1
|
Deng H, Guo X, Zhang R, Sun C, Zhou X, Zhang B, Deng S, Chen J. Effects of cinnamon essential oil Pickering emulsion on the quality of refrigerated Hairtail (Trichiurus haumela). Food Res Int 2025; 209:116311. [PMID: 40253207 DOI: 10.1016/j.foodres.2025.116311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 04/21/2025]
Abstract
The preservation of hairtail (Trichiurus haumela) under refrigerated conditions is notably difficult, as it is highly prone to spoilage caused by microbial activity and protein oxidation. This study investigated the effectiveness of a novel Zein-AG-CBO Pickering emulsion, enriched with cinnamon bark oil, in enhancing the shelf life and quality of hairtail. The emulsions, with different concentrations from 0MIC to 2MIC, were applied to evaluate its preservative effect on the hairtail in terms of physicochemical, microbiological and myofibrillar proteins over a 10-day storage period at 4 °C. The preservation effect on the hairtail was reflected through evaluations of total volatile basic nitrogen (TVB-N), water holding capacity (WHC), total bacterial count (TVC) and other parameters. Additionally, the impact of the Zein-AG-CBO Pickering emulsion on hairtail myofibrillar proteins was assessed primarily through measurements of total protein content, protein particle size, Ca2+-ATPase activity, sulfhydryl content, carbonyl content, and surface hydrophobicity. Results indicated that the emulsion could prolong the shelf life of hairtail from 6 days to 10 days at 4 °C by retarding the microbial growth and protein degradation. The highest concentration (2MIC) was particularly effective, showing superior retention of sensory attributes, markedly lower levels of TVB-N and microbial counts, more protective effect on hairtail myofibrillar proteins during storage, compared to lower concentrations and the control counterpart. The findings suggested that the Zein-AG-CBO Pickering emulsion is a promising natural preservative that effectively maintained the quality and extended the shelf life of hairtail, offering excellent alternative for the seafood.
Collapse
Affiliation(s)
- Haoyun Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Xiaoxiao Guo
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Ruihan Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Chang Sun
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Xinyi Zhou
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Bin Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan, 316022, China
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan, 316022, China
| | - Jing Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan, 316022, China.
| |
Collapse
|
2
|
Wei Q, Sun Q, Hou Q, Zheng O, Xiao N, Liu S. Effect of static magnetic field-assisted freezing at different temperatures on the structural and functional properties of pacific white shrimp (Litopenaeus vannamei) myofibrillar protein. Food Chem 2025; 471:142836. [PMID: 39813832 DOI: 10.1016/j.foodchem.2025.142836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
The effects of static magnetic field-assisted freezing (MF) on the structural and functional characteristics of Litopenaeus vannamei myofibrillar protein (MP) at various temperatures (-35 ∼ -20 °C) were examined to assess its influence on MP and its energy-saving potential. The results indicated that -35 °C MF (MF-35) exhibited greater solubility and lower turbidity than -35 °C immersion freezing (IF-35), suggesting that MF-35 inhibited MP aggregation. MF-35 prevented the reduction in fluorescence intensity and α-helix content, protecting the MP tertiary and secondary structures. The emulsifying stability and gel strength of MF-35 surpassed those of the other frozen samples, indicating that MF-35 was the most efficient at mitigating the degradation of MP emulsifying and gel properties generated by freezing. No significant differences in solubility, surface hydrophobicity, emulsifying activity, and gel strength were detected between IF-35 and MF-25 (P > 0.05). In conclusion, MF impeded the denaturation of MP and exhibited energy-saving potential.
Collapse
Affiliation(s)
- Qihang Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Qian Hou
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Ouyang Zheng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Naiyong Xiao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
Haq M, Chun MS, Ali MS, Han JM, Kim JW, Park SW, Choi MS, Lee SM, Park JS, Lee HJ, Chun BS. Molecular size reduction and functional properties of Atlantic salmon waste protein treated by subcritical water. Int J Biol Macromol 2025; 309:142888. [PMID: 40194580 DOI: 10.1016/j.ijbiomac.2025.142888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/17/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Atlantic salmon waste protein (AsWP) was hydrolyzed using subcritical water hydrolysis at 135-210 °C and 30-60 bar for 20 min, to reduce protein molecular size and produce hydrolysates with functional properties. At 195 °C and 50 bar, hydrolysis yield and degree of hydrolysis were highest at 88.47 % and 22.59 %, respectively. SDS-PAGE and ESI-MS confirmed the reduction in protein molecular size and formation of smaller peptides and amino acids. The mean molecular weight of the hydrolysates decreased with increasing temperature and pressure, reaching a low of 1053 Da at 210 °C and 60 bar. The zeta potential of the control sample was -6.33 mV, decreasing to -13.57 mV under the highest hydrolysis conditions. Particle size was smallest and most homogeneous (2000-4000 nm) at 210 °C and 60 bar. Notable Fourier-transform infrared spectroscopy bands associated with proteolytic reactions included amide I (~1626 cm-1), amide II (~1511 cm-1), and amide III (~1388 cm-1). The relative crystallinity of the hydrolysates ranged from 12.45 % to 58.76 %, with the lowest value at 210 °C and 60 bar. Fluorescence intensity decreased as temperature and pressure increased. The emulsification and functional activities of the hydrolysates indicated their suitability for applications in food, cosmetics, and pharmaceutical industries.
Collapse
Affiliation(s)
- Monjurul Haq
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea; Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Man-Seog Chun
- Korea Science Academy of KAIST, 105-47, Baegyanggwanmun-ro, Busanjin-gy, Busan 47162, Republic of Korea
| | - Md Sadek Ali
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Ji-Min Han
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Jang-Woo Kim
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Sin-Won Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Min-Seo Choi
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Sang-Min Lee
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Jin-Seok Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Hee-Jeong Lee
- Department of Food Science and Nutrition, Kyungsung University, Busan 48434, Republic of Korea
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea.
| |
Collapse
|
4
|
Ren Y, Sun J, Mao X. Protein degradation mechanisms during refrigerated storage of gazami crab (Portunus trituberculatus) at endogenous and microbial-derived enzyme levels. Food Chem 2025; 469:142449. [PMID: 39708657 DOI: 10.1016/j.foodchem.2024.142449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
During storage, the proteins of gazami crab (Portunus trituberculatus) are prone to hydrolysis into amino acids and biogenic amines, in which enzymes play a critical role. However, studies exploring spoilage mechanisms from the perspective of enzymes are limited. This study identified 84 endogenous and 52 microbial-derived proteolytic enzymes and peptidases by proteomics and metagenomics. There are 7 endogenous amino acid deaminases, primarily degrade glutamate and aspartate. Additionally, 25 amino acid deaminases of microbial origin were identified, which mainly degrade serine. The formation of biogenic amines involved 14 enzymes, all of which were microbial in origin, primarily synthesizing putrescine from arginine. The main microbial contributors to these enzymes were Photobacterium, Vibrio, and Aliivibrio, accounting for 63.87 %, 15.51 %, and 8.69 % at the end of refrigeration, respectively. This study provides insights into the mechanisms of quality deterioration in gazami crab during refrigeration, from the perspectives of metabolic enzymes and microbial activity.
Collapse
Affiliation(s)
- Yanmei Ren
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| |
Collapse
|
5
|
Ren Y, Liang R, Mao X. Effect of liquid nitrogen freezing pretreatment on the meat quality of gazami crab (Portunus trituberculatus) during frozen storage. Food Chem 2025; 468:142367. [PMID: 39700814 DOI: 10.1016/j.foodchem.2024.142367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Liquid nitrogen freezing (LNF) pretreatment is an effective means of maintaining seafood quality during frozen storage. To improve the meat quality of gazami crab (Portunus trituberculatus) during frozen storage, this study investigated the effects of LNF temperatures on the meat quality of gazami crab. Fresh crab was pre-treated with different LNF temperatures (-60 °C, -80 °C, -100 °C, -120 °C), and then freeze in refrigerator at -18 °C. The changes in protein structure and meat quality of gazami crab during long-term frozen storage were measured. The results showed that -100 °C LNF more effectively inhibited the oxidative deterioration of crab meat during storage, which is lower than the optimal LNF temperature for shell free aquatic products such as fish, extending the shelf life of frozen gazami crab to 4 months. This study enriches the application parameters of LNF in freezing industry of crustacean aquatic products, providing guidance for exploring the optimal LNF temperature of aquatic products.
Collapse
Affiliation(s)
- Yanmei Ren
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| | - Rongxiang Liang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China.
| |
Collapse
|
6
|
Li K, Zhou Y, Zhu C, Du M, Chen B, Zhao D, Bai Y. Effects of plasma-activated water on structural and functional properties of PSE-like chicken protein isolate. Curr Res Food Sci 2025; 10:101003. [PMID: 40026904 PMCID: PMC11872127 DOI: 10.1016/j.crfs.2025.101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/31/2024] [Accepted: 02/13/2025] [Indexed: 03/05/2025] Open
Abstract
Pale, soft and exudative (PSE)-like chicken meat is rich in high-quality proteins, however, due to the properties of PSE-like meat, the functional characteristics of PSE-like chicken meat protein isolate (PPI) are affected. The present investigation aimed to improve the functional properties of PPI by employing plasma activation water (PAW), with the ultimate goal of enhancing its utility in various applications. The effects of PAW on the structure and function of PPI were evaluated. PAW treatment induced the protein structure to change from random coil to α-helix, which made the protein conformation more stable. PAW caused the hydrophobic residues to be exposed, thereby effectively enhancing their surface hydrophobicity. Dynamic rheology revealed the storage modulus of PPI gradually raised with increasing of PAW activation time. The scanning electron microscopy (SEM) showed that PAW promoted PPI to form a rough surface. When PAW activation time increased to 40 s, the foaming ability of PPI was raised by 77.84%, the emulsifying activity index was increased to 20.94 m2/g, the emulsion stability index was improved by 20.40%, and the in vitro digestibility was increased by 25.15% (P < 0.05). The above results showed PAW could modify the structural properties, and effectively improve the emulsifying and foaming properties of PPI, and increase the in vitro digestibility of PPI.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Yanfang Zhou
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Chenyan Zhu
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Manting Du
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Bo Chen
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Dianbo Zhao
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Yanhong Bai
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| |
Collapse
|
7
|
Li Q, Ye T, Zhu Y, Xia L, Lin L, Lu J. Sustainable development of fishery resources: Precipitation of protein from surimi rinsing wastewater by low-temperature plasma. Food Chem 2025; 463:141286. [PMID: 39288462 DOI: 10.1016/j.foodchem.2024.141286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/15/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
This study aimed to determine the impact of low-temperature plasma (LTP) on the protein stability and composition in surimi rinsing wastewater (SRW). When SRW (300 mL) was treated with LTP at a power of 420 W and a flow rate of 1.1 L/min for 106 s, the protein precipitation was 76.04 %, the pH was close to the estimated value of the isoelectric point (pI). In comparison with the pI precipitation treatment, non-precipitated proteins in the SRW after LTP precipitation treatment showed significant changes in amino acids susceptible to oxidation but had minor changes in the hydrophobic amino acid content. LTP showed a markedly differentiated response to the different protein types in the SRW, increasing the relative amounts of several enzyme proteins in the non-precipitated protein. The combined effect of the active ingredients provided by LTP on protein conformation and hydrophobic interactions may be responsible for this 'screening' phenomenon.
Collapse
Affiliation(s)
- Qiang Li
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China; Anhui Province Key Laboratory for Agriculture Products Modern Processing, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tao Ye
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China; Anhui Province Key Laboratory for Agriculture Products Modern Processing, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yaqing Zhu
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China; Anhui Province Key Laboratory for Agriculture Products Modern Processing, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Lizhi Xia
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China; Anhui Province Key Laboratory for Agriculture Products Modern Processing, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Lin Lin
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China; Anhui Province Key Laboratory for Agriculture Products Modern Processing, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Jianfeng Lu
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China; Anhui Province Key Laboratory for Agriculture Products Modern Processing, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
8
|
Liu Y, Yang Z, Li Z, Shen J, Wang X, Li R, Tao Y, Xu X, Wang P. Systematic free energy insights into the enhanced dispersibility of myofibrillar protein in low-salt solutions through ultrasound-assisted enzymatic deamidation. ULTRASONICS SONOCHEMISTRY 2025; 112:107199. [PMID: 39675263 PMCID: PMC11713509 DOI: 10.1016/j.ultsonch.2024.107199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
This work aimed to investigate the effects of ultrasound assisted enzymatic deamidation by protein-glutaminase (PG) on the dispersion of myofibrillar protein (MP) in low-salt solutions. The solubility, structural characteristics, transmission electron microscopy, asymmetric-flow field-flow fractionation, steady shear rheological property and multiple light scattering of MP deamidated by PG (MP-PG) and MP pretreated with ultrasound followed by PG deamidation (MP-U-PG) were determined. Molecular docking and molecular dynamics (MD) simulations were used to estimate the interaction between PG and MP. Under ultrasound assistance, the MP deamidated for 16 h (MP-U-PG16) showed the highest solubility (80.1 %) in low-salt conditions, which is attributed to its highest absolute zeta potential and smallest particle size. Although secondary structure analysis showed that MP-PG and MP-U-PG had an increased α-helix ratio and a decreased β-sheet ratio, ultrasonic treatment had a significantly influence on the MD results. The results manifested that hydrogen bond was the primary forces driving the binding between PG and MP, and the hydrogen bond and hydrophobic interaction were the dominant forces responsible the binding between PG and MP pretreated with ultrasound. According to the energy landscapes theory, ultrasound could overcome the energy barriers through external force input and find the best pathway to achieve the final lowest energy state. Our research contributed to the improvement of the colloidal dispersibility of MPs under low-salt conditions and the regulation of protein interaction by ultrasound assistance.
Collapse
Affiliation(s)
- Yating Liu
- State key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zongyun Yang
- State key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Li
- State key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Shen
- State key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xia Wang
- State key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ru Li
- State key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ye Tao
- State key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- State key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- State key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
9
|
Xu BL, Wang YY, Chu XL, Dong CM. Research progress and immunological insights of shrimp allergens. FISH & SHELLFISH IMMUNOLOGY 2025; 156:110051. [PMID: 39608732 DOI: 10.1016/j.fsi.2024.110051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Allergic diseases have become a major health issue in the 21st century. The FAO has pinpointed the eight most prevalent allergens worldwide, with shrimp allergy attracting global concern due to its escalating incidence. This review delves into the current knowledge of shrimp allergen types and traits, immune response mechanisms, advancements in cross-reactivity research, and breakthroughs in diagnostic and therapeutic methods. It highlights the variety of shrimp allergens, such as tropomyosin and arginine kinase, and concentrates on IgE-mediated immediate hypersensitivity reactions, involving mast cells and basophils, alongside the role of T cells and cytokines in non-IgE-mediated delayed hypersensitivity reactions. The exploration of cross-reactivity underscores the connection between shrimp allergy and allergies to other animals. Utilizing bioinformatics tools, including homology analysis, epitope prediction, and molecular modeling, has enhanced our comprehension of allergen molecular features. In treatment and diagnosis, innovative approaches like immunotherapy and gene editing technology hold potential to decrease allergic sensitivity, while emerging reduction techniques like heat treatment and enzymatic hydrolysis offer new strategies for the prevention and management of food allergies. The evolution of allergen detection and purification technologies has spurred innovation in testing methodologies, encompassing traditional in vivo tests like SPT and DBPCFC, in addition to a range of other techniques such as immunoassays, biochip technology, PCR, and histamine release experiments, propelling the instantaneous and accurate identification of allergens. These scientific breakthroughs not only expand our understanding of shrimp allergen biology but also lay the foundation for developing more effective allergy prevention and control strategies.
Collapse
Affiliation(s)
- Bao-Liang Xu
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yuan-Yuan Wang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xin-Lei Chu
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China.
| | - Chun-Ming Dong
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
10
|
Zou Y, Wang L, Wang X, Lan Y, Ma J, Yang J, Xu W, Shen Q, Wang D. Effect of ultrasound combined with plasma protein treatment on the structure, physicochemical and rheological properties of myofibrillar protein. ULTRASONICS SONOCHEMISTRY 2025; 112:107151. [PMID: 39616718 PMCID: PMC11650323 DOI: 10.1016/j.ultsonch.2024.107151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 01/13/2025]
Abstract
This study aimed to investigate the effect of ultrasound combined with plasma protein (UPP) treatment on the structure, physicochemical and rheological properties of myofibrillar protein (MP). The results indicated that the UPP group caused changes in the secondary structure, increased fluorescence intensity and enhanced surface hydrophobicity of MP. Then, UPP significantly decreased the content of free and total sulfhydryl group, and high molecular weight protein contents were observed in MP. These findings implied moderate cross-linking and aggregation between plasma protein and MP in this ultrasound treatment. Furthermore, the physical characteristics, stability and rheological properties of MP were improved in UPP, as evidenced by increased storage modulus and decreased loss angle tangent. Therefore, this study suggested that the combined treatment not only had the potential to enhance the product quality in the process of ground meat, but also improved the utilization rate and added value of plasma proteins.
Collapse
Affiliation(s)
- Ye Zou
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Lingjuan Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xiaowen Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yibo Lan
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jingjing Ma
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jing Yang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Weimin Xu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Qi Shen
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Daoying Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| |
Collapse
|
11
|
Wang X, Li M, Shi T, Monto AR, Yuan L, Jin W, Gao R. Recovery of protein-rich biomass from surimi rinsing wastewater by using a sustainable cold plasma treatment. Food Chem X 2024; 24:101927. [PMID: 39525069 PMCID: PMC11550015 DOI: 10.1016/j.fochx.2024.101927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Surimi rinsing wastewater is typically discarded, causing waste of protein resources and environmental pollution. This study investigated the technology of a cold atmospheric plasma jet (CAPJ) for the recovery of protein-rich biomass (PRB), including myofibrillar proteins (MPs) and sarcoplasmic proteins (SPs), from surimi rinsing wastewater. The protein recovery yield was up to 59.84 %. CAPJ induced an increase in carbonyl and decreased sulfhydryl in protein content. Furthermore, the secondary structure of the protein was unfolded, particularly the transition from α-helix to β-sheet. The formation of disulfide bonds and increased hydrophobic interactions promoted protein aggregation (the particle size from 185.76 nm to 1869.07 nm, P < 0.05) and reduced solubility. The proteomic results indicated that CAPJ increased the expression level of antioxidant enzymes. Overall, the CAPJ technology could recover proteins from surimi rinsing wastewater for industrial application, which will promote the sustainable development of the surimi industry.
Collapse
Affiliation(s)
- Xin Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mengzhe Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Abdul Razak Monto
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wengan Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
- Quanzhou Marine Biotechnology Industry Research Institute, Quanzhou 362700, China
| |
Collapse
|
12
|
Liu Y, Sun J, Wen Z, Wang J, Roopesh MS, Pan D, Du L. Functionality enhancement of pea protein isolate through cold plasma modification for 3D printing application. Food Res Int 2024; 197:115267. [PMID: 39593346 DOI: 10.1016/j.foodres.2024.115267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
Pea protein isolate (PPI) is a valued sustainable protein source, but its relatively poor functional properties limit its applications. This study reports on the effects of cold argon plasma (CP) treatment of a 15 % (w/w) PPI solution on the functionality, structure, and oxidative characteristics of PPI, as well as its application in 3D-printed plant-based meat. Results indicate that hydroxyl radicals and high-energy excited-state argon atoms are the primary active substances. A decrease in free sulfhydryl content and an increase in carbonyl content were observed in treated PPI, indicating oxidative modification. Compared to the control group, the gel strength of PPI was increased by 62.5 % and the storage modulus was significantly improved after 6 min treatment, forming a more ordered and highly cross-linked 3D gel network. Additionally, CP significantly improved the water-holding capacity, oil-holding capacity, emulsifying activity, and emulsion stability of PPI. The α-helix and random coil content in PPI decreased, while the β-sheet content increased, resulting in a more ordered secondary structure after CP treatment. Compared to untreated PPI, the consistency coefficient (K) increased from 36.00 to 47.68 Pa·sn. The treated PPI exhibited higher apparent viscosity and storage modulus and demonstrated better 3D printing performance and self-supporting ability. This study demonstrates that CP can significantly enhance the functional properties of PPI, providing great potential and prospects for improving the printability of 3D printing materials and developing plant protein foods with low-allergenicity.
Collapse
Affiliation(s)
- Ye Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Jiayu Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Zimo Wen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Jian Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - M S Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Lihui Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China.
| |
Collapse
|
13
|
Chu Y, Wang J, Xie J. Exploring the correlation of microbial community diversity and succession with protein degradation and impact on the production of volatile compounds during cold storage of grouper (Epinephelus coioides). Food Chem 2024; 460:140469. [PMID: 39029368 DOI: 10.1016/j.foodchem.2024.140469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/10/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
Microorganisms, proteins, and lipids play crucial and intricate roles in the aroma generation of aquatic products. To explore the impact of the interaction between microorganisms and proteins on the volatile compounds (VOCs) in grouper, this study employed whey protein isolate (WPI) to inhibit lipid oxidation and reduce mutual interference. Changes in bacterial profiles, metabolites, and VOCs were detected. Eighteen key VOCs associated with the overall flavor of grouper were identified, and the potential relationships among microorganisms, proteins, and VOCs were explored using a correlation network. Five microorganisms (Vibrio, Vagococcus, Pseudomonas, Psychrobacter, and Shewanella) closely related to characteristic flavor compounds were identified. Additionally, 30 differential metabolites related to proteins and six metabolic pathways were screened. Therefore, this study unveils the potential interaction between microorganisms and proteins in flavor formation and provides new insights into the relationships among microorganisms, proteins, and VOCs.
Collapse
Affiliation(s)
- Yuanming Chu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Jinfeng Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China.
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China; Collaborative Innovation Center of Seafood Deep Processing, Ministry of Education, Dalian 116034, China.
| |
Collapse
|
14
|
Chen J, Ma H, Guo A, Lv M, Pan Q, Ya S, Wang H, Pan C, Jiang L. Influence of (ultra-)processing methods on aquatic proteins and product quality. J Food Sci 2024; 89:10239-10251. [PMID: 39503310 DOI: 10.1111/1750-3841.17437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/31/2024] [Accepted: 09/16/2024] [Indexed: 12/28/2024]
Abstract
Aquatic products are a high-quality source of protein for humans, and the changes in protein during aquatic product processing are crucial for nutritional value, product performance, and consumer health. With the advancement of science and technology, aquatic product processing methods have become increasingly diverse. In addition to traditional methods such as thermal processing (steaming, roasting, and frying) and pickling, emerging non-thermal processing technologies, such as high pressure, ultrasound, and irradiation, are also being applied. During (ultra-)processing, aquatic products undergo complex biochemical reactions, among which protein oxidation significantly affects the quality of aquatic products. Protein oxidation can alter the molecular structure of proteins, thereby changing their functional properties and ultimately impacting product quality. This paper primarily explored the effects of protein changes under different processing methods on aquatic product quality and human health, as well as techniques for controlling protein oxidation. It aims to provide a theoretical basis for selecting appropriate processing methods, improving aquatic product quality, and controlling protein oxidation in aquatic products, and to offer scientific guidance for practical production.
Collapse
Affiliation(s)
- Jingjing Chen
- Tourism and Health Vocational College, Zhoushan Islands New Area, Zhoushan, China
| | - Huawei Ma
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| | - Ailing Guo
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, China
| | - Min Lv
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| | - Qingyan Pan
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, China
| | - Shiya Ya
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| | - Hui Wang
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| | - Chuanyan Pan
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, China
| | - Linyuan Jiang
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| |
Collapse
|
15
|
Huang X, Yang H, Lou A, Jiang S, Kang K, Wei Y, Li X, Wu Y, Yu M, Huang Q. Effect of psyllium husk powder on the gelation behavior, microstructure, and intermolecular interactions in myofibrillar protein gels from Andrias davidianus. Food Chem 2024; 458:140266. [PMID: 38964095 DOI: 10.1016/j.foodchem.2024.140266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
The interaction between proteins and soluble dietary fibers plays a vital role in the development of animal-derived foods. Herein, the effects of different contents (0-3.0%) of round-bracted psyllium husk powder (PHP) on the gelation behavior, microstructure, and intermolecular interactions of Andrias davidianus myofibrillar protein (MP) were investigated. Rheological and chemical forces suggested that PHP (1.5%-2.0%) enhanced the functional properties of MP at low ionic strength, thereby increasing the viscoelasticity of mixed gels. SDS-PAGE revealed that PHP reinforced the cross-linking and aggregation of protein molecules. Circular dichroism spectroscopy, low-field nuclear magnetic resonance, and scanning electron microscopy demonstrated that PHP induced the transformation of α-helix (decreased by 14.85%) to an ordered β-sheet structure (increased by 81.58%), which was more favorable for the formation of dense network structure and improved (10.53%) the water retention of MP gels. This study provided new insights for PHP to effectively meliorate the heat-induced gelling properties of MP.
Collapse
Affiliation(s)
- Xiang Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang, 550025, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hui Yang
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan, Academy of Agricultural Sciences, Changsha 410125, China.
| | - Aihua Lou
- College of Food Science and Technology, Hunan Agricultural University, Changsha 420128, China
| | - Shuiyan Jiang
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan, Academy of Agricultural Sciences, Changsha 410125, China
| | - Kelang Kang
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan, Academy of Agricultural Sciences, Changsha 410125, China
| | - Yingjuan Wei
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan, Academy of Agricultural Sciences, Changsha 410125, China.
| | - Xin Li
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan, Academy of Agricultural Sciences, Changsha 410125, China
| | - Yingmei Wu
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan, Academy of Agricultural Sciences, Changsha 410125, China.
| | - Meijuan Yu
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan, Academy of Agricultural Sciences, Changsha 410125, China.
| | - Qun Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
16
|
Rao W, Ju S, Sun Y, Xia Q, Zhou C, He J, Wang W, Pan D, Du L. Unlocking the molecular modifications of plasma-activated water-induced oxidation through redox proteomics: In the case of duck myofibrillar protein (Anas platyrhynchos). Food Chem 2024; 458:140173. [PMID: 38943955 DOI: 10.1016/j.foodchem.2024.140173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/08/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Plasma-activated water (PAW) contains multiple active species that alter the structure of myofibrillar protein (MP) to enhance their gel properties. This work investigated the impact of PAW on the oxidation of cysteine in MP by label-free quantitative proteomics. PAW treatment caused the oxidation of 8241 cysteine sites on 2815 proteins, and structural proteins such as nebulin, myosin XVIIIB, myosin XVIIIA, and myosin heavy chain were susceptible to oxidation by PAW. Bioinformatics analysis, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, subcellular localization, and STRING analysis, indicated that these proteins with differential oxidation sites were mainly derived from the cytoplasm and membrane, and were involved in multiple GO terms and KEGG pathways. This is one of the first reports of the redox proteomic changes induced by PAW treatment, and the results are useful for understanding the possible mechanism of PAW-induced oxidation of MP.
Collapse
Affiliation(s)
- Wei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Shilong Ju
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Jun He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Wei Wang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Lihui Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China.
| |
Collapse
|
17
|
Kang Z, Hou Q, Xu J. Research Progress and Teaching Exploration of Physical Processing Technology for Reduced-Salt Gel Meat Products. Foods 2024; 13:3606. [PMID: 39594022 PMCID: PMC11594212 DOI: 10.3390/foods13223606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Salt assumes a significant role in the production of meat gels. Excessive intake of salt adversely affects human health, and consumers' demand for reduced-salt meat products is escalating. This review primarily introduces the characteristics of the physical processing technology of reduced-salt gel meat products, such as the technology of ultrasonic, high-pressure processing, beating, plasma, and magnetic field, and its role in reduced-salt gel meat processing, and explores means to improve the teaching effect of the physical processing technology of reduced-salt gel meat products in the major of Food Science and Engineering. It was found that physical processing techniques, such as ultrasound, high-pressure processing, and beating, could enhance the solubility and processing performance of myofibrillar protein by improving the meat structure and protein conformation, increasing the interaction between proteins, water, and fat molecules, and enhancing the texture, water-holding capacity, and sensory quality of reduced-salt gel meat products. In the promotion and teaching of physical processing technology, it is necessary to strengthen interdisciplinary integration and scientific research activities according to the customs, laws and regulations of different countries and regions, combined with the development frontier of the technology, and develop reduced-salt gel meat products that meet local needs according to local conditions.
Collapse
Affiliation(s)
- Zhuangli Kang
- School of Tourism and Cuisine, Industrial Engineering Center for Huaiyang Cuisin of Jiangsu Province, Yangzhou University, Yangzhou 225127, China; (Q.H.); (J.X.)
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou 225127, China
| | - Qin Hou
- School of Tourism and Cuisine, Industrial Engineering Center for Huaiyang Cuisin of Jiangsu Province, Yangzhou University, Yangzhou 225127, China; (Q.H.); (J.X.)
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou 225127, China
| | - Jingguo Xu
- School of Tourism and Cuisine, Industrial Engineering Center for Huaiyang Cuisin of Jiangsu Province, Yangzhou University, Yangzhou 225127, China; (Q.H.); (J.X.)
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou 225127, China
| |
Collapse
|
18
|
Bai R, Han J, Ye X, Yu J, Jiang S, Li Z, Zhang L, Yang C, Chen Y, Wang S, Ding W. Improvement on gel properties of chicken myofibrillar protein with electron beam irradiation: Based on protein structure, gel quality, water state. Int J Biol Macromol 2024; 280:135806. [PMID: 39307485 DOI: 10.1016/j.ijbiomac.2024.135806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
This study aimed to investigate the effects of electron beam (E-beam) irradiation at different doses (0-15 kGy) on the solubility, rheological properties, emulsification characteristics, and moisture distribution of chicken myofibrillar proteins (MPs). Irradiation treatment notably increased the solubility, surface hydrophobicity, emulsification properties, and apparent viscosity of MPs, based on conformational changes caused by irradiation-induced oxidative denaturation of proteins. However, high doses of irradiation (15 kGy) induced in excessive cross-linking and aggregation of proteins, reducing the solubility, emulsification properties, and shear stress. Degradation of myosin heavy and light chains in irradiated MPs increased the content of β-turns and random coils. Additionally, the initial relaxation times of T21 and T22 in irradiated protein gels were reduced, and the peak value of P21 was increased, which improved the water-capturing ability of protein gels. Altogether, these results findings suggest that electron beam irradiation can be applied as a potential technique for modifying muscle proteins.
Collapse
Affiliation(s)
- Rong Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jincheng Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiang Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiangtao Yu
- Yangling Hesheng Irradiation Technology Co., Ltd., Yangling, Shaanxi 712100, China
| | - Shengqi Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ziwei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linlu Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunjie Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ya Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Siying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wu Ding
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
19
|
Tan G, Ning Y, Sun C, Bu Y, Zhang X, Zhu W, Li J, Li X. Effects of plasma-activated slightly acidic electrolyzed water on salmon myofibrillar protein: Insights from structure and molecular docking. Food Chem X 2024; 22:101389. [PMID: 38681232 PMCID: PMC11046062 DOI: 10.1016/j.fochx.2024.101389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
The present study investigated the impact of plasma-activated water (PAW), slightly acidic electrolytic water (SAEW) and plasma-activated slightly acidic electrolytic water (PASW) treatment on myofibrillar protein (MP) in salmon fillets. Additionally, the interaction mechanism between myosin and reactive oxygen species was explored by molecular docking. Compared with the control group (719.26 nm), PASW treatment group exhibited the smallest particle size (408.97 nm). The PASW treatment exhibited efficacy in reducing MP aggregation and inhibiting protein oxidation. In comparison with other treatments, PASW treatment demonstrated a greater ability to mitigate damage to the secondary and tertiary structures of MP. O3 and H2O2 interact with myosin through hydrogen bonding. Specifically, O3 interacts with Lys676, Gly677, and Met678 of myosin while H2O2 binds to Thr681, Asp626, Arg680, and Met678. This study offers novel insights into the impact of PASW on MP, and provides a theoretical foundation for its application in aquatic product processing.
Collapse
Affiliation(s)
- Guizhi Tan
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Yue Ning
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Chaonan Sun
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Ying Bu
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Xiaomin Zhang
- Jinzhou experimental school, Jinzhou, Liaoning 121013, China
| | - Wenhui Zhu
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| |
Collapse
|
20
|
Fu Y, Cao Y, Chang Z, Zou C, Jiang D, Gao H, Jia C. Effects of Flammulina velutipes polysaccharide with ice recrystallization inhibition activity on the quality of beef patties during freeze-thaw cycles: An emphasis on water status and distribution. Meat Sci 2024; 209:109420. [PMID: 38154371 DOI: 10.1016/j.meatsci.2023.109420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/07/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
The antifreeze activity of Flammulina velutipes polysaccharide (FVP) autoclave-extracted with dilute alkaline and effects of FVP on moisture status, size of ice crystals, physical and chemical characteristics of beef patties during repeated freeze-thaw (F-T) cycles were investigated. Results showed that FVP exhibited ice recrystallization inhibition activity and was able to alter the onset freezing/melting temperature of beef patties. 0.01% FVP significantly alleviated (P < 0.05) the decrement in water holding capacity by inhibiting water migration, restraining the mobility of water, and reducing the size of ice crystals of beef patties during the repeated F-T cycles. In addition, FVP could effectively inhibited oxidation reaction and protein aggregation of beef patties with significant decreases in TBARS value, protein turbidity, contents of total sulfhydryl and carbonyl of myofibrillar protein, and an increase in protein solubility during the repeated cycles. These results suggest FVP could be developed to be a promising cryoprotectant in frozen patties.
Collapse
Affiliation(s)
- Yin Fu
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yan Cao
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhongyi Chang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chunjing Zou
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Deming Jiang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hongliang Gao
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Caifeng Jia
- School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
21
|
Xu T, Li X, Wu C, Fan G, Li T, Zhou D, Zhu J, Wu Z, Hua X. Improved encapsulation effect and structural properties of whey protein isolate by dielectric barrier discharge cold plasma. Int J Biol Macromol 2024; 257:128556. [PMID: 38061529 DOI: 10.1016/j.ijbiomac.2023.128556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/22/2023]
Abstract
The whey protein isolate (WPI) was modified by dielectric barrier discharge cold plasma (DBD) in order to improve its encapsulation efficiency of rutin. In this work, the effect of DBD treatment on structure and physicochemical properties of WPI and the interaction between DBD-treated WPI and rutin were investigated. The results showed that the structural change of WPI leaded to the exposure of internal hydrophobic groups, increasing the interaction site with rutin. The encapsulation efficiency of DBD-treated WPI (30 kV, 30 s) on rutin was improved by 12.42 % compared with control group. The results of multispectral analysis showed that static quenching occurred in the process of interaction between DBD-treated and rutin, hydrogen bond and van der Waals force were the main forces between them. Therefore, DBD treatment can be used as a method to improve the encapsulation efficiency of WPI on hydrophobic active substances.
Collapse
Affiliation(s)
- Ting Xu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Gongjian Fan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Tingting Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Dandan Zhou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jinpeng Zhu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhihao Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiaowen Hua
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315201 Ningbo, China
| |
Collapse
|
22
|
Wu W, Jiang Q, Gao P, Yu D, Yu P, Xia W. L-histidine-assisted ultrasound improved physicochemical properties of myofibrillar proteins under reduced-salt condition - Investigation of underlying mechanisms. Int J Biol Macromol 2023; 253:126820. [PMID: 37690645 DOI: 10.1016/j.ijbiomac.2023.126820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
The effects of the L-hisdine (L-His)-assisted ultrasound on physicochemical characteristics and conformation of myofibrillar protein (MP) under reduced-salt condition were investigated using spectroscopic analysis, and the binding mechanism between L-His and MP was further elucidated through molecular docking and molecular dynamics (MD) simulations. UV second derivative spectra and intrinsic Try fluorescence spectra revealed that L-His formed a complex with MP and altered the microenvironment of MP. After L-His-assisted ultrasound treatment, MP showed smaller particle size, higher solubility, and more uniform atomic force microscopy image due to the decrease of α-helix content and the subsequent increase in zeta potential, active sulfhydryl content, and surface hydrophobicity. Molecular docking and MD simulations demonstrated the optimal docking pose (minimum binding affinity of -6.78 kcal/mol) and revealed hydrophobic interactions and hydrogen bonds as the main interaction forces between L-His and MP, with several residues (ILE-464, ILE-480, THR-483, ASN-484, GLY-466, ASP-463, PHE-246) identified as binding sites.
Collapse
Affiliation(s)
- Wenmin Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Pei Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Peipei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
23
|
Zhou J, Yang T, Chen Z, Chen Y, Li S. A non-thermal modification method to promote the interaction of zein-alginate oligosaccharides composites for better encapsulation and stability-Cold plasma. Int J Biol Macromol 2023; 253:126496. [PMID: 37633568 DOI: 10.1016/j.ijbiomac.2023.126496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/29/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
This current research explored the application of cold plasma (CP) treatment to modify zein-alginate oligosaccharide (zein-AOS) composites in an ethanol-water solution. Anti-solvent method was used to prepare zein-AOS nanoparticles (NPs), and the objective was to investigate the mechanism by which CP promotes interaction between protein and saccharides. Characterization results indicated that CP treatment improved hydrogen bonding and electrostatic interaction between zein and AOS. The CP zein-AOS NPs underwent dispersion and rearrangement, resulting in smaller aggregates with better dispersibility. Among the various induction conditions tested, the zein-AOS85 NPs (induced at 85 W for 2 min) exhibited superior performance as delivery wall materials, with smaller particle size (234.67 nm), larger specific surface area (9.443 m2/g), and higher surface charge (-35.43 mV). In addition, zein-AOS85 showed high stability when used as delivery wall material, providing more binding sites and self-assembly dynamics for nutrients. Curcumin was used as the nutrient model in this study, and CP was found to enhance hydrogen bonding, electrostatic interaction, and hydrophobic interaction between zein, AOS, and nutrients, resulting in increased encapsulation efficiency (EE) from 63.80 % to 85.17 %. The delivery system also exhibited good pH, ionic strength, storage, and dispersion stability.
Collapse
Affiliation(s)
- Junjun Zhou
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tongliang Yang
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ziyang Chen
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ye Chen
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuhong Li
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
24
|
Yu JJ, Zhang ZY, Lin XN, Ji YQ, Zhang RR, Ji H, Chen Y. Changes in the structure and hydration properties of high-temperature peanut protein induced by cold plasma oxidation. Int J Biol Macromol 2023; 253:127500. [PMID: 37858644 DOI: 10.1016/j.ijbiomac.2023.127500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
To improve the hydration properties of high-temperature pressed peanut protein isolate (HPPI), we investigated the effect of cold plasma (CP) oxidation on functional and structural properties. Compared to HPPI, the hydrated molecules number and the surface contact angle were significantly decreased at 70 W, from 77.2 × 109 to 17.7 × 109 and from 85.74° to 57.81°, respectively. The reduction of the sulfhydryl content and the increase of the disulfide bond and di-tyrosine content indicated that the structural transformation was affected by the oxidation effect. In terms of structural changes, a stretched tertiary structure, ordered secondary structure, and rough apparent structure were observed after CP treatment. Additionally, the enhancement of surface free energy and group content such as -COOH, -CO and -OH on the surface of HPPI contributed to the formation of hydrated crystal structures. In general, the oxidation effect of CP effectively improved the hydration properties of HPPI and broaden its application field.
Collapse
Affiliation(s)
- Jiao-Jiao Yu
- College of Life Science, Linyi University, Linyi 276005, China.
| | - Zhi-Yao Zhang
- College of Life Science, Linyi University, Linyi 276005, China
| | - Xiang-Na Lin
- College of Life Science, Linyi University, Linyi 276005, China
| | - Yan-Qing Ji
- College of Life Science, Linyi University, Linyi 276005, China
| | - Ran-Ran Zhang
- College of Life Science, Linyi University, Linyi 276005, China
| | - Hui Ji
- College of Life Science, Linyi University, Linyi 276005, China.
| | - Ye Chen
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
25
|
Wang H, Suo R, Wang Y, Sun J, Liu Y, Wang W, Wang J. Effects of electron beam irradiation on protein oxidation and textural properties of shrimp ( Litopenaeus vannamei) during refrigerated storage. Food Chem X 2023; 20:101009. [PMID: 38144782 PMCID: PMC10739921 DOI: 10.1016/j.fochx.2023.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 12/26/2023] Open
Abstract
Protein oxidation leads to changes in shrimp texture, which affects sensory profile and consumer acceptability. This study aimed to evaluate the impact of electron beam irradiation (EBI) on protein oxidation and textural properties of Litopenaeus vannamei during refrigerated storage. Results revealed that EBI treatment and storage increased the protein oxidation level of shrimps. Shrimps irradiated with ≥ 7 kGy exhibited remarkably higher (P < 0.05) reactive oxygen species, turbidity, and carbonyl contents, and remarkably lower (P < 0.05) Ca2+-ATPase activity, surface hydrophobicity, solubility, and total sulfhydryl contents compared to the control group (0 kGy) on the 7th day of storage. Shrimps irradiated with 3 and 5 kGy exhibited remarkably higher (P < 0.05) hardness, springiness, and chewiness compared to the control group (14.99 N, 1.26 mm, and 3.19 mJ). Collectively, suitable EBI doses of 3-5 kGy were recommended in shrimp preservation to inhibit texture softening by inducing moderate protein oxidation.
Collapse
Affiliation(s)
- Haoran Wang
- College of Food Science and Technology, Hebei Agricultural University, Hebei 071000, China
| | - Ran Suo
- College of Food Science and Technology, Hebei Agricultural University, Hebei 071000, China
| | - Yangyang Wang
- College of Food Science and Technology, Hebei Agricultural University, Hebei 071000, China
| | - Jianfeng Sun
- College of Food Science and Technology, Hebei Agricultural University, Hebei 071000, China
| | - Yaqiong Liu
- College of Food Science and Technology, Hebei Agricultural University, Hebei 071000, China
| | - Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, Hebei 071000, China
| | - Jie Wang
- College of Food Science and Technology, Hebei Agricultural University, Hebei 071000, China
| |
Collapse
|
26
|
Wang J, Zhou X, Ju S, Cai R, Roopesh MS, Pan D, Du L. Influence of atmospheric pressure plasma jet on the structural, functional and digestive properties of chickpea protein isolate. Food Res Int 2023; 174:113565. [PMID: 37986520 DOI: 10.1016/j.foodres.2023.113565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
Chickpea protein (CPI) is a promising dietary protein and potential substitute for soy protein in food product development due to its high protein content and low allergenicity. However, CPI possesses denser tertiary and quaternary structures and contains certain amount of anti-nutritional factors, both of which constrain its functional properties and digestibility. The objective of this study was to assess the effectiveness of atmospheric pressure plasma jets (APPJ) as a non-thermal method for enhancing the functional characteristics and digestibility of CPI. In this study, the reactive oxygen and nitrogen species generated by the APPJ treatment led to protein oxidation and increased carbonyl and di-tyrosine contents. At the same time, the secondary, tertiary and microstructural structures of CPI were changed. The solubility, water holding capacity, fat absorption capacity, emulsifying capacity and foaming capacity of CPI were significantly improved after 30 s APPJ treatment, and a higher storage modulus in rheology was observed. Additionally, it was observed that the in vitro protein digestibility (IVPD) of APPJ-treated CPI increased significantly from 44.85 ± 0.6 % to 50.2 ± 0.59 % following in vitro simulated gastric and intestinal digestion, marking a noteworthy improvement of 11.93 %. These findings indicate that APPJ processing can enhance the functional and digestive properties of CPI through structural modification and expand its potential applications within the food industry.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xinyi Zhou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Shilong Ju
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Ruiyi Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - M S Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton AB T6G 2P5, Canada
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Lihui Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China.
| |
Collapse
|
27
|
Liang M, Wang M, Zhou M, Nie S, Xu Y, Yang X, Yuan E, Ren J. Effect of walnut peptide‐ZnO nanocomposites on the colon adhesion behavior of Lactobacillus rhamnosus LRa05. FOOD FRONTIERS 2023; 4:1946-1957. [DOI: 10.1002/fft2.253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025] Open
Abstract
AbstractWhen the nanoparticles (NPs) in food contact materials are exposed, they may be ingested with the food matrix, resulting in unknown impacts. Here, the biological response of the nanocomposites of nano zinc oxide (nZnO) and walnut protein‐derived peptides (i.e., PW5, WN5, AE6, and WE7) on the Lactobacillus rhamnosus LRa05 growth and adhesion was studied. In an in vitro mouse intestinal adhesion model, we first spotted that the probiotics LRa05 primarily adhered to and colonized the colonic segment. nZnO effectively inhibited the growth and adhesion properties of LRa05 at high concentrations (≥ 1000 μg/mL). Fortunately, when compared to the individual nZnO, the nZnO‐walnut‐derived peptides nanocomposites significantly increased the growth of LRa05. It was found that the alterations in the adhesion ability of LRa05 after treatment with various substances (nZnO and nanocomposites of nZnO‐walnut peptides) were related to the auto‐aggregating property on the LRa05 surface. These results shed light on the effect of food matrices on the safety of nanomaterials in food, and they may have far‐reaching implications for the use of nanomaterials in the food industry.
Collapse
Affiliation(s)
- Ming Liang
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Min Wang
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Miao Zhou
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Shiying Nie
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Yongzhao Xu
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Xinquan Yang
- Kashi Guanghua Modern Agriculture Co. Kashi China
| | - Erdong Yuan
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Jiaoyan Ren
- School of Food Science and Engineering South China University of Technology Guangzhou China
| |
Collapse
|
28
|
Sun Q, Kong B, Zheng O, Liu S, Dong X. Effect of protein structure changes during different power ultrasound thawing on emulsification properties of common carp (Cyprinus carpio) myofibrillar protein. ULTRASONICS SONOCHEMISTRY 2023; 101:106719. [PMID: 38091741 PMCID: PMC10757250 DOI: 10.1016/j.ultsonch.2023.106719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023]
Abstract
The impact of ultrasound thawing (UT) at different power (0 W, 100 W/0.132 W·cm-2, 300 W/1.077 W·cm-2, and 500 W/1.997 W·cm-2, namely WT, UT-100, UT-300, and UT-500) on protein structure, aggregation, and emulsifying properties of common carp (Cyprinus carpio) myofibrillar protein were investigated in the present study. The result showed that the reactive sulfhydryl content, total sulfhydryl content, protein solubility, and absolute potential of UT-300 samples were obviously higher than those of other thawed samples, while the turbidity of UT-300 samples was lower (P < 0.05), which indicated that proper UT power was beneficial to inhibit protein aggregation caused by thawing, while too low (100 W) or too high (500 W) ultrasonic power had poor effect. The Ca2+-ATPase activity and thermal stability of UT-300 samples were much higher than those of other thawed samples (P < 0.05), indicating that UT-300 inhibited myosin denaturation and thermal stability reduction of thawed products. The α-helix content of UT-300 samples was higher than that of other thawed samples, while the β-sheet content was significantly lower than that of other thawed samples (P < 0.05). The fluorescence intensity of UT-300 samples was higher than that of other thawed samples, and the λmax of UT-300 samples and UT-100 samples were lower than that of other thawed samples, which indicated that UT-300 could effectively inhibit the alteration of protein secondary structure and tertiary structure during thawing. The emulsifying activity of UT-300 samples was significantly higher than that of WT samples, and the droplet diameter of UT-300 samples was also lower than that of WT samples (P < 0.05), which indicated that UT-300 inhibited the decrease of emulsifying property during thawing. Overall, moderate ultrasonic power (300 W) could effectively inhibit the protein aggregation and structural changes during thawing, led to the decrease of emulsifying activity.
Collapse
Affiliation(s)
- Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ouyang Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
29
|
Urbina JP, Marin C, Rodrigo D, González-Tejedor G. Identification of common cricket ( Acheta domesticus) proteins, extracted by acid and alkaline methods. FOOD SCI TECHNOL INT 2023:10820132231208085. [PMID: 37849282 DOI: 10.1177/10820132231208085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Edible insects currently represent an interesting alternative protein source to the animal ones. The objective of the present wok is to characterize proteins isolated from common cricket (Acheta domesticus). Powder samples of this insect-based flour were obtained using two extraction methods, i.e. acid and alkaline. Subsequently, the proteins isolated have been characterized. The fractionation of proteins in the flour of Acheta domesticus by acid or alkaline-based methods, gave rise to isolates with up to 71.6% in protein content. Extraction in an alkaline medium of insoluble proteins (pellet) resulted in the best performance on protein recovery. These isolates present a wide variety of peptides and proteins, having identified the following ones in the pellet fraction obtained with the acid method: myosin heavy-chain isoforms C, E and Miosin heavy chain (Mhc); tropomyosin; troponin; α and β actin, and some enzymes such as the β subunit ATP synthetase. The characterization results provide information which will enable us to predict the possible physicochemical (gel formation, solubility, water retention capacity, etc.) changes that could take place in the cricket protein during processing in the food and feed industry.
Collapse
Affiliation(s)
- J P Urbina
- Instituto de Agroquímica y Tecnología de Alimentos, Departamento de Tecnologías de Conservación y Seguridad Alimentaria, Paterna, Valencia
| | - C Marin
- Instituto de Agroquímica y Tecnología de Alimentos, Departamento de Tecnologías de Conservación y Seguridad Alimentaria, Paterna, Valencia
| | - D Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos, Departamento de Tecnologías de Conservación y Seguridad Alimentaria, Paterna, Valencia
| | - G González-Tejedor
- Sistema Nacional de Investigación (SNI), SENACYT, Ciudad de Panamá, Panamá
- Centro de Producción e Investigaciones Agroindustriales, Universidad Tecnológica de Panamá, Ciudad de Panamá, Panamá
| |
Collapse
|
30
|
Xu Y, Ahmed I, Zhao Z, Lv L. A comprehensive review on glycation and its potential application to reduce food allergenicity. Crit Rev Food Sci Nutr 2023; 64:12184-12206. [PMID: 37683268 DOI: 10.1080/10408398.2023.2248510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Food allergens are a major concern for individuals who are susceptible to food allergies and may experience various health issues due to allergens in their food. Most allergenic foods are subjected to heat treatment before being consumed. However, thermal processing and prolonged storage can cause glycation reactions to occur in food. The glycation reaction is a common processing method requiring no special chemicals or equipment. It may affect the allergenicity of proteins by altering the structure of the epitope, revealing hidden epitopes, concealing linear epitopes, or creating new ones. Changes in food allergenicity following glycation processing depend on several factors, including the allergen's characteristics, processing parameters, and matrix, and are therefore hard to predict. This review examines how glycation reactions affect the allergenicity of different allergen groups in allergenic foods.
Collapse
Affiliation(s)
- Yue Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Ishfaq Ahmed
- Haide College, Ocean University of China, Qingdao, China
| | - Zhengxi Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Liangtao Lv
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
31
|
Yuan E, Zhou M, Liang Z, Amakye WK, Hou C, Ren J. Effect of sturgeon protein in promoting the adhesion of Lactobacillus plantarum and Lactobacillus rhamnosus. FOOD BIOSCI 2023; 54:102863. [DOI: 10.1016/j.fbio.2023.102863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
|
32
|
Sun R, Xu W, Xiong L, Jiang N, Xia J, Zhu Y, Wang C, Liu Q, Ma Y, Luo H. The combined effects of ultrasound and plasma-activated water on microbial inactivation and quality attributes of crayfish during refrigerated storage. ULTRASONICS SONOCHEMISTRY 2023; 98:106517. [PMID: 37454538 PMCID: PMC10371844 DOI: 10.1016/j.ultsonch.2023.106517] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
In this study, a decontamination technology combining ultrasound (US) and plasma-activated water (PAW) was developed to better preserve crayfish. First, the decontamination efficacy of US, PAW and their combinations (UP) on crayfish was quantified after 0, 20, 40, or 60 min of treatments. The total viable count (TVC) was reduced by 0.27-0.77 Log CFU/g after individual US or PAW treatments, while a TVC reduction of 1.17 Log CFU/g was achieved after 40 min of UP treatment. Besides, the changes in psychrotrophic bacteria, lactic acid bacteria, yeasts and molds followed a similar trend to TVC. UP treatments normally resulted in more significant reductions in the natural microbiota of crayfish than US or PAW treatments. Furthermore, the microbial quality, physicochemical properties and sensory properties of crayfish after different treatments were assessed during storage at 4 °C for 12 days. According to TVC and total volatile basic nitrogen (TVB-N) values, the control group became unacceptable from 4 days, US or PAW groups became unacceptable from 6 days, while UP group extended the storage time to 8-10 days. During storage, thiobarbituric acid reactive substances (TBARS) values of all the groups were maintained below 0.5 mg/kg, among which the control group exhibited the highest value (0.39 mg/kg). Moreover, UP treatment effectively retarded the deterioration in color and texture properties of crayfish. Fourier transform infrared (FTIR) spectroscopy analysis indicated that UP treatment decreased the α-helix contents and increased the β-sheet contents of crayfish proteins, while the structural changes were not evident at the end of storage. Low-field nuclear magnetic resonance (LF-NMR) analysis revealed that UP treatment reduced the water migration and enhanced the stability of bond water in crayfish. In addition, E-nose analysis revealed the protection of UP treatment on the sensory properties of crayfish during storage. This study demonstrated that the combinations of US and PAW treatments effectively accelerated the decontamination of crayfish and contributed to better storage quality.
Collapse
Affiliation(s)
- Rongxue Sun
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Weicheng Xu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Lingming Xiong
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Ning Jiang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China.
| | - Jiangyue Xia
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Yongzhi Zhu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Cheng Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Qianyuan Liu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Yanhong Ma
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Haibo Luo
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
33
|
Wang C, Rao J, Li X, He D, Zhang T, Xu J, Chen X, Wang L, Yuan Y, Zhu X. Chickpea protein hydrolysate as a novel plant-based cryoprotectant in frozen surimi: Insights into protein structure integrity and gelling behaviors. Food Res Int 2023; 169:112871. [PMID: 37254320 DOI: 10.1016/j.foodres.2023.112871] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/07/2023] [Accepted: 04/19/2023] [Indexed: 06/01/2023]
Abstract
Chickpea protein (CP) and its enzymatic hydrolysates are one of the most widely consumed pulse ingredients manifesting versatile applications in food industry, such as binders, emulsifiers, and meat protein substitutes. Other than those well-known functionalities, however, the use of CP as a cryoprotectant remained unexplored. In this study, we prepared the chickpea protein hydrolysate (CPH) and investigated its cryoprotective effects to frozen surimi in terms of the protein structure integrity and gelling behaviors. Results indicated that CPH could inhibit myofibrillar protein (MP) denaturation and oxidation during the freeze-thaw cycling, as evidenced by their increased solubility, Ca2+-ATPase activity, sulfhydryl concentration, and declined content of disulfide bonds, carbonyl concentration and surface hydrophobicity. Freezing-induced changes on MP secondary structures were also retarded. Moreover, gels prepared from CPH-protected frozen surimi demonstrated more stabilized microstructure, uniform water distribution, enhanced elasticity, gel strength and water holding capacity. The CPH alone, at a reducing addition content of 4% (w/w), exhibited comparable cryoprotective performance to that of the commercial formulation (4% sucrose and 4% sorbitol). Therefore, this study provides scientific insights for development of pulse proteins as novel and high-performance food cryoprotectants.
Collapse
Affiliation(s)
- Chao Wang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Junhui Rao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xueyin Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Diheng He
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Ting Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Jianteng Xu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xi Chen
- Key Laboratory of Bulk Grain and Oil Deep Processing Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lan Wang
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Yue Yuan
- Center for Nanophase Materials and Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
| | - Xiangwei Zhu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
34
|
Zhang Z, Shi W, Wang Y, Meng X, Dabbour M, Kumah Mintah B, Chen X, Chen X, He R, Ma H. Mono-frequency ultrasonic-assisted thawing of frozen goose meat: Influence on thawing efficiency, product quality and microstructure. ULTRASONICS SONOCHEMISTRY 2023; 98:106489. [PMID: 37354765 PMCID: PMC10320251 DOI: 10.1016/j.ultsonch.2023.106489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 06/26/2023]
Abstract
This study aimed to investigate the influences of mono-ultrasound assisted thawing on the thawing efficiency, product quality and conformational characteristics of frozen goose meat. The thawing time, thawing loss, muscle quality, and microstructure of frozen goose meat were studied. The results displayed that ultrasonic-assisted thawing effectively reduced the thawing time by 45.37-57.58% compared with non-sonicated group, and significantly decreased the thawing loss. For the quality properties of goose meat tissue, ultrasound-assisted thawing with single-frequency of 50 kHz indicated a lower protein turbidity; meanwhile, hardness values were also significantly increased, and displayed a higher springiness, gumminess and chewiness of goose meat tissue. The microstructure analysis exhibited that the conformation of goose myofibrillar protein (MP) was modified following ultrasonic-assisted thawing, and became closer and more irregular. Therefore, ultrasound-assisted thawing treatments at 50 kHz mono-frequency (temperature 25℃) have a high potential application value in the thawing research of frozen goose meat, and lay a theoretical foundation for use in the meat process industries.
Collapse
Affiliation(s)
- Zhaoli Zhang
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, Jiangsu 225127, China; Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Wangbin Shi
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yang Wang
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, Jiangsu 225127, China; College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Xiangren Meng
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Qaluobia, Egypt
| | | | - Xingyu Chen
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Xi Chen
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
35
|
Sharafodin H, Soltanizadeh N, Barahimi MS. Conjugation of soy protein isolate with carboxymethyl cellulose through dielectric barrier discharge (DBD) plasma. Food Chem 2023; 407:135059. [PMID: 36493488 DOI: 10.1016/j.foodchem.2022.135059] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
The present study aimed to evaluate the physicochemical properties of dielectric barrier discharge (DBD) plasma grafted carboxymethyl cellulose (CMC) and soy protein isolate (SPI). Therefore, the mixture of SPI and CMC was treated at 16, 18 and 20 kV for 5, 10 and 15 min with DBD plasma. The results of FTIR, XRD, FESEM and SDS-PAGE confirmed the SPI-CMC conjugate formation after plasma treatment, and a glycation degree of about 21 % was obtained after 15 min treatment at 18 kV. Significantly higher levels of emulsifying activity and stability, as well as solubility, were obtained for the conjugates, as compared with the SPI-CMC mixture. Also, the smaller droplet sizes were observed in emulsions obtained from conjugate produced at 18 kV for 5 min, which had the most stability after 14 days of storage at 4 °C. Eventually, it was detected that DBD plasma could graft SPI and CMC in a short time.
Collapse
Affiliation(s)
- Hedieh Sharafodin
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Nafiseh Soltanizadeh
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mohammad Sadegh Barahimi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
36
|
Situ H, Li Y, Gao J, Zhang C, Qin X, Cao W, Lin H, Chen Z. Effects of cold atmospheric plasma on endogenous enzyme activity and muscle protein oxidation in Trachinotus ovatus. Food Chem 2023; 407:135119. [PMID: 36512910 DOI: 10.1016/j.foodchem.2022.135119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/29/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022]
Abstract
In this study, we investigated the effects of cold atmospheric plasma (CAP) technology on endogenous enzyme characteristics and muscle protein properties of the golden pomfret (Trachinotus ovatus) under different treatment power and time conditions. Results showed that the enzymatic activity of cathepsin B, L, and calpain in crude protease extracts (CPE) decreased significantly as the treatment power and treatment time of CAP increased (p < 0.05). Oxidative degradation of the CPE after exposure to CAP resulted in significant changes in the structure, total sulfhydryl, and carbonyl content of the CPE (p < 0.05). CAP of an appropriate intensity resulted in significant improvements in the color parameters, hydration properties, and textural property parameters of muscle proteins (p < 0.05). These results suggest that CAP, as a non-thermophysical modification technique, can inhibit the activity of endogenous enzymes as well as alter the protein function in food.
Collapse
Affiliation(s)
- Huiyuan Situ
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yumei Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Chaohua Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Haisheng Lin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Zhongqin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
37
|
Effect of cold plasma-activated water on the physicochemical and functional properties of Bambara groundnut globulin. FOOD STRUCTURE 2023. [DOI: 10.1016/j.foostr.2023.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
38
|
Chen X, Chu X, Li X, Cao F, Guo Q, Wang J. Non-thermal plasma modulation of the interaction between whey protein isolate and ginsenoside Rg 1 to improve the rheological and oxidative properties of emulsion. Food Res Int 2023; 165:112548. [PMID: 36869457 DOI: 10.1016/j.foodres.2023.112548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Molecular interaction forces regulate the interfacial properties of oil-in-water emulsion and play a key role in the rheology and stability of the emulsion in the food industry. In this study, the effects of non-thermal plasma (NTP) treatment on the structural and functional properties of whey protein isolate (WPI) and its binding interaction with ginsenoside Rg1 (GR1) were investigated. The results based on surface hydrophobicity, infrared spectroscopy and fluorescence spectroscopy test showed that the NTP treatment induced the unfolding of the structure of WPI and promoted the binding affinity between WPI and GR1. By comparing with untreated WPI (an α-helix content of 19.63 % and a β-sheet content of 31.66 %), there was a greater decrease in α-helix content and an increase in β-sheet content of WPI in N20-WPI (α-helix = 9.63 %, β-sheet = 39.63 %) and N20-WPI-GR1 (α-helix = 4.98 %, β-sheet = 48.66 %) groups. Importantly, the NTP treatment increased the interfacial adsorption and antioxidant capacity of the WPI-GR1 complexes, which contributed to the improvement of the rheological properties and oxidation stability of the emulsion. As a result, the NTP treatment could markedly improve the rheological and antioxidative properties of the WPI-GR1 complexes and the NTP-treated WPI-GR1 emulsions was more stable than that untreated. The present research indicated that NTP-treated formation of protein-saponin complexes could enhance the functional properties of the proteins, thus expanding their application as functional ingradients in nutritionally fortified food.
Collapse
Affiliation(s)
- Xianqiang Chen
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyu Chu
- Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Xue Li
- Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Fuliang Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Qirong Guo
- Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Jiahong Wang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center of Efficient Procession of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
39
|
Feng J, Bai X, Li Y, Kong B, Nuerjiang M, Wu K, Li Z, Xia X. Improvement on gel properties of myofibrillar protein from chicken patty with potato dietary fiber: Based on the change in myofibrillar protein structure and water state. Int J Biol Macromol 2023; 230:123228. [PMID: 36641026 DOI: 10.1016/j.ijbiomac.2023.123228] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/27/2022] [Accepted: 01/07/2023] [Indexed: 01/13/2023]
Abstract
Influence of potato dietary fiber (PDF) on myofibrillar protein (MP) structure, aggregation behavior, and gel properties of chicken patty was evaluated. The Raman spectroscopy results indicated that the α-helix content decreased by 21.9 %, while β-sheets content increased by 45.0 % in 3.0 % PDF sample compared with the control (P < 0.05), and aliphatic residues cross-linked. Particle size, turbidity, and the roughness of MP surface morphology increased, whereas the zeta-potential of MPs decreased with PDF increasing. The gelation process of MP with PDF proceeded at a fast rate and their elasticity and viscosity were high as determined by dynamic rheology. Gels with 3.0 % PDF exhibited significantly enhanced gel strength and a high WHC, which increased by 44.20 % and 22.5 %, respectively, compared with the control, PDF inhibited the transformation of immobilized water to free water and eliminated the water channels during heating as well as formed a more uniform and denser microstructure. Therefore, PDF can be a potential ingredient for improving the quality of processed meat products.
Collapse
Affiliation(s)
- Jia Feng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xue Bai
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Maheshati Nuerjiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Kairong Wu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zihao Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
40
|
Enhanced Gel Properties of Duck Myofibrillar Protein by Plasma-Activated Water: Through Mild Structure Modifications. Foods 2023; 12:foods12040877. [PMID: 36832952 PMCID: PMC9956232 DOI: 10.3390/foods12040877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
This study assessed the gel properties and conformational changes of duck myofibrillar protein (DMP) affected by plasma-activated water (PAW) generated at various discharge times (0 s, 10 s, 20 s, 30 s, and 40 s). With the treatment of PAW-20 s, the gel strength and water-holding capacity (WHC) of DMP gels were significantly increased when compared to the control group. Throughout the heating process, dynamic rheology revealed that the PAW-treated DMP had a higher storage modulus than the control. The hydrophobic interactions between protein molecules were significantly improved by PAW, resulting in a more ordered and homogeneous gel microstructure. The increased sulfhydryl and carbonyl content in DMP indicated a higher degree of protein oxidation with PAW treatment. Additionally, the circular dichroism spectroscopy demonstrated that PAW induced α-helix and β-turn transformed to β-sheet in DMP. Surface hydrophobicity, fluorescence spectroscopy, and UV absorption spectroscopy suggested that PAW altered DMP's tertiary structure, although the electrophoretic pattern indicated that the primary structure of DMP was mostly unaffected. These results suggest that PAW can improve the gel properties of DMP through mild alteration in its conformation.
Collapse
|
41
|
Wang X, Wang J, Wang Z, Yan W, Zhuang H, Zhang J. Impact of dielectric barrier discharge cold plasma on the lipid oxidation, color stability, and protein structures of myoglobin-added washed pork muscle. Front Nutr 2023; 10:1137457. [PMID: 36845053 PMCID: PMC9947400 DOI: 10.3389/fnut.2023.1137457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Cold plasma has been considered a novel non-thermal processing technique and attracted a high attention by the food industry. In this study, the influences of dielectric barrier discharge cold plasma (DBD-CP) on the myoglobin (Mb)-added washed pork muscle (WPM) were evaluated. The electrophoresis pattern, autoxidation, and secondary structure of Mb were analyzed. The results found that DBD-CP caused the decrease of the redness and total sulfhydryl (T-SH) in WPM, while the increase of non-heme, peroxide value (PV), and thiobarbituric acid reactive substances (TBARS), suggested that treatment triggered protein oxidation and heme degradation. Additionally, DBD-CP treatment enhanced the autoxidation of Mb, induced the release of intact heme from the globin, rearranged the charged groups, and promoted Mb aggregation. The transformation of α-helix into the random coil of Mb demonstrated that DBD-CP weakened the tensile strength. Overall, data indicated that DBD-CP promoted autoxidation and changed the secondary structure of Mb, accelerating Mb-mediated lipid oxidation in WPM. Thus, further studies about the optimization of processing conditions by DBD-CP need to be performed.
Collapse
Affiliation(s)
- Xiaoting Wang
- College of Food Science and Technology, National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China,College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China,*Correspondence: Jin Wang ✉
| | - Zhaobin Wang
- College of Food Science and Technology, National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Wenjing Yan
- College of Food Science and Technology, National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Hong Zhuang
- Quality and Safety Assessment Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States
| | - Jianhao Zhang
- College of Food Science and Technology, National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China,Jianhao Zhang ✉
| |
Collapse
|
42
|
Chu Y, Ding Z, Wang J, Xie J. Exploration of the evolution and production of volatile compounds in grouper (Epinephelus coioides) during cold storage. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
43
|
Zhu H, Cheng JH, Ma J, Sun DW. Deconstruction of pineapple peel cellulose based on Fe2+ assisted cold plasma pretreatment for cellulose nanofibrils preparation. Food Chem 2023; 401:134116. [DOI: 10.1016/j.foodchem.2022.134116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/21/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022]
|
44
|
Kong D, Han R, Yuan M, Xi Q, Du Q, Li P, Yang Y, Applegate B, Wang J. Ultrasound combined with slightly acidic electrolyzed water thawing of mutton: Effects on physicochemical properties, oxidation and structure of myofibrillar protein. ULTRASONICS SONOCHEMISTRY 2023; 93:106309. [PMID: 36706669 PMCID: PMC9938326 DOI: 10.1016/j.ultsonch.2023.106309] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/08/2023] [Accepted: 01/21/2023] [Indexed: 05/24/2023]
Abstract
The effects of air thawing (AT), water immersion thawing (WT), microwave thawing (MT) and ultrasound combined with slightly acidic electrolyzed water thawing (UST) on the myofibrillar protein (MP) properties (surface hydrophobicity, solubility, turbidity, particle size and zeta potential), protein oxidation (carbonyl content and sulfhydryl content) and structure (primary, secondary and tertiary) of frozen mutton were investigated in comparison with fresh mutton (FM). The solubility and turbidity results showed that the MP properties were significantly improved in the UST treatment. UST treatment could effectively reduce the MP aggregation and enhance the stability, which was similar to the FM. In addition, UST treatment could effectively inhibit protein oxidation during thawing as well. The primary structure of MP was not damaged by the thawing methods. UST treatment could reduce the damage to MP secondary and tertiary structure during the thawing process compared to other thawing methods. Overall, the UST treatment had a positive influence in maintaining the MP properties by inhibiting protein oxidation and protecting protein structure.
Collapse
Affiliation(s)
- Dewei Kong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Mengdi Yuan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qian Xi
- College of Food Science and Engineering, Tarim University, Alar 843300, China
| | - Qijing Du
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Peng Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Bruce Applegate
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
45
|
Han Y, Liu H, Li Q, Zhao D, Shan K, Ke W, Zhang M, Li C. The degree of doneness affected molecular changes and protein digestibility of pork. Front Nutr 2023; 9:1084779. [PMID: 36687702 PMCID: PMC9845567 DOI: 10.3389/fnut.2022.1084779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
The degree of doneness has been shown to have a great impact on eating quality of meat, however, it is little known whether it affects protein digestibility of meat. In this study, we explored molecular changes and protein digestibility of pork under different degree of doneness. Pork chops were cooked in a 100°C water bath for about 26 min and a gradient decrease in doneness was obtained from outer to inner layers of samples. Compared with the raw samples, the cooked samples' active and total sulfhydryl contents, surface hydrophobicity, and turbidity increased but its solubility decreased. The inner layers with lower doneness contained higher α-helix, and fluorescence intensities of tryptophan and tyrosine residues than the outer layers with higher doneness. The pepsin and pancreatin digestibility of meat proteins in the inner layers were higher than those of the outer layers. Molecular simulation analysis showed that the most abundant protein in pork, i.e., myosin in the outer layers were more stable with an increased number of hydrogen bonds, making it difficult to be digested. These findings provided a new insight into the heterogeneity of meat nutritional quality due to the existence of doneness gradient.
Collapse
Affiliation(s)
- Yu Han
- Key Laboratory of Meat Processing and Quality Control, MOE, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Key Laboratory of Meat Processing, MARA, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hui Liu
- Key Laboratory of Meat Processing and Quality Control, MOE, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Key Laboratory of Meat Processing, MARA, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qian Li
- Key Laboratory of Meat Processing and Quality Control, MOE, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Key Laboratory of Meat Processing, MARA, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Key Laboratory of Meat Processing, MARA, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Kai Shan
- Key Laboratory of Meat Processing and Quality Control, MOE, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Key Laboratory of Meat Processing, MARA, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weixin Ke
- Key Laboratory of Meat Processing and Quality Control, MOE, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Key Laboratory of Meat Processing, MARA, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Miao Zhang
- Key Laboratory of Meat Processing and Quality Control, MOE, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Key Laboratory of Meat Processing, MARA, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,*Correspondence: Miao Zhang,
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Key Laboratory of Meat Processing, MARA, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Chunbao Li,
| |
Collapse
|
46
|
Wang J, Cheng JH, Sun DW. Enhancement of Wheat Seed Germination, Seedling Growth and Nutritional Properties of Wheat Plantlet Juice by Plasma Activated Water. JOURNAL OF PLANT GROWTH REGULATION 2023; 42:2006-2022. [PMID: 35668726 PMCID: PMC9152647 DOI: 10.1007/s00344-022-10677-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/04/2022] [Indexed: 05/04/2023]
Abstract
UNLABELLED Previous studies have shown the great potential of using plasma-activated water (PAW) on improving agriculture seed germination, however, information on the influence of PAW on crop plantlet juice remains scanty. In this research, the effect of PAW generated by atmosphere pressure Ar-O2 plasma jet for 1-5 min on wheat seed germination, seedling growth and nutritional properties of wheat plantlet juice was investigated. Results revealed that all PAWs could enhance wheat seed germination and seedling growth in 7 days by improving the germination rate, germination index, fresh weight, dry weight and vigour index, and especially that PAW activated for 3 min (PAW-3) showed the best overall performance. In addition, the application of PAWs enhanced the nutritional properties of wheat plantlet juice from those grown for 14 days by improving total soluble solids, protein content, photosynthetic pigments, total phenolic content, antioxidant activity, enzyme activity, free amino acids and minerals content, and the best enhancement was also observed in PAW-3. It was concluded that PAWs would be an effective technique to enhance the growth and nutritional properties of crop sprouts, which could be served as functional foods in many forms. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00344-022-10677-3.
Collapse
Affiliation(s)
- Junhong Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641 China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006 China
- Engineering and Technological Research Centre of Guangdong Province On Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, 510006 China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641 China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006 China
- Engineering and Technological Research Centre of Guangdong Province On Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, 510006 China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641 China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006 China
- Engineering and Technological Research Centre of Guangdong Province On Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, 510006 China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| |
Collapse
|
47
|
Bu F, Feyzi S, Nayak G, Mao Q, Kondeti VSK, Bruggeman P, Chen C, Ismail BP. Investigation of novel cold atmospheric plasma sources and their impact on the structural and functional characteristics of pea protein. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2022.103248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Modification of functional properties of mussel actomyosin by ultrasound treatment and the appplication at O/W emulsion. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Physicochemical and Functional Properties Changes in Myofibrillar Protein Extracted from Channel Catfish by a High-Voltage Electrostatic Field. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
On the emerging of thawing drip: Role of myofibrillar protein renaturation. Food Chem 2022; 393:133398. [PMID: 35689925 DOI: 10.1016/j.foodchem.2022.133398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022]
Abstract
This study aimed to facilitate the understanding on the origin of thawing drip under different freezing rate. Eventually we observed significantly greater thaw loss produced by slow freezing (8.58%) as compared to fast freezing (6.41%) after 24 h of thawing. Back to the freezing, ice crystallization induced decline in pH and the cold denaturation of myofibrillar protein. However, independent of freezing rate, we noticed protein renaturation with pH restoring during thawing, evidenced by the decreasing surface hydrophobicity, increasing solubility and thermal stability, and gradually stabilized secondary structure. Meanwhile, the water-holding of myofibrils increased with thawing process along with the rising water mobility. Under fast freezing, the results indicated less extensive protein cold denaturation and lower water mobility during thawing. Besides, we proposed that the microenvironment of lower ionic strength in fast freezing should benefit the protein renaturation and water re-absorption, ultimately contributed to lower thaw loss.
Collapse
|