1
|
Xiong Y, Fan B, Li L, Liu Y, Wang X, Fei C, Tong L, Wang F, Huang Y. Effects of different drying methods on the structure, bioaccessibility, and bioavailability of selenium-enriched peptides from soybean sprouts. Food Chem 2025; 468:142442. [PMID: 39671918 DOI: 10.1016/j.foodchem.2024.142442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/22/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Selenium-enriched peptides (SePPs) were isolated from Se-enriched soybean sprouts as the selenium (Se) supplement. The preparation of SePPs was optimised, and their Se content, stability during drying, and absorption properties, were examined. The maximum in vitro antioxidant activity of SePPs was achieved after 5 h of alcalase, at 50 °C, pH 9, 3 % substrate concentration, and 5 % enzyme concentration. 58 peptides containing SeMet or SeCsy were found. Following different drying methods, the Se content dropped, and the cross-linked SePPs produced by freeze-drying had higher hydrophobicity, reduced free sulfhydryl concentration, and more potent in vitro antioxidant activity. In the Caco-2 monolayer cellular transport model, the transport efficiency of SePPs were significantly higher than those of selenite, and the binding of peptides enhanced the bioaccessibility and bioavailability of Se. The study elucidated the structure, composition, morphology bioaccessibility and bioavailabilityand of SePPs, providing support for SePPs functional food development.
Collapse
Affiliation(s)
- Yangyang Xiong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China.
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China.
| | - Lin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yanfang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Xinrui Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Chengxin Fei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Litao Tong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China.
| | - Yatao Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China.
| |
Collapse
|
2
|
Zhang S, Sun J, Yu S, Fu T, Feng Y, Li Z, Zhang D, Wang C. Molecular Observations on the Regulation of hIAPP Aggregation Process and Enhancement of Autophagy by the Short Peptide LPFYPN and Its Modified Peptides of Coix Seed Prolamins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4659-4672. [PMID: 39950826 DOI: 10.1021/acs.jafc.4c12559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Inhibiting the fibrotic aggregation of the human islet amyloid polypeptide (hIAPP) and accelerating aggregate clearance are crucial factors in type II diabetes regulation. Autophagy plays a central role in hIAPP fibrotic degradation. We investigated how the coix seed prolamin-derived active peptide (LPFYPN, LP6) and its modifying peptides affect hIAPP aggregation and autophagic processes in induced rat insulinoma (INS-1) cells. Both LP6 and its modified peptides inhibited the fibrotic aggregation of hIAPP, an effect related to the binding site within the core region of hIAPP. Additionally, LP6 and the modified peptides reduced hIAPP-induced cytotoxicity, enhanced LC3-II/LC3-I, decreased p62 protein levels, and promoted autophagy by inhibiting the PI3K-Akt-mTOR signaling pathway, thereby upregulating ULK-1 and Beclin-1 expression. Finally, LP6 modified with selenium showed superior inhibition of hIAPP aggregation and cytotoxicity as well as regulation of autophagic flow. These findings emphasize the potential of LP6 and its modified peptides in regulating type II diabetes and other amyloid-related diseases and indicate that they could be further developed as novel functional food ingredients against type 2 diabetes mellitus (T2DM).
Collapse
Affiliation(s)
- Shu Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, P. R. China
| | - Jingru Sun
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, P. R. China
- National Coarse Cereals Engineering Research Center, Daqing 163319, P. R. China
| | - Shibo Yu
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, P. R. China
- National Coarse Cereals Engineering Research Center, Daqing 163319, P. R. China
| | - Tianxin Fu
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, P. R. China
| | - Yuchao Feng
- Institute of Quality Standards and Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Zhijiang Li
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, P. R. China
| | - Dongjie Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, P. R. China
- National Coarse Cereals Engineering Research Center, Daqing 163319, P. R. China
- Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, P. R. China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, P. R. China
- National Coarse Cereals Engineering Research Center, Daqing 163319, P. R. China
- Heilongjiang Food and Biotechnology Innovation and Research Center (International Cooperation), Daqing 163319, P. R. China
| |
Collapse
|
3
|
Wang X, Jia W, Zhang R, Shi L, He B. Pyro-Thermolysis Pattern Analysis of Selenopeptide in Selenium-Enriched Rice Based on Two-Dimensional Dietary Kinetics Evolution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2902-2911. [PMID: 39841868 DOI: 10.1021/acs.jafc.4c07303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Selenopeptides can be ideal dietary selenium (Se) supplements for humans. Currently, rice is not used much as a source of selenopeptides. Here, we executed the selenopeptidomics analysis of selenium-enriched rice protein hydrolysates using the full MS-dd-MS2 acquisition method and identified selenopeptides, including L{Se-Met}AK and other selenopeptides. Specifically, selenomethionine (SeMet) replaced methionine (Met) in the rice protein-Oryzain alpha chain (EC: 3.4.22) and generated a selenopeptide L{Se-Met}AK (molecular formula: C20H38N5O5Se) during subsequent protein hydrolysis. This selenopeptide was in 425-428 amino acid residues of the Oryzain alpha chain. Thermal processing led to selenopeptide cleavage, which affected the efficient retention of selenopeptides. Activation energy (Ea) was used to locate the quality control markers in the thermal degradation of selenopeptides. Therefore, this study established the thermal degradation rate equation for the selenopeptide L{Se-Met}AK at 100 °C, 110 and 120 °C; and identified the pyrolysis products, including L{Se-Met}A, LMA, LMAK, K1, and K2, involving C-N cleavage on the amide bond of alanine and lysine, C-Se bond cleavage and C-N cleavage on the amide bond of alanine and Met; the fit coefficients of the thermal reaction models were ≥0.9248, which could accurately quantify the real-time pyrolysis kinetic process; and LMAK had a lower Ea of 88.20 kJ/mol, which made it easier to produce. In summary, LMAK can be used as a quality control marker in the pyrolysis process, providing technical support for the efficient retention of selenopeptides.
Collapse
Affiliation(s)
- Xin Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Bo He
- Ankang Research and Development Center for Se-Enriched Products, Ankang 725000, China
| |
Collapse
|
4
|
Xing C, Zhang J, Li P, Yuan J, Li G, Yan W. Analysis of Microheterogeneous Glutelin Subunits and Highly Efficient Identification of Selenylation Peptides by In-Gel Proteolysis: Focus on Se-Enriched Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26572-26585. [PMID: 39539184 DOI: 10.1021/acs.jafc.4c07762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Selenylation of cysteine and methionine thiols through selenate supplements increases the content of selenium-containing amino acids in various agricultural products. This modification results in numerous biological and health benefits. Despite their critical roles in human physiology, methods for high-coverage and efficient identification of selenylation peptides are limited. This study systematically developed a mass spectrometric method to identify selenylation peptides combined with in-gel trypsin proteolysis. In-gel proteolysis identified the two well-separated bands containing rice glutelin. We identified 11 rice glutelin subunits along with 42 selenylation peptides from the glutelin acidic subunits and 30 selenylation peptides from the glutelin basic subunits with high confidence. A comprehensive evaluation disclosed the mapping of selenium-containing rice glutelin subunits. Additionally, the selenylation modification of peptides coexisted with oxidation and iodoacetamide (IAM) alkylation. Moreover, the multidimensional MS criteria validated the results, while spectral statistics revealed the veritable Se/S substitution degree in Se-enriched rice. These findings collectively demonstrated the presence of numerous selenation sites in microheterogeneous glutelin subunits, thereby enhancing our understanding of the seleno-peptidomics of rice proteins. As significant bioactive organic compounds, the identified peptides in this study are promising candidates for a variety of bioactivities, including neuroprotective, anti-inflammatory, antioxidant, hepatoprotective, and immunomodulatory effects.
Collapse
Affiliation(s)
- Changrui Xing
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jie Zhang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Peng Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jian Yuan
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Guanglei Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Wenjing Yan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Tang W, Luo X, Fan F, Sun X, Jiang X, Li P, Ding J, Lin Q, Zhao S, Cheng Y, Fang Y. Zein and gum arabic nanoparticles: potential enhancers of immunomodulatory functional activity of selenium-containing peptides. Food Funct 2024; 15:9972-9982. [PMID: 39268750 DOI: 10.1039/d4fo02572e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Food-derived nanomaterials optimizing bioactive peptides is an emerging route in the functional food field. Zein and gum arabic (GA) possess favorable encapsulation properties for controlled release, targeted delivery and stabilization of food bioactive ingredients, and thus are considered as promising carriers for delivery systems. In order to improve the bioavailability of rice selenium-containing peptide TSeMMM (T), the nanoparticles (ZTGNs) containing peptide T, zein and GA have been previously prepared. This study focused on evaluating the immunomodulatory capacity of ZTGNs. The results showed that ZTGNs significantly alleviated cyclophosphamide-induced reduction in immune organ indices and liver glutathione content of mice. There was a significant upregulation observed in the levels of immune-related cytokines IL-6, TNF-α, and IFN-γ as well as their mRNA expression. Moreover, ZTGNs enriched the diversity of the intestinal flora and promoted the proportion of beneficial bacteria. In conclusion, ZTGNs have potential as immunomodulatory enhancers for food bioactive ingredients, providing prospects for further optimization of dietary supplements.
Collapse
Affiliation(s)
- Wenqian Tang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Xieqi Luo
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Fengjiao Fan
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Xinyang Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Xiaoyi Jiang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Peng Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Jian Ding
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Qinlu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Siming Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| |
Collapse
|
6
|
Yan Z, Gui Y, Liu C, Zhang X, Wen C, Olatunji OJ, Suttikhana I, Ashaolu TJ. Gastrointestinal digestion of food proteins: Anticancer, antihypertensive, anti-obesity, and immunomodulatory mechanisms of the derived peptides. Food Res Int 2024; 189:114573. [PMID: 38876600 DOI: 10.1016/j.foodres.2024.114573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/26/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
Food proteins and their peptides play a significant role in the important biological processes and physiological functions of the body. The peptides show diverse biological benefits ranging from anticancer to antihypertensive, anti-obesity, and immunomodulatory, among others. In this review, an overview of food protein digestion in the gastrointestinal tract and the mechanisms involved was presented. As some proteins remain resistant and undigested, the multifarious factors (e.g. protein type and structure, microbial composition, pH levels and redox potential, host factors, etc.) affecting their colonic fermentation, the derived peptides, and amino acids that evade intestinal digestion are thus considered. The section that follows focuses on the mechanisms of the peptides with anticancer, antihypertensive, anti-obesity, and immunomodulatory effects. As further considerations were made, it is concluded that clinical studies targeting a clear understanding of the gastrointestinal stability, bioavailability, and safety of food-based peptides are still warranted.
Collapse
Affiliation(s)
- Zheng Yan
- Second People's Hospital of Wuhu City, Anhui Province, China.
| | - Yang Gui
- Second People's Hospital of Wuhu City, Anhui Province, China.
| | - Chunhong Liu
- Second People's Hospital of Wuhu City, Anhui Province, China.
| | - Xiaohai Zhang
- Second People's Hospital of Wuhu City, Anhui Province, China.
| | - Chaoling Wen
- Anhui College of Traditional Chinese Medicine, Wuhu City 241000, Anhui, China.
| | | | - Itthanan Suttikhana
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Branišovská 1645/31a, 370 05 České Budějovice 2, Czechia.
| | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Medicine, Duy Tan University, Da Nang 550000, Viet Nam.
| |
Collapse
|
7
|
Hou Y, Chen X, Zhang M, Yang S, Liao A, Pan L, Wang Z, Shen X, Yuan X, Huang J. Selenium-Chelating Peptide Derived from Wheat Gluten: In Vitro Functional Properties. Foods 2024; 13:1819. [PMID: 38928761 PMCID: PMC11203129 DOI: 10.3390/foods13121819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The efficacy of selenium-chelating polypeptides derived from wheat protein hydrolysate (WPH-Se) includes enhancing antioxidant capacity, increasing bioavailability, promoting nutrient absorption, and improving overall health. This study aimed to enhance the bioavailability and functional benefits of exogenous selenium by chelating with wheat gluten protein peptides, thereby creating bioactive peptides with potentially higher antioxidant capabilities. In this study, WPH-Se was prepared with wheat peptide and selenium at a mass ratio of 2:1, under a reaction system at pH 8.0 and 80 °C. The in vitro antioxidant activity of WPH-Se was evaluated by determining the DPPH, OH, and ABTS radical scavenging rate and reducing capacity under different conditions, and the composition of free amino acids and bioavailability were also investigated at various digestion stages. The results showed that WPH-Se possessed significant antioxidant activities under different conditions, and DPPH, OH, and ABTS radical scavenging rates and reducing capacity remained high at different temperatures and pH values. During gastrointestinal digestion in vitro, both the individual digestate and the final digestate maintained high DPPH, OH, and ABTS radical scavenging rates and reducing capacity, indicating that WPH-Se was able to withstand gastrointestinal digestion and exert antioxidant effects. Post-digestion, there was a marked elevation in tryptophan, cysteine, and essential amino acids, along with the maintenance of high selenium content in the gastrointestinal tract. These findings indicate that WPH-Se, with its enhanced selenium and amino acid profile, serves as a promising ingredient for dietary selenium and antioxidant supplementation, potentially enhancing the nutritional value and functional benefits of wheat gluten peptides.
Collapse
Affiliation(s)
- Yinchen Hou
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, China; (S.Y.); (X.S.); (X.Y.)
- Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang 461000, China
| | - Xinyang Chen
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
| | - Mingyi Zhang
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
| | - Shengru Yang
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, China; (S.Y.); (X.S.); (X.Y.)
| | - Aimei Liao
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
- Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang 461000, China
| | - Long Pan
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
- Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang 461000, China
| | - Zhen Wang
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
| | - Xiaolin Shen
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, China; (S.Y.); (X.S.); (X.Y.)
| | - Xiaoqing Yuan
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, China; (S.Y.); (X.S.); (X.Y.)
| | - Jihong Huang
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
- Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang 461000, China
| |
Collapse
|
8
|
Hussain B, Yin X, Lin Q, Hamid Y, Usman M, Hashmi MLUR, Lu M, Imran Taqi M, He Z, Yang XE. Mitigating cadmium exposure risk in rice with foliar nano-selenium: Investigations through Caco-2 human cell line in-vivo bioavailability assay. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124356. [PMID: 38866319 DOI: 10.1016/j.envpol.2024.124356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/23/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
The contamination of paddy fields by cadmium and lead is a major issue in China. The consumption of rice grown in heavy metals contaminated areas poses severe health risks to humans, where bioavailability and bioaccessibility remains the critical factor for risk determination. Selenium nanoparticles (Se-NPs) can mitigate the toxicity of heavy metals in plants. However, there exists limited information regarding the role of Se-NPs in dictating cadmium (Cd) toxicity in rice for human consumption. Moreover, the impact of Se-NPs under simultaneous field and laboratory controlled conditions is rarely documented. To address this knowledge gap, a field experiment was conducted followed by laboratory scale bioavailability assays. Foliar application of Se-NPs and selenite (at 5, 10 mg L-1) was performed to assess their efficiency in lowering Cd accumulation, promoting Se biofortification in rice grains, and evaluating Cd exposure risk from contaminated rice. Obtained results indicate that foliar treatments significantly reduced the heavy metal accumulation in rice grains. Specifically, Se-NP 10 mg L-1 demonstrated higher efficiency, reducing Cd and Pb by 56 and 32 % respectively. However, inconsistent trends for bioavailable Cd (0.03 mg kg-1) and bioaccessible (0.04 mg kg-1) were observed while simulated human rice intake. Furthermore, the foliage application of Se-NPs and selenite improved rice quality by elevating Se, Zn, Fe, and protein levels, while lowering phytic acid content in rice grains. In summary, this study suggests the promising potential of foliage spraying of Se-NPs in lowering the health risks associated with consuming Cd-contaminated rice.
Collapse
Affiliation(s)
- Bilal Hussain
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, China
| | - Xianyuan Yin
- Beautiful Rural Construction Center of Quzhou, Quzhou, 324003, Zhejiang, China
| | - Qiang Lin
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, China
| | - Yasir Hamid
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Usman
- Université de Rennes, Ecole National e Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Muhammad Laeeq-Ur-Rehman Hashmi
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, China
| | - Min Lu
- State Key Laboratory of Nutrient Use and Management, Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Muhammad Imran Taqi
- Department of Soil & Environmental Sciences, College of Agriculture, University of Sargodha, 40100 Sargodha, Pakistan
| | - Zhenli He
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, Florida, 34945, USA
| | - Xiao E Yang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Wang X, Jia W. Se-Pair Search for Deciphering Selenium-Encoded Peptide and a Pyrolysis-Thermolysis Dietary Model for Minimizing Loss of "KKSe(M)R" during Processing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12566-12581. [PMID: 38770928 DOI: 10.1021/acs.jafc.4c01638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Dietary deficiency of selenium is a global health hazard. Supplementation of organic selenopeptides via food crops is a relatively safe approach. Selenopeptides with heterogeneous selenium-encoded isotopes or a poorly fragmented peptide backbone remain unidentified in site-specific selenoproteomic analysis. Herein, we developed the Se-Pair Search, a UniProtKB-FASTA-independent peptide-matching strategy, exploiting the fragmentation patterns of shared peptide backbones in selenopeptides to optimize spectral interpretation, along with developing new selenosite assignment schemes (steps 1-3) to standardize selenium-localization data reporting for the selenoproteome community and thereby facilitating the discovery of unexpected selenopeptides. Using selenium-biofortified rice under cooking, fermentation, and high-temperature and high-pressure processing conditions as a pyrolysis-thermolysis dietary model, we probed the single-molecule-level kinetic evolution of the novel selenopeptide "KKSe(M)R" with qual-quantitative information on graph-theory-oriented localization calculations, abundance patterns, activation energy, and rate constants at a selenoproteome-wide scale. We ground-truth-annotated thirteen pyrolysis-thermolysis products and inferred four pyrolysis-thermolysis pathways to characterize the formation reactivity of the main intermediate variables of KKSe(M)R and constructed an advanced probe-type ultrasound technique prior to pyrolysis-thermolysis conditions for minimizing loss of KKSe(M)R during processing. Importantly, we reveal the unappreciated pyro-excitation diversion of KKSe(M)R at pyrolysis-thermolysis time and temperature matrices. These findings provide pioneering theoretical guidance for controlling dietary selenium supplementation within the safety thresholds.
Collapse
Affiliation(s)
- Xin Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
| |
Collapse
|
10
|
Fan G, Li Y, Ye Q, Niu Q, Zhao X, Chen L, Gu Q, Zhang Y, Wei X, Wu S, Wu Q, Wu Y. Animal-derived free hydrolysate in animal cell culture: Current research and application advances. J Tissue Eng 2024; 15:20417314241300388. [PMID: 39649943 PMCID: PMC11624555 DOI: 10.1177/20417314241300388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/01/2024] [Indexed: 12/11/2024] Open
Abstract
Fetal bovine serum (FBS) plays a crucial role in the composition of animal cell culture medium. However, conventional serum-based medium face numerous challenges. The use of animal-derived free hydrolysate (ADFH) has garnered significant attention in research and applications as a viable alternative to FBS-containing medium in animal cell culture. This article provides a comprehensive overview of the effects, mechanisms of action, and applications of ADFH in animal cell culture. ADFH serves as an effective substitute for FBS-containing medium, enhancing various cellular processes, including cell proliferation, viability, protein synthesis, production, survival, and stability. Several mechanisms of action for ADFH have been elucidated through scientific investigations, such as nutrient provision, activation of signaling pathways, regulation of protein synthesis and folding, protection against oxidative damage and apoptosis, as well as cell cycle regulation. Researches and applications of ADFH represent a promising approach to overcoming the limitations of FBS-containing medium and advancing the field of animal cell culture. This review provides a theoretical foundation for promoting the development of sustainable and alternative hydrolysates, as well as the continued progress of animal cell culture.
Collapse
Affiliation(s)
- Guanghan Fan
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qinghua Ye
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qinya Niu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyu Zhao
- Guangdong Kehuan Biological Science and Technology Co. Ltd., Guangzhou, Guangdong, China
| | - Ling Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qihui Gu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Youxiong Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xianhu Wei
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shi Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuwei Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
11
|
Zhang J, Li W, Li H, Liu W, Li L, Liu X. Selenium-Enriched Soybean Peptides as Novel Organic Selenium Compound Supplements: Inhibition of Occupational Air Pollution Exposure-Induced Apoptosis in Lung Epithelial Cells. Nutrients 2023; 16:71. [PMID: 38201901 PMCID: PMC10780830 DOI: 10.3390/nu16010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The occupational groups exposed to air pollutants, particularly PM2.5, are closely linked to the initiation and advancement of respiratory disorders. The aim of this study is to investigate the potential protective properties of selenium-enriched soybean peptides (Se-SPeps), a novel Se supplement, in mitigating apoptosis triggered by PM2.5 in A549 lung epithelial cells. The results indicate a concentration-dependent reduction in the viability of A549 cells caused by PM2.5, while Se-SPeps at concentrations of 62.5-500 µg/mL showed no significant effect. Additionally, the Se-SPeps reduced the production of ROS, proinflammatory cytokines, and apoptosis in response to PM2.5 exposure. The Se-SPeps suppressed the PM2.5-induced upregulation of Bax/Bcl-2 and caspase-3, while also restoring reductions in p-Akt in A549 cells. The antiapoptotic effects of Se-SPeps have been found to be more effective compared to SPeps, SeMet, and Na2SeO3 when evaluated at an equivalent protein or Se concentration. Our study results furnish evidence that supports the role of Se-SPeps in reducing the harmful effects of PM2.5, particularly in relation to its effect on apoptosis, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Jian Zhang
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (W.L.); (W.L.); (L.L.); (X.L.)
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Wenhui Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (W.L.); (W.L.); (L.L.); (X.L.)
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (W.L.); (W.L.); (L.L.); (X.L.)
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Wanlu Liu
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (W.L.); (W.L.); (L.L.); (X.L.)
| | - Lu Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (W.L.); (W.L.); (L.L.); (X.L.)
| | - Xinqi Liu
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (W.L.); (W.L.); (L.L.); (X.L.)
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
12
|
Qi Z, Duan A, Ng K. Selenoproteins in Health. Molecules 2023; 29:136. [PMID: 38202719 PMCID: PMC10779588 DOI: 10.3390/molecules29010136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Selenium (Se) is a naturally occurring essential micronutrient that is required for human health. The existing form of Se includes inorganic and organic. In contrast to the inorganic Se, which has low bioavailability and high cytotoxicity, organic Se exhibits higher bioavailability, lower toxicity, and has a more diverse composition and structure. This review presents the nutritional benefits of Se by listing and linking selenoprotein (SeP) functions to evidence of health benefits. The research status of SeP from foods in recent years is introduced systematically, particularly the sources, biochemical transformation and speciation, and the bioactivities. These aspects are elaborated with references for further research and utilization of organic Se compounds in the field of health.
Collapse
Affiliation(s)
- Ziqi Qi
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Alex Duan
- Melbourne TrACEES Platform, School of Chemistry, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Ken Ng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
13
|
Zeng J, Lin C, Zhang S, Yin H, Deng K, Yang Z, Zhang Y, Liu Y, Hu C, Zhao YT. Isolation and Identification of a Novel Anti-Dry Eye Peptide from Tilapia Skin Peptides Based on In Silico, In Vitro, and In Vivo Approaches. Int J Mol Sci 2023; 24:12772. [PMID: 37628955 PMCID: PMC10454390 DOI: 10.3390/ijms241612772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Tilapia skin is a great source of collagen. Here, we aimed to isolate and identify the peptides responsible for combating dry eye disease (DED) in tilapia skin peptides (TSP). In vitro cell DED model was used to screen anti-DED peptides from TSP via Sephadex G-25 chromatography, LC/MS/MS, and in silico methods. The anti-DED activity of the screened peptide was further verified in the mice DED model. TSP was divided into five fractions (TSP-I, TSP-II, TSP-III, TSP-IV, and TSP-V), and TSP-II exerted an effective effect for anti-DED. A total of 131 peptides were identified using LC/MS/MS in TSP-II, and NGGPSGPR (NGG) was screened as a potential anti-DED fragment in TSP-II via in silico methods. In vitro, NGG restored cell viability and inhibited the expression level of Cyclooxygenase-2 (COX-2) protein in Human corneal epithelial cells (HCECs) induced by NaCl. In vivo, NGG increased tear production, decreased tear ferning score, prevented corneal epithelial thinning, alleviated conjunctival goblet cell loss, and inhibited the apoptosis of corneal epithelial cells in DED mice. Overall, NGG, as an anti-DED peptide, was successfully identified from TSP, and it may be devoted to functional food ingredients or medicine for DED.
Collapse
Affiliation(s)
- Jian Zeng
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Cuixian Lin
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Shilin Zhang
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Haowen Yin
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- College of Food Science and Engineering, Ocean University of China, Yu-Shan Road, Qingdao 266003, China
| | - Kaishu Deng
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Zhiyou Yang
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Yongping Zhang
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - You Liu
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Chuanyin Hu
- Department of Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yun-Tao Zhao
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| |
Collapse
|
14
|
Kieliszek M, Serrano Sandoval SN. The importance of selenium in food enrichment processes. A comprehensive review. J Trace Elem Med Biol 2023; 79:127260. [PMID: 37421809 DOI: 10.1016/j.jtemb.2023.127260] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Selenium is an essential element that determines the proper life functions of human and animal organisms. The content of selenium in food varies depending on the region and soil conditions. Therefore, the main source is a properly selected diet. However, in many countries, there are shortages of this element in the soil and local food. Too low an amount of this element in food can lead to many adverse changes in the body. The consequence of this may also be the occurrence of numerous potentially life-threatening diseases. Therefore, it is very important to properly introduce methods that condition the supplementation of the appropriate chemical form of this element, especially in areas with deficient selenium content. This review aims to summarize the published literature on the characterization of different types of selenium-enriched foods. At the same time, legal regulations and prospects for the future related to the production of food enriched with this element are presented. It should be noted that there are limitations and concerns with the production of such food due to the narrow safety range between the necessary and the toxic dose of this element. Therefore, selenium has been treated with special care for a very long time. For this reason, the presented mechanisms of production processes related to increasing the scale of selenium supplementation should be constantly monitored. Appropriate monitoring and development of the technological process for the production of selenium-enriched food is very important. Such food should ensure consumer safety and repeatability of the obtained product. Understanding the mechanisms and possibilities of selenium accumulation by plants and animals is one of the most important directions in the development of modern bromatology and the science of supplementation. This is particularly important in the case of rational nutrition and supplementing the human diet with an essential element such as selenium. Food technology is facing these challenges today.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland.
| | - Sayra N Serrano Sandoval
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, NL, Mexico; Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, NL, Mexico
| |
Collapse
|
15
|
Yu A, Ji Y, Ma G, Xu J, Hu Q. Identification and preparation of selenium-containing peptides from selenium-enriched Pleurotus eryngii and their protective effect on lead-induced oxidative damage in NCTC1469 hepatocytes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4522-4534. [PMID: 36851873 DOI: 10.1002/jsfa.12529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Lead (Pb) is a highly toxic and persistent substance that easily accumulates in living organisms, eliciting cellular toxicity and oxidative stress. Some selenium-containing proteins and peptides prepared from plant extracts are beneficial for protecting the body's health and resisting external disturbances. In the present study, selenium-containing peptide species were prepared from selenium-enriched Pleurotus eryngii protein hydrolysates and to evaluate the benefits of selenium-containing peptides on Pb-induced oxidative stress in NCTC1469 hepatocytes. RESULTS Trypsin was selected as primary enzyme to hydrolyze the selenium-enriched protein (SPH). The optimal hydrolysis conditions were: hydrolysis time, 1.5 h; initial pH 8.0. The SPH was digested by trypsin and then purified by ultrafiltration, gel filtration chromatography and reversed-phase HPLC to obtain the selenium-containing peptides SPH-I-2. Furthermore, SPH-I-2 was analyzed and a number of total 12 selenium-containing peptides were identified by liquid chromatography-tandem mass spectroscopy. The NCTC1469 cell culture study showed that selenium-containing peptides were capable of reducing reactive oxygen species levels and regulating the Keap1/Nrf2 pathway by upregulating Nrf2, HO-1, GCLC, GCLM and NQO1 genes and downregulating Keap1 genes. Moreover, selenium-containing peptides were also able to suppress Pb-induced elevated levels of nitric oxide (NO), lactate dehydrogenase (LDH), malondialdehyde (MDA), increase antioxidant enzyme activity and alleviate cell apoptosis. CONCLUSION The present study indicated that the selenium-containing peptides could protect cells from Pb2+ -induced oxidative stress. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anqi Yu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Yang Ji
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Gaoxing Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Juan Xu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
16
|
Hussain M, Gantumur MA, Manzoor MF, Hussain K, Xu J, Aadil RM, Qayum A, Ahmad I, Zhong H, Guan R. Sustainable emerging high-intensity sonication processing to enhance the protein bioactivity and bioavailability: An updated review. ULTRASONICS SONOCHEMISTRY 2023; 97:106464. [PMID: 37271028 DOI: 10.1016/j.ultsonch.2023.106464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/19/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
High-intensity ultrasound (HIU) is considered one of the promising non-chemical eco-friendly techniques used in food processing. Recently (HIU) is known to enhance food quality, extraction of bioactive compounds and formulation of emulsions. Various foods are treated with ultrasound, including fats, bioactive compounds, and proteins. Regarding proteins, HIU induces acoustic cavitation and bubble formation, causing the unfolding and exposure of hydrophobic regions, resulting in functional, bioactive, and structural enhancement. This review briefly portrays the impact of HIU on the bioavailability and bioactive properties of proteins; the effect of HIU on protein allergenicity and anti-nutritional factors has also been discussed. HIU can enhance bioavailability and bioactive attributes in plants and animal-based proteins, such as antioxidant activity, antimicrobial activity, and peptide release. Moreover, numerous studies revealed that HIU treatment could enhance functional properties, increase the release of short-chain peptides, and decrease allergenicity. HIU could replace the chemical and heat treatments used to enhance protein bioactivity and digestibility; however, its applications are still on research and small scale, and its usage in industries is yet to be implemented.
Collapse
Affiliation(s)
- Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, China
| | - Munkh-Amgalan Gantumur
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xian fang Dist, 150030 Harbin, China
| | - Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Kifayat Hussain
- Departments of Animal Nutrition, Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Pakistan
| | - Jie Xu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Ishtiaq Ahmad
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, China.
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, China.
| |
Collapse
|
17
|
Chen B, Miao J, Ye H, Xia Z, Huang W, Guo J, Liang X, Yin Y, Zheng Y, Cao Y. Purification, Identification, and Mechanistic Investigation of Novel Selenium-Enriched Antioxidant Peptides from Moringa oleifera Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4625-4637. [PMID: 36892038 DOI: 10.1021/acs.jafc.2c08965] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, five novel Se-enriched antioxidant peptides (FLSeML, LSeMAAL, LASeMMVL, SeMLLAA, and LSeMAL) were purified and identified from Se-enriched Moringa oleifera (M. oleifera) seed protein hydrolysate. The five peptides showed excellent cellular antioxidant activity, with respective EC50 values of 0.291, 0.383, 0.662, 0.1, and 0.123 μg/mL. The five peptides (0.025 mg/mL) increased the cell viability from 78.72 to 90.71, 89.16, 93.92, 83.68, and 98.29%, respectively, effectively reducing reactive oxygen species accumulation and significantly increasing superoxide dismutase and catalase activities in damaged cells. Molecular docking results revealed that the five novel Se-enriched peptides interacted with the key amino acid of Keap1, thus directly blocking the interaction of Keap1-Nrf2 and activating the antioxidant stress response to enhance the ability of scavenging free radicals in vitro. In conclusion, Se-enriched M. oleifera seed peptides exhibited significant antioxidant activity and can be expected to find widespread use as a highly active natural functional food additive and ingredient.
Collapse
Affiliation(s)
- Bingbing Chen
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
| | - Jianyin Miao
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guilin 541004, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haoduo Ye
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Xia
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
| | - Wen Huang
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
| | - Junbin Guo
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
| | - Xingtang Liang
- School Petroleum and Chemical Engineering, Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, Beibu Gulf University, Qinzhou 535011, China
| | - Yanzhen Yin
- School Petroleum and Chemical Engineering, Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, Beibu Gulf University, Qinzhou 535011, China
| | - Yunying Zheng
- School Petroleum and Chemical Engineering, Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, Beibu Gulf University, Qinzhou 535011, China
| | - Yong Cao
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
18
|
He J, Wang Z, Wei L, Ye Y, Din ZU, Zhou J, Cong X, Cheng S, Cai J. Electrospray-Assisted Fabrication of Dextran-Whey Protein Isolation Microcapsules for the Encapsulation of Selenium-Enriched Peptide. Foods 2023; 12:foods12051008. [PMID: 36900527 PMCID: PMC10000993 DOI: 10.3390/foods12051008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Selenium-enriched peptide (SP, selenopeptide) is an excellent organic selenium supplement that has attracted increasing attention due to its superior physiological effects. In this study, dextran-whey protein isolation-SP (DX-WPI-SP) microcapsules were fabricated via high-voltage electrospraying technology. The results of preparation process optimization showed that the optimized preparation process parameters were 6% DX (w/v), feeding rate Q = 1 mL/h, voltage U = 15 kV, and receiving distance H = 15 cm. When the content of WPI (w/v) was 4-8%, the average diameter of the as-prepared microcapsules was no more than 45 μm, and the loading rate for SP ranged from ~46% to ~37%. The DX-WPI-SP microcapsules displayed excellent antioxidant capacity. The thermal stability of the microencapsulated SP was improved, which was attributed to the protective effects of the wall materials for SP. The release performance was investigated to disclose the sustained-release capacity of the carrier under different pH values and an in-vitro-simulated digestion environment. The digested microcapsule solution showed negligible influence on the cellular cytotoxicity of Caco-2 cells. Overall, our work provides a facile strategy of electrospraying microcapsules for the functional encapsulation of SP and witnesses a broad prospect that the DX-WPI-SP microcapsules can exhibit great potential in the food processing field.
Collapse
Affiliation(s)
- Jiangling He
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhenyu Wang
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lingfeng Wei
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuanyuan Ye
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zia-ud Din
- Department of Food Science and Nutrition, Women University Swabi, Swabi 23430, Khyber Pakhtunkhawa, Pakistan
| | - Jiaojiao Zhou
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Cong
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuiyuan Cheng
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Cai
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- Correspondence:
| |
Collapse
|
19
|
Chen M, Wu Q, Zhu Z, Huang A, Zhang J, Bekhit AEDA, Wang J, Ding Y. Selenium-enriched foods and their ingredients: As intervention for the vicious cycle between autophagy and overloaded stress responses in Alzheimer's disease. Crit Rev Food Sci Nutr 2023; 64:6672-6685. [PMID: 36728929 DOI: 10.1080/10408398.2023.2172547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dysfunctional autophagy induced by excessive reactive oxygen species (ROS) load and inflammation accelerates the development of Alzheimer's disease (AD). Recently, there has been an increasing interest in selenium-enriched ingredients (SEIs), such as selenoproteins, selenoamino acids and selenosugars, which could improve AD through antioxidant and anti-inflammation, as well as autophagy modulating effects. This review indicates that SEIs eliminate excessive ROS by activating the nuclear translocation of nuclear factor erythroid2-related factor 2 (Nrf2) and alleviate inflammation by inhibiting the mitogen-activated protein kinases (MAPKs)/nuclear factor kappa-B (NF-κB) pathway. Furthermore, they can activate the adenosine 5'-monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, and subsequently promote amyloid beta (Aβ) clearance and reduce memory impairments. SEIs are ubiquitous in many plants and microorganisms, such as Brassicaceae vegetables, yeast, and mushroom. Enzymatic hydrolysis, as well as physical processing, such as thermal, high pressure and microwave treatment, are the main techniques to modify the properties of dietary selenium. This work highlights the fact that SEIs can inhibit inflammation and oxidative stress and provides evidence that supports the potential use of these dietary materials to be a novel strategy for improving AD.
Collapse
Affiliation(s)
- Mengfei Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, China
| | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhenjun Zhu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, China
| | - AoHuan Huang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, China
| | - Jumei Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | | | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
20
|
Xiong Y, Huang Y, Li L, Liu Y, Liu L, Wang L, Tong L, Wang F, Fan B. A Review of Plant Selenium-Enriched Proteins/Peptides: Extraction, Detection, Bioavailability, and Effects of Processing. Molecules 2023; 28:1223. [PMID: 36770890 PMCID: PMC9919150 DOI: 10.3390/molecules28031223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
As an essential trace element in the human body, selenium (Se) has various physiological activities, such as antioxidant and anticancer activity. Selenium-enriched proteins/peptides (SePs/SePPs) are the primary forms of Se in plants and animals, and they are the vital carriers of its physiological activities. On the basis of current research, this review systematically describes the extraction methods (aqueous, alkaline, enzymatic, auxiliary, etc.) and detection methods (HPLC-MS/MS, GC-ICP-MS, etc.) for SePs/SePPs in plants. Their bioavailability and bioactivity, and the effect of processing are also included. Our review provides a comprehensive understanding and theoretical guidance for the utilization of selenium-enriched proteins/peptides.
Collapse
Affiliation(s)
- Yangyang Xiong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yatao Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Lin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanfang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liya Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lili Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Litao Tong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bei Fan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
21
|
Peng JJ, Liu Y, Yu FT, Fan HL, Yue SY, Fang YH, Liu XL, Wang CH. A reliable method of high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry for determining selenoamino acids in selenoproteins from Lactococcus lactis. J Chromatogr A 2022; 1685:463590. [DOI: 10.1016/j.chroma.2022.463590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/18/2022] [Indexed: 11/27/2022]
|
22
|
Hernández-Grijalva MI, Serrano-Sandoval SN, Gutiérrez-Uribe JA, Serna-Saldivar SO, Milán-Carrillo J, Antunes-Ricardo M, Villela-Castrejón J, Guardado-Félix D. Application of protein fractions from selenized sprouted chickpeas as emulsifying agents and evaluation of their antioxidant properties. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Zhang L, Zhang Y, Li S, Li C, Hu X, Li Z, Yue T, Hu Z. Effect of the selenized yeast added in feed on selenium-containing proteins of albumins in egg yolk. Food Chem 2022; 402:134435. [DOI: 10.1016/j.foodchem.2022.134435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 10/14/2022]
|
24
|
Zhu S, Cong X, Sun Z, Chen Z, Chen X, Zhu Z, Li S, Cheng S. Production of Cardamine violifolia selenium-enriched peptide using immobilized Alcalase on Fe 3O 4 modified by tannic acid and polyethyleneimine. RSC Adv 2022; 12:22082-22090. [PMID: 36043101 PMCID: PMC9364077 DOI: 10.1039/d2ra03765c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
Enzymatic synthesis of selenium (Se)-enriched peptides is vital for their application in supplementing organic Se. However, the poor stability and reusability of the free enzyme impedes the reaction. In this work, a highly stable immobilized Alcalase was synthesized by immobilizing Alcalase on tannic acid (TA) and polyethyleneimine (PEI) modified Fe3O4 nanoparticles (NPs). The optimal immobilization conditions for immobilized Alcalase were found at a TA/PEI (v/v) ratio of 1 : 1, pH of 10, and temperature of 40 °C, and the results from scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier Transform Infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) characterization confirmed the successful immobilization of Alcalase. The results of an enzyme property test showed that immobilized Alcalase had higher thermal and pH stability than free Alcalase, and retained 61.0% of the initial enzyme activity after 10 repetitions. Furthermore, the organic Se content of Se-enriched peptide prepared through enzymatic hydrolysis of Cardamine violifolia (CV) protein with immobilized Alcalase was 2914 mg kg-1, and the molecular weight was mainly concentrated in 924.4 Da with complete amino acid components. Therefore, this study proposes the feasibility of immobilized enzymes for the production of Se-enriched peptides.
Collapse
Affiliation(s)
- Shiyu Zhu
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University Wuhan 430023 China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University Wuhan 430205 PR China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd Enshi 445000 Hubei China
| | - Zheng Sun
- College of Food Science and Engineering, Wuhan Polytechnic University Wuhan 430023 China
| | - Zhe Chen
- College of Food Science and Engineering, Wuhan Polytechnic University Wuhan 430023 China
| | - Xu Chen
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University Wuhan 430023 China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University Wuhan 430205 PR China
| | - Zhenzhou Zhu
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University Wuhan 430023 China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University Wuhan 430205 PR China
| | - Shuyi Li
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University Wuhan 430023 China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University Wuhan 430205 PR China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University Wuhan 430023 China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University Wuhan 430205 PR China
| |
Collapse
|
25
|
Wu Q, Guo Z, Zhou Z, Jin M, Li Q, Zhou X. Recent advances in bioactive peptides from cereal-derived Foodstuffs. Int J Food Sci Nutr 2022; 73:875-888. [PMID: 35896503 DOI: 10.1080/09637486.2022.2104226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Cereal-derived proteins account for a major part of human dietary protein consumption. Natural bioactive peptides (NBPs) from these proteins involve a variety of physiological activities and play an important role in the promotion of human health. This review focuses on the characteristics of NBPs obtained from cereals, and the commonly used methods for preparation, separation, purification, and identification. We also discussed the biological functions of cereal-derived NBPs (CNBPs), including the activities of antioxidant, immunomodulatory, antimicrobial, and regulation of hyperglycaemia and hypertension. The paper summarised the latest progress in the research and application of CNBPs and analysed the prospects for the development and application of several protein by-products, providing an important way to improve the added value of protein by-products in cereal processing.
Collapse
Affiliation(s)
- Qin Wu
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhijian Guo
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zerong Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, P. R. China
| | - Mengyuan Jin
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Qizhang Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, P. R. China
| | - Xuanwei Zhou
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
26
|
Jiang W, He S, Su D, Ye M, Zeng Q, Yuan Y. Synthesis, characterization of tuna polypeptide selenium nanoparticle, and its immunomodulatory and antioxidant effects in vivo. Food Chem 2022; 383:132405. [DOI: 10.1016/j.foodchem.2022.132405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/16/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022]
|
27
|
Li S, Du G, Shi J, Zhang L, Yue T, Yuan Y. Preparation of antihypertensive peptides from quinoa via fermentation with
Lactobacillus paracasei. EFOOD 2022. [DOI: 10.1002/efd2.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Shuai Li
- College of Food Science and Engineering Northwest A&F University Yangling China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling China
| | - Gengan Du
- College of Food Science and Engineering Northwest A&F University Yangling China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling China
| | - Jiajun Shi
- College of Food Science and Engineering Northwest A&F University Yangling China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling China
| | - Lin Zhang
- College of Food Science and Engineering Northwest A&F University Yangling China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling China
| | - Tianli Yue
- College of Food Science and Engineering Northwest A&F University Yangling China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling China
- College of Food Science and Techonology Northwest University Xi'an China
| | - Yahong Yuan
- College of Food Science and Engineering Northwest A&F University Yangling China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling China
| |
Collapse
|
28
|
Wen C, He X, Zhang J, Liu G, Xu X. A review on selenium-enriched proteins: preparation, purification, identification, bioavailability, bioactivities and application. Food Funct 2022; 13:5498-5514. [PMID: 35476089 DOI: 10.1039/d1fo03386g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selenium (Se) deficiency can cause many diseases and thereby affect human health. Traditional inorganic Se supplements have disadvantages of toxicity and low bioavailability. Se-Enriched proteins exhibit good bio-accessibility and high biological activities. This review provides a comprehensive overview of the preparation, purification, identification, bioavailability, bioactivities and application of Se-enriched proteins. The method of extracting Se-enriched proteins from animals, microorganisms and plants mainly includes solvent extraction (water, salt, ethanol and alkali solution extraction) and novel extraction technologies (ultrasound-assisted and pulsed electric field assisted extraction). Se-Enriched proteins and their hydrolysates exhibit good bioactivities, mainly including antioxidant activity, immune regulation, neuroprotective activity, and inhibition of hyperglycemic activity, among others. Future research should focus on the relationship between Se-enriched protein metabolism and the selenium regulatory protein metabolic pathway by using multi-omics technology. In addition, it is necessary to comprehensively study the structure-activity relationship of Se-enriched proteins/hydrolysates from different sources, to further clarify their bioactive mechanism and to verify their health benefits in vivo.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Xudong He
- Yangzhou Center for Food and Drug Control, Yangzhou 225127, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China. .,Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
29
|
Zhang X, He H, Xiang J, Hou T. Screening and bioavailability evaluation of anti-oxidative selenium-containing peptides from soybeans based on specific structures. Food Funct 2022; 13:5252-5261. [PMID: 35438695 DOI: 10.1039/d2fo00113f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our previous study has evaluated the antioxidant capacity and identified the sequences of soybean selenium-containing peptides. Herein, pharmacophore screening, gastrointestinal simulation and in vivo pharmacokinetics were performed to predict the potentials of selenium-containing peptides in terms of antioxidant activity, safety and bioavailability. A pharmacophore model with 6 structure features was constructed for virtual screening to determine the potential activities of 85 selenium sequences from soybean peptides. Strong reversing effects (p < 0.05) of the targeted sequences were observed in tumor necrosis factor-α (TNF-α)-induced inflammatory cytokines and adhesion factors burst in EA·hy926/Caco-2 co-culture cell models. Ser-Phe-Gln-SeMet (SFQSeM), a promising peptide selected from both virtual screening and cell models, was proved to be stable in the gastrointestinal tract and could be transported across the Caco-2 monolayer via the paracellular pathway. Additionally, SFQSeM showed a long residence time (89.42 ± 1.34 min) and half-life (81.60 ± 11.88 min) after consumption, and it induced lower liver alanine/aspartate transaminase (ALT/AST) and serum nitric oxide (NO) levels compared to Na2SeO3 and SeMet (p < 0.05). The potency of SFQSeM against oxidative stress as well as its oral bioavailability and low risk highlight its potential utility as an effective Se nutritional supplement.
Collapse
Affiliation(s)
- Xing Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jiqian Xiang
- Enshi Tujia & Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, 445000, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Enshi Tujia & Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, 445000, China
| |
Collapse
|
30
|
Encapsulation of selenium-containing peptides in xanthan gum-lysozyme nanoparticles as a powerful gastrointestinal delivery system. Food Res Int 2022; 156:111351. [DOI: 10.1016/j.foodres.2022.111351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/24/2022] [Accepted: 05/04/2022] [Indexed: 11/19/2022]
|
31
|
Hsieh LS, Lu MS, Chiang WD. Identification and characterization of immunomodulatory peptides from pepsin-soy protein hydrolysates. BIORESOUR BIOPROCESS 2022; 9:39. [PMID: 38647785 PMCID: PMC10992351 DOI: 10.1186/s40643-022-00526-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
To obtain immunomodulatory peptides from isolated soy protein (ISP), pepsin was selected to prepare hydrolysates and 4-h treatment (Pepsin-ISPH4h) showed the highest yield and immunomodulatory activities. The Pepsin-ISPH4h was sequentially fractionated by 30, 10 and 1-kDa molecular weight cut-off (MWCO) membranes, in which 1-kDa MWCO permeate (1P) exhibited the most significant enhancement of phagocytosis activity without causing excessive inflammation as compared with Pepsin-ISPH4h. To further purify and enhance the immunomodulatory activity, 1P was distinct by high-performance liquid chromatography equipped with a reverse-phase column and in vivo immunomodulatory activity of fractions was examined in mice. Fraction 1 (F1) significantly elevated phagocytosis activity of mice spleen macrophages and neutrophils. However, increase of phagocytosis activity did not result from the induction of macrophages M1 or M2 polarization. The immunomodulatory peptide sequence, EKPQQQSSRRGS, from F1 was identified by LC-MS/MS. Phagocytosis activity and macrophage M1 polarization were elevated by synthetic peptide treatment. Hence, our results indicated that isolated soy protein hydrolysates prepared by pepsin could provide a source of peptides with immunomodulatory effects.
Collapse
Affiliation(s)
- Lu-Sheng Hsieh
- Department of Food Science, College of Agriculture, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Ming-Shing Lu
- Department of Food Science, College of Agriculture, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Wen-Dee Chiang
- Department of Food Science, College of Agriculture, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan.
| |
Collapse
|
32
|
Exploration of bioactive peptides from various origin as promising nutraceutical treasures: In vitro, in silico and in vivo studies. Food Chem 2022; 373:131395. [PMID: 34710682 DOI: 10.1016/j.foodchem.2021.131395] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/24/2021] [Accepted: 10/09/2021] [Indexed: 01/08/2023]
Abstract
The current health scenarios describe growing public health problems, such as diabetes, hypertension and cancer. Therefore, researchers focused on studying these health issues are interested in exploring bioactive compounds from different food sources. Among them, bioactive peptides have garnered huge scientific interest because of their multifunctional biological activities such as antioxidative, antimicrobial, antihypertensive, anticancer, antidiabetic, immunomodulatory effect. They can be used as food and pharmaceutical ingredients with a great potential against disease targets. This review covers methods of production in general for several peptides obtained from various food sources including seed, milk and meat, and described their biological activities. Particular focus was given to bioinformatic tools to advance quantification, detection and characterize each peptide sequence obtained from different protein sources with predicted biological activity. Besides, various in vivo studies have been discussed to provide a better understanding of their physiological functions, which altogether could provide valuable information for their commercialization in future foods.
Collapse
|
33
|
Yuan H, Luo Z, Ban Z, Reiter RJ, Ma Q, Liang Z, Yang M, Li X, Li L. Bioactive peptides of plant origin: distribution, functionality, and evidence of benefits in food and health. Food Funct 2022; 13:3133-3158. [PMID: 35244644 DOI: 10.1039/d1fo04077d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The multiple functions of peptides released from proteins have immense potential in food and health. In the past few decades, research interest in bioactive peptides of plant origin has surged tremendously, and new plant-derived peptides are continually discovered with advances in extraction, purification, and characterization technology. Plant-derived peptides are mainly extracted from dicot plants possessing bioactive functions, including antioxidant, cholesterol-lowering, and antihypertensive activities. Although the distinct functions are said to depend on the composition and structure of amino acids, the practical or industrial application of plant-derived peptides with bioactive features is still a long way off. In summary, the present review mainly focuses on the state-of-the-art extraction, separation, and analytical techniques, functional properties, mechanism of action, and clinical study of plant-derived peptides. Special emphasis has been placed on the necessity of more pre-clinical and clinical trials to authenticate the health claims of plant-derived peptides.
Collapse
Affiliation(s)
- Hemao Yuan
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China. .,National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Zhaojun Ban
- School of Biological and chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, USA
| | - Quan Ma
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Ze Liang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Mingyi Yang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Xihong Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China. .,National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Luo X, Fan F, Sun X, Li P, Xu T, Ding J, Fang Y. Effect of ultrasonic treatment on the stability and release of selenium-containing peptide TSeMMM-encapsulated nanoparticles in vitro and in vivo. ULTRASONICS SONOCHEMISTRY 2022; 83:105923. [PMID: 35093739 PMCID: PMC8802843 DOI: 10.1016/j.ultsonch.2022.105923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/06/2022] [Accepted: 01/16/2022] [Indexed: 05/24/2023]
Abstract
Rice selenium-containing peptide TSeMMM (T) with immunomodulatory functions was isolated from selenium-enriched rice protein hydrolysates. However, its biological activity is difficult to be protected in complex digestive environments. In this study, T was encapsulated within zein and gum arabian (GA) through ultrasound treatment to improve its bioactivity and bioavailability. The zein@T/GA nanoparticles were formed using ultrasonic treatment at 360 W for 5 min with a 59.9% T-encapsulation efficiency. In vitro digestion showed that the cumulative release rate of zein@T/GA nanoparticles reached a maximum of 80.69% after 6 h. In addition, short-term animal studies revealed that the nanoparticles had an effect on the levels of tissue glutathione and improved peptides' oral bioavailability. Conclusively, these findings suggest that the ultrasonicated polysaccharide/protein system is suitable for encapsulating active small molecular peptides. Furthermore, it provides a novel foundation for studying the bioavailability of active substances in functional foods.
Collapse
Affiliation(s)
- Xieqi Luo
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Fengjiao Fan
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Xinyang Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Peng Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Tong Xu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Jian Ding
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| |
Collapse
|
35
|
Investigation on the Anaphylaxis and Anti-Digestive Stable Peptides Identification of Ultrasound-Treated α-Lactalbumin during In-Vitro Gastroduodenal Digestion. Foods 2021; 10:foods10112760. [PMID: 34829039 PMCID: PMC8623493 DOI: 10.3390/foods10112760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 12/15/2022] Open
Abstract
Our previous studies indicated that ultrasound treatment can increase the anaphylaxis of protein. However, investigation on the anaphylaxis changes of ultrasound-treated α-lactalbumin (ALA) during digestion is lacking. The anaphylaxis of ultrasound-treated ALA and its digesta was investigated. The anti-digestive stable peptides were identified by high-resolution mass spectrometry. Ultrasound induced the tertiary structure of ALA to unfold and increased its anaphylaxis. During digestion, the anaphylaxis of both gastric and gastroduodenal digesta was further increased. There are two reasons for this phenomenon. On the one hand, linear epitopes played an important role in affecting anaphylaxis compared with the conformational epitope, and some linear epitopes were still retained on the anti-digestive stable peptides produced after gastroduodenal digestion, resulting in increased anaphylaxis after digestion. On the other hand, the presence of intact ALA molecules after digestion still remained strong anaphylaxis. Compared with the digesta of untreated ALA, the digesta of ultrasound-treated ALA possessed higher anaphylaxis. The results indicated that ultrasound increased the anaphylaxis of ALA during digestion.
Collapse
|
36
|
Chen L, Li D, Zhu C, Rong Y, Zeng W. Characterisation of antioxidant peptides from enzymatic hydrolysate of golden melon seeds protein. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lihua Chen
- School of Perfume and Aroma Technology Shanghai Institute of Technology No.100 Haiquan Road Shanghai China
| | - Dongna Li
- School of Perfume and Aroma Technology Shanghai Institute of Technology No.100 Haiquan Road Shanghai China
| | - Chuchu Zhu
- School of Perfume and Aroma Technology Shanghai Institute of Technology No.100 Haiquan Road Shanghai China
| | - Yuzhi Rong
- School of Perfume and Aroma Technology Shanghai Institute of Technology No.100 Haiquan Road Shanghai China
| | - Wenhua Zeng
- School of Perfume and Aroma Technology Shanghai Institute of Technology No.100 Haiquan Road Shanghai China
| |
Collapse
|
37
|
Zhang J, Zhang Q, Li H, Chen X, Liu W, Liu X. Antioxidant activity of SSeCAHK in HepG2 cells: a selenopeptide identified from selenium-enriched soybean protein hydrolysates. RSC Adv 2021; 11:33872-33882. [PMID: 35497303 PMCID: PMC9042330 DOI: 10.1039/d1ra06539d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022] Open
Abstract
This paper is aimed at purifying and identifying selenium (Se)-containing antioxidative peptides from Se-enriched soybean peptides (SSP). In this work, the SSP was separated into five fractions (F1 to F5). Fraction F4, displaying the highest antioxidative activity, was further separated, and sub-fractions F4-1 to F4-5 were selected for antioxidative activity evaluation using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2-azino-bis-(3-ethylbenzo-thiazoline-6-sulphonic acid)diammonium salt (ABTS), and OH- radical scavenging assays. The Se-containing antioxidative peptides with sequence Ser-SeC-Ala-His-Lys (SSeCAHK) were identified in sub-fraction F4-1 and chemically synthesized. This Se-containing pentapeptide showed a preventive effect against hydrogen peroxide (H2O2)-induced oxidative stress in HepG2 cells. Pretreating the cells for 2 h with SSeCAHK (0.13-0.50 mg mL-1) induced strong intracellular, reactive oxygen species (ROS) scavenging activity while preventing a decrease in reduced glutathione (GSH) and an increase in malondialdehyde (MDA). Therefore, SSeCAHK treatment improved H2O2-induced oxidative stress in HepG2 cells, demonstrating the significant potential of SSeCAHK as a natural antioxidative functional material for dietary supplementation.
Collapse
Affiliation(s)
- Jian Zhang
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University Beijing 100048 China
| | - Qiyue Zhang
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University Beijing 100048 China
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University Beijing 100048 China
| | - Xinwei Chen
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University Beijing 100048 China
| | - Wanlu Liu
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University Beijing 100048 China
| | - Xinqi Liu
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University Beijing 100048 China
| |
Collapse
|
38
|
Zhang X, He H, Xiang J, Li B, Zhao M, Hou T. Selenium-containing soybean antioxidant peptides: Preparation and comprehensive comparison of different selenium supplements. Food Chem 2021; 358:129888. [PMID: 33933969 DOI: 10.1016/j.foodchem.2021.129888] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022]
Abstract
Present study aimed to prepare and identify antioxidative peptides from selenium-containing soybeans, and to investigate their bioavailability and protective effects against oxidative stress-related diseases. Selenium-containing soybean antioxidative peptides (Mw < 1 kDa, SePPs) hydrolyzed by Neutrase and Alcalase reached the highest cellular antioxidant activity (EC50 value 320.5 ± 39.71 μg/L). SePPs could be efficiently absorbed through Caco-2 monolayer, and then significantly reverse the tumor necrosis factor-α (TNF-α)-induced inflammatory cytokine, phosphorylated c-Jun N-terminal kinases (p-JNK) and nuclear factor-kappa B (NF-κB) levels in EA. hy926 cells (p < 0.05). d-galactose-induced aging mice model showed that liver superoxidase dismutase (SOD) and glutathione peroxidase-1 (GPx-1) were enhanced, while aspartate aminotransferase (AST), alanine aminotransferase (ALT) and NF-κB were decreased by SePPs significantly (p < 0.05). SePPs could inhibit brain oxidative stress via regulating MAPK/NF-κB pathway. Comparing with Na2SeO3, selenomethionine (SeMet) and selenium-free peptides, SePPs was found to present synergistic effects of selenium and peptides in antioxidant activity.
Collapse
Affiliation(s)
- Xing Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiqian Xiang
- Enshi Tujia & Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengge Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Enshi Tujia & Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China.
| |
Collapse
|
39
|
Jiang H, Lin W, Jiao H, Liu J, Chan L, Liu X, Wang R, Chen T. Uptake, transport, and metabolism of selenium and its protective effects against toxic metals in plants: a review. Metallomics 2021; 13:6310585. [PMID: 34180517 DOI: 10.1093/mtomcs/mfab040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/21/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022]
Abstract
Selenium (Se) is an essential trace element of fundamental importance to humans, animals, and plants. However, the uptake, transport, and metabolic processes of Se and its underlying mechanisms in plants have not been well characterized. Here, we review our current understanding of the adsorption and assimilation of Se in plants. First, we discussed the conversion of Se from inorganic Se into organic forms, the mechanisms underlying the formation of seleno-amino acids, and the detoxification of Se. We then discussed the ways in which Se protects plants against toxic metal ions in the environment, such as by alleviating oxidative stress, regulating the activity of antioxidant enzymes, sequestering metal ions, and preventing metal ion uptake and accumulation. Generally, this review will aid future research examining the molecular mechanisms underlying the antagonistic relationships between Se and toxic metals in plants.
Collapse
Affiliation(s)
- Haiyan Jiang
- Guangdong Province Research Center for Geoanalysis, Guangzhou 510080, China
| | - Weiqiang Lin
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Hongpeng Jiao
- Guangdong Province Research Center for Geoanalysis, Guangzhou 510080, China
| | - Jinggong Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 111 Dade Rd, Guangzhou 510120, China
| | - Leung Chan
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Xiaoying Liu
- Shenzhen Agricultural Product Quality and Safety Inspection and Testing Center (Guangdong Provincial Key Laboratory of Supervision and Administration of Edible Agricultural Products, Market Supervision Administration), Shenzhen 518000, China
| | - Rui Wang
- Shenzhen Agricultural Product Quality and Safety Inspection and Testing Center (Guangdong Provincial Key Laboratory of Supervision and Administration of Edible Agricultural Products, Market Supervision Administration), Shenzhen 518000, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
40
|
New peptides with immunomodulatory activity identified from rice proteins through peptidomic and in silico analysis. Food Chem 2021; 364:130357. [PMID: 34174647 DOI: 10.1016/j.foodchem.2021.130357] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/22/2022]
Abstract
The new food-derived bio-functional peptides are urgently needed globally, but the separation and purification process for obtaining the immunopeptides from food is low efficiency and highly time-consuming. In the present study, rice proteins were extracted and identified by using liquid chromatography/tandem mass spectrometry (LC-MS/MS). Furthermore, a strategy combining immuno-prediction and in silico simulation was used to screen for peptides showing immunomodulatory activity, including inhibition of the release of nitric oxide, tumor necrosis factor-α, and the interleukins IL-6 and IL-1β in lipopolysaccharide-induced RAW264.7 mouse macrophages. This LC-MS/MS identification and immuno-prediction method may provide insights for the potential identification of more food-derived immunopeptides.
Collapse
|
41
|
Altunay N, Elik A, Katin K. Optimization of vortex-assisted ionic liquid dispersive liquid–liquid microextraction by experimental design prior to hydride generation atomic absorption spectrometry for determination of selenium species in food, beverage and water samples. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Xie M, Sun X, Li P, Shen X, Fang Y. Selenium in cereals: Insight into species of the element from total amount. Compr Rev Food Sci Food Saf 2021; 20:2914-2940. [PMID: 33836112 DOI: 10.1111/1541-4337.12748] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
Abstract
Selenium (Se) is a trace mineral micronutrient essential for human health. The diet is the main source of Se intake. Se-deficiency is associated with many diseases, and up to 1 billion people suffer from Se-deficiency worldwide. Cereals are considered a good choice for Se intake due to their daily consumption as staple foods. Much attention has been paid to the contents of Se in cereals and other foods. Se-enriched cereals are produced by biofortification. Notably, the gap between the nutritional and toxic levels of Se is fairly narrow. The chemical structures of Se compounds, rather than their total contents, contribute to the bioavailability, bioactivity, and toxicity of Se. Organic Se species show better bioavailability, higher nutritional value, and less toxicity than inorganic species. In this paper, we reviewed the total content of Se in cereals, Se speciation methods, and the biological effects of Se species on human health. Selenomethionine (SeMet) is generally the most prevalent and important Se species in cereal grains. In conclusion, Se species should be considered in addition to the total Se content when evaluating the nutritional and toxic values of foods such as cereals.
Collapse
Affiliation(s)
- Minhao Xie
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China
| | - Xinyang Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China.,Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Peng Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China
| |
Collapse
|
43
|
Zhang J, Zhou H, Li H, Ying Z, Liu X. Research progress on separation of selenoproteins/Se-enriched peptides and their physiological activities. Food Funct 2021; 12:1390-1401. [PMID: 33464257 DOI: 10.1039/d0fo02236e] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Selenium (Se) is an essential nutrient associated with several physiological processes in humans and has raised interest because of its antioxidant and immune properties. Se deficiency is related to a variety of diseases and dysfunctions in humans. Due to its higher bioavailability and lower toxicity, organic Se is more recommendable than inorganic Se in the frame of a balanced diet. Se is present in 25 identified selenoproteins that commonly occur in human organisms. As part of selenocysteine (SeC), Se becomes co-translationally incorporated into the polypeptide chain and involved in the regulation of oxidative stress, redox mechanisms, and other crucial cellular processes responsible for innate and adaptive immune responses. This review presents the current information regarding the presence of selenoproteins in the human body, and the separation of selenoproteins and selenopeptides from various plants and their physiological roles in the immune and oxidation systems of humans. In general, the application of selenoproteins and Se-enriched peptides are practically important for the clinical arena, whereby it can be used for exploring new healthy foods.
Collapse
Affiliation(s)
- Jian Zhang
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, Peoples' Republic of China.
| | - Haochun Zhou
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, Peoples' Republic of China.
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, Peoples' Republic of China.
| | - Zhiwei Ying
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, Peoples' Republic of China.
| | - Xinqi Liu
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, Peoples' Republic of China.
| |
Collapse
|
44
|
Inhibition of immunotoxicity of Pb2+-induced RAW264.7 macrophages by selenium species in selenium-enriched rice. Food Chem Toxicol 2021; 148:111943. [DOI: 10.1016/j.fct.2020.111943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022]
|
45
|
Anti-inflammatory effects of three selenium-enriched brown rice protein hydrolysates in LPS-induced RAW264.7 macrophages via NF-κB/MAPKs signaling pathways. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104320] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
46
|
Zhang X, He H, Xiang J, Yin H, Hou T. Selenium-Containing Proteins/Peptides from Plants: A Review on the Structures and Functions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15061-15073. [PMID: 33315396 DOI: 10.1021/acs.jafc.0c05594] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Selenium is an essential microelement required for biological processes. Traditional selenium supplements (selenite and selenomethionine mainly) remain concerns due to toxicity and bioavailability. In recent decades, biofortification strategies have been applied to produce selenium-enriched edible plants to address the challenges of superior nutritional quality requirements. Plant-derived selenium-containing proteins/peptides offer potential health benefits beyond the basic nutritional requirements of Se. Highly nucleophilic seleno-amino acids, special peptide sequences, and favorable bioavailability contribute to the biological activities of selenium-containing proteins/peptides, such as antioxidant, antihypertensive, anti-inflammatory, and immunomodulatory effects. However, their applications on a commercial scale are insufficient owing to the complexity of purification and identification techniques and the sparse information on bioavailability and metabolism. In this review, selenium status, structural features, bioactivities, structure-activity relationships, and bioavailability, as well as the mechanisms underlying the bioactivities and metabolism of plant-derived selenium-containing proteins/peptides, are summarized and discussed for their nutraceutical use.
Collapse
Affiliation(s)
- Xing Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiqian Xiang
- Enshi Tujia & Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China
| | - Hongqing Yin
- Enshi Tujia & Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
47
|
Gong X, An Q, Le L, Geng F, Jiang L, Yan J, Xiang D, Peng L, Zou L, Zhao G, Wan Y. Prospects of cereal protein-derived bioactive peptides: Sources, bioactivities diversity, and production. Crit Rev Food Sci Nutr 2020; 62:2855-2871. [PMID: 33325758 DOI: 10.1080/10408398.2020.1860897] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cereals account for a large proportion of the human diet and are an important source of protein. The preparation of cereal protein peptides is a good way to utilize these proteins. Cereal protein peptides have good application potential as antioxidant, antibacterial, anti-inflammatory and anticancer compounds, in lowering blood pressure, controlling blood sugar, and inhibiting thrombosis. This article reviews the literature on the functional properties, mechanisms of action, and applications of cereal protein peptides in the food industry with two perspectives, and summarizes the methods for their preparation and identification. The biologically active peptides derived from different grain proteins have varied main functional properties, which may be related to the differences in the amino acid composition and protein types of different grains. On this basis, the structure-activity relationship of cereal protein peptides was discussed. The advancement of identification technology makes the integration of bioinformatics and bioactive peptide research closer. Bioinformatics by combination of online database, computer simulation and experimental verification is helpful to in-deep study the structure-activity relationship of biologically active peptides, and improve efficiency in the process of obtaining target peptides with less cost. In addition, the application of cereal protein peptides in the food industry is also discussed.
Collapse
Affiliation(s)
- Xuxiao Gong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Qi An
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Liqing Le
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Liangzhen Jiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Jun Yan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| |
Collapse
|
48
|
Tacias-Pascacio VG, Morellon-Sterling R, Siar EH, Tavano O, Berenguer-Murcia Á, Fernandez-Lafuente R. Use of Alcalase in the production of bioactive peptides: A review. Int J Biol Macromol 2020; 165:2143-2196. [PMID: 33091472 DOI: 10.1016/j.ijbiomac.2020.10.060] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
This review aims to cover the uses of the commercially available protease Alcalase in the production of biologically active peptides since 2010. Immobilization of Alcalase has also been reviewed, as immobilization of the enzyme may improve the final reaction design enabling the use of more drastic conditions and the reuse of the biocatalyst. That way, this review presents the production, via Alcalase hydrolysis of different proteins, of peptides with antioxidant, angiotensin I-converting enzyme inhibitory, metal binding, antidiabetic, anti-inflammatory and antimicrobial activities (among other bioactivities) and peptides that improve the functional, sensory and nutritional properties of foods. Alcalase has proved to be among the most efficient proteases for this goal, using different protein sources, being especially interesting the use of the protein residues from food industry as feedstock, as this also solves nature pollution problems. Very interestingly, the bioactivities of the protein hydrolysates further improved when Alcalase is used in a combined way with other proteases both in a sequential way or in a simultaneous hydrolysis (something that could be related to the concept of combi-enzymes), as the combination of proteases with different selectivities and specificities enable the production of a larger amount of peptides and of a smaller size.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico.
| | | | - El-Hocine Siar
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Equipe TEPA, Laboratoire LNTA, INATAA, Université des Frères Mentouri Constantine 1, Constantine 25000, Algeria
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, Member of the External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
49
|
Zhu Y, Ding J, Shi Y, Fang Y, Li P, Fan F, Wu J, Hu Q. Deciphering the role of selenium‐enriched rice protein hydrolysates in the regulation of Pb
2+
‐induced cytotoxicity: an
in vitro
Caco‐2 cell model study. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yiqing Zhu
- College of Food Science and Engineering Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety Nanjing210023China
| | - Jian Ding
- College of Food Science and Engineering Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety Nanjing210023China
| | - Yi Shi
- College of Food Science and Engineering Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety Nanjing210023China
| | - Yong Fang
- College of Food Science and Engineering Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety Nanjing210023China
| | - Peng Li
- College of Food Science and Engineering Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety Nanjing210023China
| | - Fengjiao Fan
- College of Food Science and Engineering Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety Nanjing210023China
| | - Jian Wu
- College of Food Science and Engineering Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety Nanjing210023China
| | - Qiuhui Hu
- College of Food Science and Engineering Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety Nanjing210023China
| |
Collapse
|
50
|
Dong Z, Lin Y, Wu H, Zhang M. Selenium accumulation in protein fractions of Tenebrio molitor larvae and the antioxidant and immunoregulatory activity of protein hydrolysates. Food Chem 2020; 334:127475. [PMID: 32688176 DOI: 10.1016/j.foodchem.2020.127475] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/02/2020] [Accepted: 06/29/2020] [Indexed: 12/22/2022]
Abstract
Although numerous types of organisms have been used to enrich selenium, a low-cost and efficient organism is yet to be identified. This study aimed to develop a new means of selenium enrichment using Tenebrio molitor larvae. Our results indicated that the total selenium content in larvae was increased 83-fold to 54.21 ± 1.25 μg/g, and of this content, organic selenium accounted for over 97% after feeding the larvae with 20 μg/g of sodium selenite. Selenium was distributed unequally in the protein fraction with following order: alkali-soluble protein-bound selenium (36.32%) > salt-soluble protein-bound selenium (19.41%) > water-soluble protein-bound selenium (17.03%) > alcohol-soluble protein-bound selenium (3.21%). Additionally, 81% of the selenium within the soluble proteins was distributed in subunits possessing molecular weights of <40 kDa. After hydrolysis by alcalase, the protein hydrolysate of selenium-enriched larvae possessing 75% selenium recovery exhibited stronger antioxidant and immunoregulatory activities than those of regular larvae.
Collapse
Affiliation(s)
- Zhou Dong
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Yanyin Lin
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Hui Wu
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China.
| | - Mengmeng Zhang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China.
| |
Collapse
|