting and dissolving the membrane. Above this spin-speed, the liquid will enter and wet the DF and open the valve. However, as DFs take ∼40 s to dissolve, the membrane can be wetted, and the disc spin-speed reduced before the film opens. Thus, by placing valves in a series, we can govern on which "digital pulse" in spin-speeding a reagent is released; a reservoir with one serial valve will open on the first pulse, a reservoir with two serial valves on the second, and so on. This "digital" flow control mechanism allows the automation of complex assays with high reliability. In this work, we first describe the operation of the valves, outline the theoretical basis for their operation, and support this analysis with an experiment. Next, we demonstrate how these valves can be used to automate the solid-phase extraction of DNA on on-disc LAMP amplification for applications in plant pathogen detection. The disc was successfully used to extract and detect, from a sample lysed off-disc, DNA indicating the presence of thermally inactivated Clavibacter michiganensis ssp. michiganensis (Cmm), a bacterial pathogen on tomato leaf samples.
Collapse
Affiliation(s)
- Lourdes
AN Julius
- Fraunhofer
Project Centre at Dublin City University, Dublin City University, Glasnevin D09 V209, Dublin, Ireland
- School
of Physical Sciences, Dublin City University, Dublin D09 V209, Ireland
- National
Centre for Sensor Research (NCSR), Dublin
City University, Dublin D09 V209, Ireland
| | - Muhammad Mubashar Saeed
- Biodesign
Europe, Dublin City University, Dublin D09 V209, Ireland
- School
of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin D09 V209, Dublin, Ireland
- SFI Centre
for Research Training in Machine Learning (ML-Laboratories), Dublin City University, Dublin D09 V209, Ireland
| | - Tim Kuijpers
- Biodesign
Europe, Dublin City University, Dublin D09 V209, Ireland
- School
of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin D09 V209, Dublin, Ireland
| | - Sergei Sandu
- Biodesign
Europe, Dublin City University, Dublin D09 V209, Ireland
- School
of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin D09 V209, Dublin, Ireland
| | - Grace Henihan
- Fraunhofer
Project Centre at Dublin City University, Dublin City University, Glasnevin D09 V209, Dublin, Ireland
- School
of Physical Sciences, Dublin City University, Dublin D09 V209, Ireland
- National
Centre for Sensor Research (NCSR), Dublin
City University, Dublin D09 V209, Ireland
| | - Tanja Dreo
- National
Institute of Biology, 1000 Ljubljana, Slovenia
| | - Cor D Schoen
- Wageningen
University and Research, 6708 PB Wageningen, The Netherlands
| | - Rohit Mishra
- Fraunhofer
Project Centre at Dublin City University, Dublin City University, Glasnevin D09 V209, Dublin, Ireland
- School
of Physical Sciences, Dublin City University, Dublin D09 V209, Ireland
- National
Centre for Sensor Research (NCSR), Dublin
City University, Dublin D09 V209, Ireland
| | - Nicholas J Dunne
- Biodesign
Europe, Dublin City University, Dublin D09 V209, Ireland
- School
of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin D09 V209, Dublin, Ireland
| | - Eadaoin Carthy
- National
Centre for Sensor Research (NCSR), Dublin
City University, Dublin D09 V209, Ireland
- Biodesign
Europe, Dublin City University, Dublin D09 V209, Ireland
- School
of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin D09 V209, Dublin, Ireland
| | - Jens Ducrée
- School
of Physical Sciences, Dublin City University, Dublin D09 V209, Ireland
- National
Centre for Sensor Research (NCSR), Dublin
City University, Dublin D09 V209, Ireland
- Biodesign
Europe, Dublin City University, Dublin D09 V209, Ireland
| | - David J Kinahan
- National
Centre for Sensor Research (NCSR), Dublin
City University, Dublin D09 V209, Ireland
- Biodesign
Europe, Dublin City University, Dublin D09 V209, Ireland
- School
of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin D09 V209, Dublin, Ireland
| |
Collapse
|
4
|
Zhang W, Cui L, Wang Y, Xie Z, Wei Y, Zhu S, Nawaz M, Mak WC, Ho HP, Gu D, Zeng S. An Integrated ddPCR Lab-on-a-Disc Device for Rapid Screening of Infectious Diseases. BIOSENSORS 2023; 14:2. [PMID: 38275303 PMCID: PMC10813669 DOI: 10.3390/bios14010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024]
Abstract
Digital droplet PCR (ddPCR) is a powerful amplification technique for absolute quantification of viral nucleic acids. Although commercial ddPCR devices are effective in the lab bench tests, they cannot meet current urgent requirements for on-site and rapid screening for patients. Here, we have developed a portable and fully integrated lab-on-a-disc (LOAD) device for quantitively screening infectious disease agents. Our designed LOAD device has integrated (i) microfluidics chips, (ii) a transparent circulating oil-based heat exchanger, and (iii) an on-disc transmitted-light fluorescent imaging system into one compact and portable box. Thus, droplet generation, PCR thermocycling, and analysis can be achieved in a single LOAD device. This feature is a significant attribute for the current clinical application of disease screening. For this custom-built ddPCR setup, we have first demonstrated the loading and ddPCR amplification ability by using influenza A virus-specific DNA fragments with different concentrations (diluted from the original concentration to 107 times), followed by analyzing the droplets with an external fluorescence microscope as a standard calibration test. The measured DNA concentration is linearly related to the gradient-dilution factor, which validated the precise quantification for the samples. In addition to the calibration tests using DNA fragments, we also employed this ddPCR-LOAD device for clinical samples with different viruses. Infectious samples containing five different viruses, including influenza A virus (IAV), respiratory syncytial virus (RSV), varicella zoster virus (VZV), Zika virus (ZIKV), and adenovirus (ADV), were injected into the device, followed by analyzing the droplets with an external fluorescence microscope with the lowest detected concentration of 20.24 copies/µL. Finally, we demonstrated the proof-of-concept detection of clinical samples of IAV using the on-disc fluorescence imaging system in our fully integrated device, which proves the capability of this device in clinical sample detection. We anticipate that this integrated ddPCR-LOAD device will become a flexible tool for on-site disease detection.
Collapse
Grants
- GRF14204621, GRF14207920, GRF14207419, GRF14207121, N_CUHK407/16 Hong Kong Research Grants Council
- No.2021A1515220084, No. 2022B1111020001 the National Key Research and Development Program of China
- ZDSYS20210623092001003, GJHZ20200731095604013, JSGG20220301090003004, No. 201906133000069, No. SGLH20180625171602058, and JCYJ20200109120205924 Shenzhen Science and Technology Foundation
Collapse
Affiliation(s)
- Wanyi Zhang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China; (W.Z.); (Z.X.); (Y.W.); (S.Z.); (M.N.); (W.-C.M.)
| | - Lili Cui
- School of Public Health, Guangdong Medical University, Dongguan 523808, China;
- Laboratory Medicine, Shenzhen Key Laboratory of Medical Laboratory and Molecular Diagnostics, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China;
| | - Yuye Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Zhenming Xie
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China; (W.Z.); (Z.X.); (Y.W.); (S.Z.); (M.N.); (W.-C.M.)
| | - Yuanyuan Wei
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China; (W.Z.); (Z.X.); (Y.W.); (S.Z.); (M.N.); (W.-C.M.)
| | - Shaodi Zhu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China; (W.Z.); (Z.X.); (Y.W.); (S.Z.); (M.N.); (W.-C.M.)
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-EMR 7004, Université de Technologie de Troyes, 10000 Troyes, France
| | - Mehmood Nawaz
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China; (W.Z.); (Z.X.); (Y.W.); (S.Z.); (M.N.); (W.-C.M.)
| | - Wing-Cheung Mak
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China; (W.Z.); (Z.X.); (Y.W.); (S.Z.); (M.N.); (W.-C.M.)
| | - Ho-Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China; (W.Z.); (Z.X.); (Y.W.); (S.Z.); (M.N.); (W.-C.M.)
| | - Dayong Gu
- Laboratory Medicine, Shenzhen Key Laboratory of Medical Laboratory and Molecular Diagnostics, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China;
| | - Shuwen Zeng
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-EMR 7004, Université de Technologie de Troyes, 10000 Troyes, France
| |
Collapse
|
5
|
Liu CW, Tsutsui H. Sample-to-answer sensing technologies for nucleic acid preparation and detection in the field. SLAS Technol 2023; 28:302-323. [PMID: 37302751 DOI: 10.1016/j.slast.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Efficient sample preparation and accurate disease diagnosis under field conditions are of great importance for the early intervention of diseases in humans, animals, and plants. However, in-field preparation of high-quality nucleic acids from various specimens for downstream analyses, such as amplification and sequencing, is challenging. Thus, developing and adapting sample lysis and nucleic acid extraction protocols suitable for portable formats have drawn significant attention. Similarly, various nucleic acid amplification techniques and detection methods have also been explored. Combining these functions in an integrated platform has resulted in emergent sample-to-answer sensing systems that allow effective disease detection and analyses outside a laboratory. Such devices have a vast potential to improve healthcare in resource-limited settings, low-cost and distributed surveillance of diseases in food and agriculture industries, environmental monitoring, and defense against biological warfare and terrorism. This paper reviews recent advances in portable sample preparation technologies and facile detection methods that have been / or could be adopted into novel sample-to-answer devices. In addition, recent developments and challenges of commercial kits and devices targeting on-site diagnosis of various plant diseases are discussed.
Collapse
Affiliation(s)
- Chia-Wei Liu
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA
| | - Hideaki Tsutsui
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA; Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
6
|
Wang Y, Fu L, Tao D, Han X, Xu B, Deng M, Li S, Zhao C, Li X, Zhao S, Gong P, Yang Y, Khazalwa EM, Ma Y, Ruan J, Li C, Xie S. Development of a Naked Eye CRISPR-Cas12a and -Cas13a Multiplex Point-of-Care Detection of Genetically Modified Swine. ACS Synth Biol 2023; 12:2051-2060. [PMID: 37432138 DOI: 10.1021/acssynbio.3c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The Rapid Visual CRISPR (RAVI-CRISPR) assay employs Cas12a and Cas13a enzymes for precise gene detection in a sample. However, RAVI-CRISPR is limited in single-tube multiplex detection applications due to the lack of specific single-strand (ss) DNA-fluorescently quenched (ssDNA-FQ) and RNA-fluorescently quenched (ssRNA-FQ) reporter cleavage mechanisms. We report the development of a sensitive and specific dual-gene Cas12a and Cas13a diagnostic system. To optimize the application for field testing, we designed a portable multiplex fluorescence imaging assay that could distinguish test results with the naked eye. Herein, dual gene amplified products from multiplex recombinase polymerase amplification (RPA) were simultaneously detected in a single tube using Cas12a and Cas13a enzymes. The resulting orthogonal DNA and RNA collateral cleavage specifically distinguishes individual and mixed ssDNA-FQ and ssRNA-FQ reporters using the green-red-yellow, fluorescent signal conversion reaction system, detectable with portable blue and ultraviolet (UV) light transilluminators. As a proof-of-concept, reliable multiplex RAVI-CRISPR detection of genome-edited pigs was demonstrated, exhibiting 100% sensitivity and specificity for the analysis of CD163 knockout, lactoferrin (LF) knock-in, and wild-type pig samples. This portable naked-eye multiplex RAVI-CRISPR detection platform can provide accurate point-of-care screening of genetically modified animals and infectious diseases in resource-limited settings.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Lanting Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Dagang Tao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xiaosong Han
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Bingrong Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Manfei Deng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Sheng Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Changzhi Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Ping Gong
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan 430208, P. R. China
| | - Yu Yang
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan 430208, P. R. China
| | | | - Yunlong Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Jinxue Ruan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Changchun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
- Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, P. R. China
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan 430070, P. R. China
| |
Collapse
|
7
|
Ko CH, Liu CC, Huang KH, Fu LM. Finger pump microfluidic detection system for methylparaben detection in foods. Food Chem 2023; 407:135118. [PMID: 36493490 DOI: 10.1016/j.foodchem.2022.135118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/16/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
A novel assay platform consisting of a finger pump microchip (FPM) and a WiFi-based analytical detection platform is presented for measuring the concentration of methylparaben (MP) in commercial foods. In the presented approach, a low quantity (5 μL) of distilled food sample is dripped onto the FPM and undergoes a modified Fenton reaction at a temperature of 40 °C to form a green-colored complex. The MP concentration is then determined by measuring the color intensity (RGB) of the reaction complex using APP software (self-written) installed on a smartphone. The color intensity Red(R) + Green(G) value of the reaction complex is found to be linearly related (R2 = 0.9944) to the MP concentration for standard samples with different MP concentrations ranging from 100 to 3000 ppm. The proposed method is used to detect the MP concentrations of 12 real-world commercial foods. The MP concentrations measurements are found to deviate by no more than 5.88% from the results obtained using a conventional benchtop method. The presented platform thus offers a feasible and low-cost alternative to existing macroscale techniques for measuring the MP concentration in commercial foods.
Collapse
Affiliation(s)
- Chien-Hsuan Ko
- Department of Engineering Science, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chan-Chiung Liu
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Kuan-Hsun Huang
- Department of Engineering Science, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan, 70101, Taiwan; Graduate Institute of Materials Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan.
| |
Collapse
|
8
|
Mishra R, Julius LA, Condon J, Pavelskopfa P, Early PL, Dorrian M, Mrvova K, Henihan G, Mangwanya F, Dreo T, Ducrée J, Macdonald NP, Schoen C, Kinahan DJ. Plant pathogen detection on a lab-on-a-disc using solid-phase extraction and isothermal nucleic acid amplification enabled by digital pulse-actuated dissolvable film valves. Anal Chim Acta 2023; 1258:341070. [PMID: 37087288 DOI: 10.1016/j.aca.2023.341070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/21/2023]
Abstract
By virtue of its ruggedness, portability, rapid processing times, and ease-of-use, academic and commercial interest in centrifugal microfluidic systems has soared over the last decade. A key advantage of the LoaD platform is the ability to automate laboratory unit operations (LUOs) (mixing, metering, washing etc.) to support direct translation of 'on-bench' assays to 'on-chip'. Additionally, the LoaD requires just a low-cost spindle motor rather than specialized and expensive microfluidic pumps. Furthermore, when flow control (valves) is implemented through purely rotational changes in this same spindle motor (rather than using additional support instrumentation), the LoaD offers the potential to be a truly portable, low-cost and accessible platform. Current rotationally controlled valves are typically opened by sequentially increasing the disc spin-rate to a specific opening frequency. However, due lack of manufacturing fidelity these specific opening frequencies are better described as spin frequency 'bands'. With low-cost motors typically having a maximum spin-rate of 6000 rpm (100 Hz), using this 'analogue' approach places a limitation on the number of valves, which can be serially actuated thus limiting the number of LUOs that can be automated. In this work, a novel flow control scheme is presented where the sequence of valve actuation is determined by architecture of the disc while its timing is governed by freely programmable 'digital' pulses in its spin profile. This paradigm shift to 'digital' flow control enables automation of multi-step assays with high reliability, with full temporal control, and with the number of LUOs theoretically only limited by available space on the disc. We first describe the operational principle of these valves followed by a demonstration of the capability of these valves to automate complex assays by screening tomato leaf samples against plant pathogens. Reagents and lysed sample are loaded on-disc and then, in a fully autonomous fashion using only spindle-motor control, the complete assay is automated. Amplification and fluorescent acquisition take place on a custom spin-stand enabling the generation of real-time LAMP amplification curves using custom software. To prevent environmental contamination, the entire discs are sealed from atmosphere following loading with internal venting channels permitting easy movement of liquids about the disc. The disc was successfully used to detect the presence of thermally inactivated Clavibacter michiganensis. Michiganensis (CMM) bacterial pathogen on tomato leaf samples.
Collapse
Affiliation(s)
- Rohit Mishra
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland; School of Physical Sciences, Dublin City University, Dublin, Ireland; National Centre for Sensor Research (NCSR), Dublin City University, Dublin, Ireland; Biodesign Europe, Dublin City University, Dublin, Ireland.
| | - Lourdes An Julius
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Jack Condon
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Patricija Pavelskopfa
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Philip L Early
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland; School of Physical Sciences, Dublin City University, Dublin, Ireland; School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin, Ireland
| | - Matthew Dorrian
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Katarina Mrvova
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Grace Henihan
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Faith Mangwanya
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Tanya Dreo
- National Institute of Biology, Ljubljana, Slovenia
| | - Jens Ducrée
- School of Physical Sciences, Dublin City University, Dublin, Ireland
| | - Niall P Macdonald
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Cor Schoen
- Wageningen University Research, Wageningen, the Netherlands
| | - David J Kinahan
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland; National Centre for Sensor Research (NCSR), Dublin City University, Dublin, Ireland; Biodesign Europe, Dublin City University, Dublin, Ireland; School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin, Ireland.
| |
Collapse
|
9
|
Yu Y, Li R, Ma Z, Han M, Zhang S, Zhang M, Qiu Y. Development and evaluation of a novel loop mediated isothermal amplification coupled with TaqMan probe assay for detection of genetically modified organism with NOS terminator. Food Chem 2021; 356:129684. [PMID: 33812194 DOI: 10.1016/j.foodchem.2021.129684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 03/06/2021] [Accepted: 03/19/2021] [Indexed: 01/14/2023]
Abstract
In this study, we aim to develop a novel loop mediated isothermal amplification (LAMP) coupled with TaqMan (LAMP-TaqMan) method for quick qualitative detection of genetically modified organism (GMOs). We designed four LAMP primers and one TaqMan probe for the LAMP-TaqMan detection method to detect the nopaline synthase gene (NOS) terminator in GMOs. This assay enabled the amplification of DNA within ~20 min at a constant temperature of 65 °C. This assay detected as few as five copies of target sequences, which had a high specificity similar to the TaqMan qPCR method. Furthermore, the LAMP-TaqMan detection method was successfully used to amplify and detect DNA from food samples of the major crops (soybean, maize, rice, etc.). In summary, a novel LAMP-TaqMan assay has been developed, which has the similar sensitivity but takes less time than the TaqMan qPCR method. This method offers a novel approach for rapid detection of GMOs in foods.
Collapse
Affiliation(s)
- Yanbo Yu
- College of Life Science, Northeast Agricultural University, Changjiang Road 600, Harbin 150030, China
| | - Rui Li
- College of Life Science, Northeast Agricultural University, Changjiang Road 600, Harbin 150030, China
| | - Zonghua Ma
- College of Life Science, Northeast Agricultural University, Changjiang Road 600, Harbin 150030, China
| | - Meihong Han
- College of Animal Science, Yangtze University, Nanhuan Road 1, Jingzhou 434020, China
| | - Sen Zhang
- College of Animal Science, Yangtze University, Nanhuan Road 1, Jingzhou 434020, China
| | - Minghui Zhang
- College of Life Science, Northeast Agricultural University, Changjiang Road 600, Harbin 150030, China; College of Animal Science, Yangtze University, Nanhuan Road 1, Jingzhou 434020, China.
| | - Youwen Qiu
- College of Life Science, Northeast Agricultural University, Changjiang Road 600, Harbin 150030, China.
| |
Collapse
|
10
|
Wang C, Liu M, Wang Z, Li S, Deng Y, He N. Point-of-care diagnostics for infectious diseases: From methods to devices. NANO TODAY 2021; 37:101092. [PMID: 33584847 PMCID: PMC7864790 DOI: 10.1016/j.nantod.2021.101092] [Citation(s) in RCA: 259] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 05/04/2023]
Abstract
The current widespread of COVID-19 all over the world, which is caused by SARS-CoV-2 virus, has again emphasized the importance of development of point-of-care (POC) diagnostics for timely prevention and control of the pandemic. Compared with labor- and time-consuming traditional diagnostic methods, POC diagnostics exhibit several advantages such as faster diagnostic speed, better sensitivity and specificity, lower cost, higher efficiency and ability of on-site detection. To achieve POC diagnostics, developing POC detection methods and correlated POC devices is the key and should be given top priority. The fast development of microfluidics, micro electro-mechanical systems (MEMS) technology, nanotechnology and materials science, have benefited the production of a series of portable, miniaturized, low cost and highly integrated POC devices for POC diagnostics of various infectious diseases. In this review, various POC detection methods for the diagnosis of infectious diseases, including electrochemical biosensors, fluorescence biosensors, surface-enhanced Raman scattering (SERS)-based biosensors, colorimetric biosensors, chemiluminiscence biosensors, surface plasmon resonance (SPR)-based biosensors, and magnetic biosensors, were first summarized. Then, recent progresses in the development of POC devices including lab-on-a-chip (LOC) devices, lab-on-a-disc (LOAD) devices, microfluidic paper-based analytical devices (μPADs), lateral flow devices, miniaturized PCR devices, and isothermal nucleic acid amplification (INAA) devices, were systematically discussed. Finally, the challenges and future perspectives for the design and development of POC detection methods and correlated devices were presented. The ultimate goal of this review is to provide new insights and directions for the future development of POC diagnostics for the management of infectious diseases and contribute to the prevention and control of infectious pandemics like COVID-19.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Mei Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| |
Collapse
|
11
|
Ko CH, Liu CC, Chen KH, Sheu F, Fu LM, Chen SJ. Microfluidic colorimetric analysis system for sodium benzoate detection in foods. Food Chem 2020; 345:128773. [PMID: 33302108 DOI: 10.1016/j.foodchem.2020.128773] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/09/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022]
Abstract
Sodium benzoate (SBA) is a widely-used additive for preventing food spoilage and deterioration and extending the shelf life. However, the concentration of SBA must be controlled under safe regulations to avoid damaging human health. Accordingly, this study proposes a microfluidic colorimetric analysis (MCA) system composing of a wax-printed paper-microchip and a self-made smart analysis equipment for the concentration detection of SBA in common foods and beverages. In the presented method, the distilled SBA sample is mixed with NaOH to obtain a nitro compound and the compound is then dripped onto the reaction area of the paper-microchip, which is embedded with two layers of reagents (namely acetophenone and acetone). The paper-microchip is heated at 120 °C for 20 min to cause a colorimetric reaction and the reaction image is then obtained through a CMOS (complementary metal oxide semiconductor) device and transmitted to a cell-phone over a WiFi connection. Finally, use the self-developed RGB analysis software installed on the cell-phone to obtain the SBA concentration. A calibration curve is constructed using SBA samples with known concentrations ranging from 50 ppm (0.35 mM) to 5000 ppm (35 mM). It is shown that the R + G + B value (Y) of the reaction image and SBA concentration (X) are related via Y = -0.034 X +737.40, with a determination coefficient of R2 = 0.9970. By measuring the SBA concentration of 15 commercially available food and beverage products, the actual feasibility of the current MCA system can be demonstrated. The results show that the difference from the measurement results obtained using the macroscale HPLC method does not exceed 6.0%. Overall, the current system provides a reliable and low-cost technique for quantifying the SBA concentration in food and drink products.
Collapse
Affiliation(s)
- Chien-Hsuan Ko
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chan-Chiung Liu
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Kuan-Hong Chen
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan
| | - Fuu Sheu
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan; Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan; Graduate Institute of Materials Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan.
| | - Szu-Jui Chen
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan; Graduate Institute of Materials Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
12
|
Fully Automated Lab-On-A-Disc Platform for Loop-Mediated Isothermal Amplification Using Micro-Carbon-Activated Cell Lysis. SENSORS 2020; 20:s20174746. [PMID: 32842600 PMCID: PMC7506564 DOI: 10.3390/s20174746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 11/17/2022]
Abstract
Fast and fully automated deoxyribonucleic acid (DNA) amplification methods are of interest in the research on lab-on-a-disc (LOD) platforms because of their full compatibility with the spin-column mechanism using centrifugal force. However, the standard procedures followed in DNA amplification require accurate noncontact temperature control as well as cell lysis at a low temperature to prevent damage to the LOD platform. This requirement makes it challenging to achieve full automation of DNA amplification on an LOD. In this paper, a fully automated LOD capable of performing cell lysis and amplification on a single compact disc of DNA samples is proposed. The proposed system uses micro-carbon to heat DNA samples without damaging the LOD as well as a noncontact heating system and an infrared camera sensor to remotely measure the real temperature of the amplification chamber. Compared with conventional DNA amplification systems, the proposed system has the advantage of full automation of the LOD platform. Experimental results demonstrated that the proposed system offers a stable heating method for DNA amplification and cell lysis.
Collapse
|
13
|
Petrusha OA, Faizuloev EB. [Detection methods for results of a loop-mediated isothermal amplification of DNA.]. Klin Lab Diagn 2020; 65:67-72. [PMID: 32155010 DOI: 10.18821/0869-2084-2020-65-1-67-72] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 11/17/2022]
Abstract
The loop mediated isothermal amplification (LAMP) was developed by T. Notomi et al. in 2000. It has become one of the most promising methods for point-of-care diagnostics due to its accuracy, sensitivity and ease of execution. In this review, various methods for detecting the results of the LAMP reaction are considered; their advantages and disadvantages are revealed. Methods for detecting LAMP results can be divided into indirect and direct. Indirect methods aimed at detecting changes in the chemical composition of the reaction mixture include real-time turbidimetry, fluorescence detection with calcein, colorimetric detection with hydroxynaphthol blue, and detection using modified gold nanoparticles. Direct methods based on the detection of accumulation amplicons during the reaction include fluorimetric detection with intercalating dyes, resonance fluorescence energy transfer, enzyme immunoassay, immunochromatography, using cationic polymers and gold nanoparticles. The development in the field of point-of-care diagnostics is characterized by a pronounced tendency to miniaturization, the LAMP reaction on microchips and microfluidic devices with an electrochemical or optical detection method. The most promising for the diagnosis of infectious diseases are turbidimetry methods and the use of intercalating dyes. The development of portable domestic instruments for detecting of LAMP results based on real-time fluorescence detection or turbidimetry will contribute to the widespread introduction of the method into clinical laboratory diagnostic practice. A literature research was conducted in the Pubmed ncbi based on keywords.
Collapse
Affiliation(s)
- O A Petrusha
- Mechnikov Research Institute of Vaccines and Sera, 105064, Moscow, Russia
| | - E B Faizuloev
- Mechnikov Research Institute of Vaccines and Sera, 105064, Moscow, Russia
| |
Collapse
|
14
|
Li M, Ge A, Liu M, Ma B, Ma C, Shi C. A fully integrated hand-powered centrifugal microfluidic platform for ultra-simple and non-instrumental nucleic acid detection. Talanta 2020; 219:121221. [PMID: 32887122 DOI: 10.1016/j.talanta.2020.121221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 12/18/2022]
Abstract
Hand-powered centrifugal microfluidics combined with isothermal nucleic acid amplification testing (NAAT) have been one of the most promising rapid detection platforms in resource-limited settings. However, current hand-powered centrifuges still suffer from customized instrument-based operation and low rotation rate; and most isothermal NAAT were conducted with complicated reaction systems for DNA detection and required an additional step for RNA detection. Herein, we built a fully hand-powered centrifugal miniaturized NAAT platform inspired by buzzer toys, which embedded sample preparation, strand exchange amplification (SEA) and visual fluorescence detection together. The centrifugal disc was easily fabricated, and operated the mixing in 1 min by simply dragging the looped rope through it with a mean input force of 16.5 N, enabling its rotation rate reach 5000 rpm. In addition, SEA was an ultra-simple one-step DNA or RNA detection method initiated by Bst DNA polymerase and a pair of primers, and thus we took all its merits and integrate it into microfluidic systems firstly. Furthermore, taking Vibrio parahemolyticus as an example, the microfluidic platform achieved DNA or RNA detection within 1 h; and the detection limit of the microchip for artificially spiked oysters was 103 CFU/g without cumbersome sample preparation, and reached to 100 CFU/g after enrichment. Therefore, we provided an ultra-simple and non-instrumental microfluidic platform powered merely by hands, performing general potential in sample-to-answer NAAT for versatile pathogens in remote regions.
Collapse
Affiliation(s)
- Mengzhe Li
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China
| | - Anle Ge
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, PR China
| | - Mengmeng Liu
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, PR China
| | - Cuiping Ma
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China.
| |
Collapse
|
15
|
Narushima J, Kimata S, Soga K, Sugano Y, Kishine M, Takabatake R, Mano J, Kitta K, Kanamaru S, Shirakawa N, Kondo K, Nakamura K. Rapid DNA template preparation directly from a rice sample without purification for loop-mediated isothermal amplification (LAMP) of rice genes. Biosci Biotechnol Biochem 2020; 84:670-677. [DOI: 10.1080/09168451.2019.1701406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ABSTRACT
Rapid DNA template preparation directly from a single rice (Oryza sativa) grain or rice flour of its equivalent weight was developed for loop-mediated isothermal amplification (LAMP). LAMP efficiency using DNA extract obtained from consecutive addition of alkaline lysis reagent (25 mM NaOH, 0.2 mM EDTA) and neutralizing reagent (40 mM Tris–HCl [pH 5]) was comparable to that using an equivalent amount of purified DNA as template. The stability of the prepared DNA extract was confirmed for up to six-day storage at room temperature. Without using any special laboratory devices, the developed method enabled a rapid, simple, and low-cost DNA template preparation method for reliable LAMP testing to detect rice genes.
Collapse
Affiliation(s)
- Jumpei Narushima
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki-ku, Kawasaki, Japan
| | - Shinya Kimata
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki-ku, Kawasaki, Japan
| | - Keisuke Soga
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki-ku, Kawasaki, Japan
| | - Yohei Sugano
- Department of Food Hygiene, Hokkaido Institute of Public Health, Kita-ku, Sapporo, Japan
| | - Masahiro Kishine
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Reona Takabatake
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Junichi Mano
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Kazumi Kitta
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Shunsuke Kanamaru
- Food Hygiene Analysis Center, Nippon Kaiji Kentei Kyokai, Kanazawa-ku, Yokohama, Japan
| | - Nanami Shirakawa
- Food Hygiene Analysis Center, Nippon Kaiji Kentei Kyokai, Kanazawa-ku, Yokohama, Japan
| | - Kazunari Kondo
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki-ku, Kawasaki, Japan
| | - Kosuke Nakamura
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki-ku, Kawasaki, Japan
| |
Collapse
|
16
|
But GWC, Wu HY, Shao KT, Shaw PC. Rapid detection of CITES-listed shark fin species by loop-mediated isothermal amplification assay with potential for field use. Sci Rep 2020; 10:4455. [PMID: 32157111 PMCID: PMC7064571 DOI: 10.1038/s41598-020-61150-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/20/2020] [Indexed: 11/24/2022] Open
Abstract
Shark fin is a delicacy in many Asian countries. Overexploitation of sharks for shark fin trading has led to a drastic reduction in shark population. To monitor international trade of shark fin products and protect the endangered species from further population decline, we present rapid, user-friendly and sensitive diagnostic loop-mediated isothermal amplification (LAMP) and effective polymerase chain reaction (PCR) assays for all twelve CITES-listed shark species. Species-specific LAMP and PCR primers were designed based on cytochrome oxidase I (COI) and NADH2 regions. Our LAMP and PCR assays have been tested on 291 samples from 93 shark and related species. Target shark species could be differentiated from non-target species within three hours from DNA extraction to LAMP assay. The LAMP assay reported here is a simple and robust solution for on-site detection of CITES-listed shark species with shark fin products.
Collapse
Affiliation(s)
- Grace Wing-Chiu But
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Hoi-Yan Wu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.,Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Kwang-Tsao Shao
- Systematics and Biodiversity Information Division, Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR. .,Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR. .,Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.
| |
Collapse
|
17
|
Solanki S, Pandey CM, Gupta RK, Malhotra BD. Emerging Trends in Microfluidics Based Devices. Biotechnol J 2020; 15:e1900279. [PMID: 32045505 DOI: 10.1002/biot.201900279] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/28/2020] [Indexed: 01/03/2023]
Abstract
One of the major challenges for scientists and engineers today is to develop technologies for the improvement of human health in both developed and developing countries. However, the need for cost-effective, high-performance diagnostic techniques is very crucial for providing accessible, affordable, and high-quality healthcare devices. In this context, microfluidic-based devices (MFDs) offer powerful platforms for automation and integration of complex tasks onto a single chip. The distinct advantage of MFDs lies in precise control of the sample quantities and flow rate of samples and reagents that enable quantification and detection of analytes with high resolution and sensitivity. With these excellent properties, microfluidics (MFs) have been used for various applications in healthcare, along with other biological and medical areas. This review focuses on the emerging demands of MFs in different fields such as biomedical diagnostics, environmental analysis, food and agriculture research, etc., in the last three or so years. It also aims to reveal new opportunities in these areas and future prospects of commercial MFDs.
Collapse
Affiliation(s)
- Shipra Solanki
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India.,Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Chandra M Pandey
- Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Rajinder K Gupta
- Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Bansi D Malhotra
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| |
Collapse
|
18
|
Giraldo PA, Shinozuka H, Spangenberg GC, Cogan NO, Smith KF. Safety Assessment of Genetically Modified Feed: Is There Any Difference From Food? FRONTIERS IN PLANT SCIENCE 2019; 10:1592. [PMID: 31921242 PMCID: PMC6918800 DOI: 10.3389/fpls.2019.01592] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Food security is one of major concerns for the growing global population. Modern agricultural biotechnologies, such as genetic modification, are a possible solution through enabling an increase of production, more efficient use of natural resources, and reduced environmental impacts. However, new crop varieties with altered genetic materials may be subjected to safety assessments to fulfil the regulatory requirements, prior to marketing. The aim of the assessment is to evaluate the impact of products from the new crop variety on human, animal, and the environmental health. Although, many studies on the risk assessment of genetically modified (GM) food have been published, little consideration to GM feedstuff has been given, despite that between 70 to 90% of all GM crops and their biomass are used as animal feed. In addition, in some GM plants such as forages that are only used for animal feeds, the assessment of the genetic modification may be of relevance only to livestock feeding. In this article, the regulatory framework of GM crops intended for animal feed is reviewed using the available information on GM food as the baseline. Although, the majority of techniques used for the safety assessment of GM food can be used in GM feed, many plant parts used for livestock feeding are inedible to humans. Therefore, the concentration of novel proteins in different plant tissues and level of exposure to GM feedstuff in the diet of target animals should be considered. A further development of specific methodologies for the assessment of GM crops intended for animal consumption is required, in order to provide a more accurate and standardized assessment to the GM feed safety.
Collapse
Affiliation(s)
- Paula A. Giraldo
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Melbourne, VIC, Australia
- Agriculture Victoria Research, AgriBio, The Centre for AgriBiosciences, Melbourne, VIC, Australia
| | - Hiroshi Shinozuka
- Agriculture Victoria Research, AgriBio, The Centre for AgriBiosciences, Melbourne, VIC, Australia
| | - German C. Spangenberg
- Agriculture Victoria Research, AgriBio, The Centre for AgriBiosciences, Melbourne, VIC, Australia
- School of Applied Systems Biology, La Trobe University, AgriBio, The Centre for AgriBiosciences, Melbourne, VIC, Australia
| | - Noel O.I. Cogan
- Agriculture Victoria Research, AgriBio, The Centre for AgriBiosciences, Melbourne, VIC, Australia
- School of Applied Systems Biology, La Trobe University, AgriBio, The Centre for AgriBiosciences, Melbourne, VIC, Australia
| | - Kevin F. Smith
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Melbourne, VIC, Australia
- Agriculture Victoria Research, Hamilton, VIC, Australia
| |
Collapse
|
19
|
Nguyen HV, Nguyen VD, Nguyen HQ, Chau THT, Lee EY, Seo TS. Nucleic acid diagnostics on the total integrated lab-on-a-disc for point-of-care testing. Biosens Bioelectron 2019; 141:111466. [DOI: 10.1016/j.bios.2019.111466] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022]
|
20
|
Real-time fluorescence loop-mediated isothermal amplification assay for rapid and sensitive detection of Streptococcus gallolyticus subsp. gallolyticus associated with colorectal cancer. Anal Bioanal Chem 2019; 411:6877-6887. [PMID: 31388715 DOI: 10.1007/s00216-019-02059-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 12/26/2022]
Abstract
The increasing threat of Streptococcus gallolyticus subsp. gallolyticus (SGG) infections has gained considerable attention for its strong association with colorectal cancer (CRC). Herein, we proposed real-time fluorescence loop-mediated isothermal amplification (LAMP) as a novel, simple, rapid, and highly sensitive assay for identifying SGG for the first time. This assay was capable of detecting SGG with initial DNA concentrations ranging from 102 to 108 copies per microliter, under isothermal conditions within 30 min via real-time fluorescence monitoring. Our method was tested for specific identification of SGG strains without cross-reaction with other Streptococcus gallolyticus subspecies and Escherichia coli. The developed LAMP shows a superior performance with shorter time and higher sensitivity compared with conventional polymerase chain reaction (PCR). Significantly, this proposed approach was successfully applied for detecting SGG in clinical urine samples, which is non-invasive diagnosis, showing excellent accuracy and reliability to discriminate healthy controls and CRC patients. For comparison, these samples were also tested against PCR assay. These results yielded an analytical sensitivity of 100% and a specificity of 100% for SGG testing using LAMP. The findings suggest LAMP can be employed for detecting SGG infections which is useful for diagnosis and screening of CRC.
Collapse
|