1
|
Drašler V, Polak T, Štefane B, Abramovič H, Cigić B. Palmitoylspermine: A potent antioxidant in bulk oil and emulsion. Food Chem 2025; 475:143271. [PMID: 39954640 DOI: 10.1016/j.foodchem.2025.143271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
This study explores the potential of polyamines and their acylated derivatives as antioxidants in plant oils and emulsions. We have shown that linseed, rapeseed, sunflower, and soybean oils naturally contain spermidine and spermine (SPM). These polyamines added to methyl linolenate effectively prevent lipid oxidation in the absence of other antioxidants. However, they showed no activity in in vitro antioxidant assays (DPPH, ABTS, Folin-Ciocalteu) and did not express Fe2+ binding. Butanoylspermine and palmitoylspermine (SPM-C16) were synthesised and their antioxidant activity was compared to underivatised polyamines and some commonly used antioxidants. SPM and SPM-C16 demonstrated the highest antioxidant activity in bulk oils, preventing hydroperoxide formation and stabilising polyunsaturated fatty acids. No prooxidative effects were observed in the 0.1 to 0.8 mmol/kg concentration range. However, in oil-in-water emulsions, only SPM-C16 retained its efficacy. These findings highlight the considerable potential of polyamines and their derivatives for stabilising various lipid systems.
Collapse
Affiliation(s)
- Varineja Drašler
- University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology, SI-1000 Ljubljana, Slovenia
| | - Tomaž Polak
- University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology, SI-1000 Ljubljana, Slovenia
| | - Bogdan Štefane
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Chair of Organic Chemistry, SI-1000 Ljubljana, Slovenia
| | - Helena Abramovič
- University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology, SI-1000 Ljubljana, Slovenia
| | - Blaž Cigić
- University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Sembiring E, Frida E, Sitorus Z, Sembiring T. Fabrication and Characterization of Pectin-Chitosan Edible Coatings with a Cosmos caudatus Leaf Extract for Tomato Preservation. ACS OMEGA 2025; 10:7204-7210. [PMID: 40028081 PMCID: PMC11865960 DOI: 10.1021/acsomega.4c10344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/07/2025] [Accepted: 01/31/2025] [Indexed: 03/05/2025]
Abstract
An edible coating based on pectin-chitosan and Cosmos caudatus leaf extract has been created. Cosmos caudatus leaf extract, which contains several bioactive compounds, aims to produce an edible coating with antibacterial properties. C. caudatus extract was incorporated at concentrations of 1, 2, and 3 g into a mixture of 1.5 g of pectin and 1 g of chitosan. The edible coating was applied to the tomatoes using the dipping method. The coated tomatoes were analyzed for 21 days at room temperature to determine the weight loss value. The edible coating was characterized, including FTIR analysis, X-ray diffraction, surface morphology, thermal stability, viscosity, and antibacterial activity. The research results reveal that C. caudatus extract contains anthocyanins with antibacterial properties, has an amorphous crystalline structure, and has a textured surface with partial aggregation. Thermal stability analysis using differential scanning calorimetry (DSC) shows a decrease in thermogravimetric (TG) values with increasing extract concentration. The optimal weight loss (6.18%) was found in the pectin-chitosan composition containing 3 g of C. caudatus extract. At this concentration, the inhibition zones against Escherichia coli and Staphylococcus aureus were 16.4 and 15.6 mm, respectively. These findings indicate that the C. caudatus leaf extract, particularly at 3 g, enhances the antibacterial properties of the edible pectin-chitosan coating, demonstrating its potential to extend the shelf life of tomatoes safely.
Collapse
Affiliation(s)
- Emita Sembiring
- Post Graduate Program (Physics),
Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jln Bioteknologi no 1, Medan 20222, Indonesia
| | - Erna Frida
- Post Graduate Program (Physics),
Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jln Bioteknologi no 1, Medan 20222, Indonesia
| | - Zuriah Sitorus
- Post Graduate Program (Physics),
Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jln Bioteknologi no 1, Medan 20222, Indonesia
| | - Timbangen Sembiring
- Post Graduate Program (Physics),
Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jln Bioteknologi no 1, Medan 20222, Indonesia
| |
Collapse
|
3
|
Yoon KN, Yoon YS, Hong HJ, Yeom SJ, Park JH, Song BS, Eun JB, Kim JK. Improving storage duration of tomatoes (Solanum lycopersicum) through electron beam technology. J Food Sci 2024; 89:7928-7943. [PMID: 39415076 DOI: 10.1111/1750-3841.17446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/18/2024]
Abstract
Electron beam (EB) technology typically consists of high-energy electron streams produced by a linear accelerator. Although promising, the use of EB irradiation as a technique to delay ripening and prevent spoilage in tomatoes has not been extensively investigated. In this study, the effectiveness of EB irradiation in prolonging the shelf life of tomatoes postharvest was investigated. The results indicated that EB irradiation successfully reduced microbial contamination and decay, preserved key quality attributes (such as total soluble solids, titratable acidity, pH, and firmness), and significantly minimized weight loss. Notably, the treatment delayed the biosynthesis of lycopene, a key indicator of ripening, without adversely affecting phenolic content and antioxidant activity, which remained consistent regardless of irradiation. Additionally, different methods for detecting irradiation were evaluated. Thermoluminescence analysis proved to be the most dependable technique, especially for doses exceeding 600 Gy, due to its high sensitivity and specificity. In contrast, photostimulated luminescence and electron spin resonance analyses showed limitations in accurately identifying the irradiation status of foods with high moisture content, such as tomatoes. This study confirms that EB irradiation, while maintaining postharvest quality, extends the shelf life of tomatoes by 5-10 days, suggesting its potential for commercial application in food preservation.
Collapse
Affiliation(s)
- Ki-Nam Yoon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, Republic of Korea
| | - Yeong-Seok Yoon
- Safety and Processing Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Hae-Jung Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Seo-Joon Yeom
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Jong-Heum Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Beom-Seok Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Jong-Bang Eun
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, Republic of Korea
| | - Jae-Kyung Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| |
Collapse
|
4
|
Yang Y, Gao C, Ye Q, Liu C, Wan H, Ruan M, Zhou G, Wang R, Li Z, Diao M, Cheng Y. The Influence of Different Factors on the Metabolism of Capsaicinoids in Pepper ( Capsicum annuum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2887. [PMID: 39458834 PMCID: PMC11511365 DOI: 10.3390/plants13202887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Pepper is a globally cultivated vegetable known for its distinct pungent flavor, which is derived from the presence of capsaicinoids, a class of unique secondary metabolites that accumulate specifically in pepper fruits. Since the accumulation of capsaicinoids is influenced by various factors, it is imperative to comprehend the metabolic regulatory mechanisms governing capsaicinoids production. This review offers a thorough examination of the factors that govern the metabolism of capsaicinoids in pepper fruit, with a specific focus on three primary facets: (1) the impact of genotype and developmental stage on capsaicinoids metabolism, (2) the influence of environmental factors on capsaicinoids metabolism, and (3) exogenous substances like methyl jasmonate, chlorophenoxyacetic acid, gibberellic acid, and salicylic acid regulate capsaicinoid metabolism. The findings of this study are expected to enhance comprehension of capsaicinoids metabolism and aid in the improvement of breeding and cultivation practices for high-quality pepper in the future.
Collapse
Affiliation(s)
- Yuanling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
- College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Chengan Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
- College of Horticultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Qingjing Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Chenxu Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Hongjian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Meiying Ruan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Guozhi Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Rongqing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Zhimiao Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Ming Diao
- College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Yuan Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| |
Collapse
|
5
|
López-Velázquez JG, Barraza-López FJ, Vega-García MO, López-López ME, Gutiérrez-Dorado R, Chaidez-Gastelum DC, Ayón-Reyna LE. Microstructural and physicochemical quality maintenance in green bell pepper infected with Botrytis cinerea and treated with thyme essential oil combined with carnauba wax. J Food Sci 2024; 89:2943-2955. [PMID: 38557930 DOI: 10.1111/1750-3841.17041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/16/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Bell pepper presents rapid weight loss and is highly susceptible to gray mold caused by the fungus Botrytis cinerea. The most employed method to control this disease is the application of synthetic fungicides such as thiabendazole (TBZ); however, its continued use causes resistance in fungi as well as environmental problems. For these reasons, natural alternatives arise as a more striking option. Currently, bell pepper fruits are coated with carnauba wax (CW) to prevent weight loss and improve appearance. Moreover, CW can be used as a carrier to incorporate essential oils, and previous studies have shown that thyme essential oil (TEO) is highly effective against B. cinerea. Therefore, this study aimed to evaluate the effect of CW combined with TEO on the development of gray mold and maintenance of microestructural and postharvest quality in bell pepper stored at 13°C. The minimal inhibitory concentration of TEO was 0.5%. TEO and TBZ provoked the leakage of intracellular components. TEO and CW + TEO treatments were equally effective to inhibit the development of gray mold. On the quality parameters, firmness and weight loss were ameliorated with CW and CW + TEO treatments; whereas lightness increased in these treatments. The structural analysis showed that CW + TEO treatment maintained the cell structure reducing the apparition of deformities. The results suggest that CW + TEO treatment could be used as a natural and effective antifungal retarding the appearance of gray mold and maintaining the postharvest quality of bell pepper. PRACTICAL APPLICATION: CW and TEO are classified as generally recognized as safe (GRAS) by the US Food and Drug Administration (FDA). This combination can be employed on the bell pepper packaging system to extend shelf life and oppose gray mold developments. Bell pepper fruits are normally coated with lipid-base coatings such as CW before commercialization; therefore, TEO addition would represent a small investment without any changes on the packaging system infrastructure.
Collapse
Affiliation(s)
- Jordi G López-Velázquez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Cd. Universitaria, Culiacán, Sinaloa, Mexico
| | - Francisco J Barraza-López
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Cd. Universitaria, Culiacán, Sinaloa, Mexico
| | - Misael O Vega-García
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Cd. Universitaria, Culiacán, Sinaloa, Mexico
| | | | - Roberto Gutiérrez-Dorado
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Cd. Universitaria, Culiacán, Sinaloa, Mexico
| | - Diana C Chaidez-Gastelum
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Cd. Universitaria, Culiacán, Sinaloa, Mexico
| | - Lidia E Ayón-Reyna
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Cd. Universitaria, Culiacán, Sinaloa, Mexico
| |
Collapse
|
6
|
Linares-Castañeda A, Franco-Hernández MO, Gómez y Gómez YDLM, Corzo-Rios LJ. Physical properties of zein-alginate-glycerol edible films and their application in the preservation of chili peppers ( Capsicum annuum L.). Food Sci Biotechnol 2024; 33:889-902. [PMID: 38371689 PMCID: PMC10866812 DOI: 10.1007/s10068-023-01393-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/21/2023] [Accepted: 07/13/2023] [Indexed: 02/20/2024] Open
Abstract
Edible films elaborated from macromolecules, like carbohydrates, proteins, and lipids, must protect and maintain the integrity of foods during their handling, storage, and transportation. In this work, the effect of the concentration of zein (1-2% w/v), sodium alginate (1.5-2% w/v), and glycerol (2-4% w/v) on edible films physicochemical properties was evaluated. The Zein-Alginate-Glycerol interaction was evidenced by the FTIR analysis, the high permeability to water vapor and contact angles less than 90° of the polymer matrices formed. The film made with 2% zein, 1.5% sodium alginate and 4% glycerol preserved the quality of the chili pepper during 15 days of storage at 20 °C, the edible films allowed 3 more days of shelf life for weight loss and 10 more days for firmness. Edible films could be used in chili peppers that are destined for industrial processing, and before use, remove the film with a simple wash. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01393-z.
Collapse
Affiliation(s)
- Alejandra Linares-Castañeda
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional. Av. Acueducto S/N, Barrio La Laguna, Col. La Laguna Ticomán, 07340 Mexico City, Mexico
| | - Marina Olivia Franco-Hernández
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional. Av. Acueducto S/N, Barrio La Laguna, Col. La Laguna Ticomán, 07340 Mexico City, Mexico
| | - Yolanda de las Mercedes Gómez y Gómez
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional. Av. Acueducto S/N, Barrio La Laguna, Col. La Laguna Ticomán, 07340 Mexico City, Mexico
| | - Luis Jorge Corzo-Rios
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional. Av. Acueducto S/N, Barrio La Laguna, Col. La Laguna Ticomán, 07340 Mexico City, Mexico
| |
Collapse
|
7
|
Sanatombi K. Antioxidant potential and factors influencing the content of antioxidant compounds of pepper: A review with current knowledge. Compr Rev Food Sci Food Saf 2023; 22:3011-3052. [PMID: 37184378 DOI: 10.1111/1541-4337.13170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/02/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023]
Abstract
The use of natural food items as antioxidants has gained increasing popularity and attention in recent times supported by scientific studies validating the antioxidant properties of natural food items. Peppers (Capsicum spp.) are also important sources of antioxidants and several studies published during the last few decades identified and quantified various groups of phytochemicals with antioxidant capacities as well as indicated the influence of several pre- and postharvest factors on the antioxidant capacity of pepper. Therefore, this review summarizes the research findings on the antioxidant activity of pepper published to date and discusses their potential health benefits as well as the factors influencing the antioxidant activity in pepper. The major antioxidant compounds in pepper include capsaicinoids, capsinoids, vitamins, carotenoids, phenols, and flavonoids, and these antioxidants potentially modulate oxidative stress related to aging and diseases by targeting reactive oxygen and nitrogen species, lipid peroxidation products, as well as genes for transcription factors that regulate antioxidant response elements genes. The review also provides a systematic understanding of the factors that maintain or improve the antioxidant capacity of peppers and the application of these strategies offers options to pepper growers and spices industries for maximizing the antioxidant activity of peppers and their health benefits to consumers. In addition, the efficacy of pepper antioxidants, safety aspects, and formulations of novel products with pepper antioxidants have also been covered with future perspectives on potential innovative uses of pepper antioxidants in the future.
Collapse
|
8
|
Mi S, Li T, Shi Q, Zhu W, Wang X. Cold shock precooling improves the firmness of chili pepper during postharvest storage and the molecular mechanisms related to pectin. Food Chem 2023; 419:136052. [PMID: 37015167 DOI: 10.1016/j.foodchem.2023.136052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 04/06/2023]
Abstract
This research was conducted to explore the influence of cold shock on the firmness, a quality marker in chili pepper during 0-21 d storage and determine mechanism by cold shock impacted pectin. Chili peppers were exposed to cold shock precooling (0 ± 2 °C water/ice mixture) for 0-, 30-, 90- and 150-min, respectively. Results showed that cold shock alleviated loss of firmness throughout storage. Firmness was positively associated with sodium carbonate-soluble pectin content (r = 0.44), methylation degree of CDTA-soluble pectin (r = 0.82) and water-soluble pectin (WSP, r = 0.87), but negatively associated with WSP content (r = -0.76), and the activities of β-galactosidase (r = -0.72) and pectinlyase (r = -0.74). Cold shock for 90 min was determined to be optimal. This study confirms the applicability of cold shock precooling to maintain firmness and thereby to extend the shelf life of chili pepper.
Collapse
Affiliation(s)
- Si Mi
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Tong Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Quanying Shi
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Wenxuan Zhu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
9
|
Kucuker E, Aglar E, Sakaldaş M, Şen F, Gundogdu M. Impact of Postharvest Putrescine Treatments on Phenolic Compounds, Antioxidant Capacity, Organic Acid Contents and Some Quality Characteristics of Fresh Fig Fruits during Cold Storage. PLANTS (BASEL, SWITZERLAND) 2023; 12:1291. [PMID: 36986981 PMCID: PMC10051898 DOI: 10.3390/plants12061291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
The storage and shelf life of the fig, which has a sensitive fruit structure, is short, and this results in excessive economic losses. In a study carried out to contribute to the solution of this problem, the effect of postharvest putrescine application at different doses (0, 0.5, 1.0, 2.0, and 4.0 mM) on fruit quality characteristics and biochemical content during cold storage in figs was determined. At the end of the cold storage, the decay rate and weight loss in the fruit were in the ranges of 1.0-1.6% and 1.0-5.0 %, respectively. The decay rate and weight loss were lower in putrescine-applied fruit during cold storage. Putrescine application had a positive effect on the changes in fruit flesh firmness values. The SSC rate of fruit varied between 14 and 20%, while significant differences in the SSC rate occurred depending on storage time and putrescine application dose. With putrescine application, the decrease in the acidity rate of the fig fruit during cold storage was smaller. At the end of the cold storage, the acidity rate was between 1.5-2.5% and 1.0-5.0. Putrescine treatments affected total antioxidant activity values and changes occurred in total antioxidant activity depending on the application dose. In the study, it was observed that the amount of phenolic acid in fig fruit decreased during storage and putrescine doses prevented this decrease. Putrescine treatment affected the changes in the quantity of organic acids during cold storage, and this effect varied depending on the type of organic acid and the length of the cold storage period. As a result, it was revealed that putrescine treatments can be used as an effective method to maintain postharvest fruit quality in figs.
Collapse
Affiliation(s)
- Emine Kucuker
- Agriculture Faculty Department of Horticulture, Siirt University, Siirt 56100, Turkey
| | - Erdal Aglar
- Agriculture Faculty Department of Horticulture, Van Yüzüncü Yıl University, Van 65000, Turkey
| | - Mustafa Sakaldaş
- Lapseki Vocational School Department of Food Processing, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey
| | - Fatih Şen
- Agricultural Faculty Department of Horticulture, Ege University, İzmir 35000, Turkey
| | - Muttalip Gundogdu
- Agricultural Faculty Department of Horticulture, Bolu Abant Izzet Baysal University, Bolu 14000, Turkey
| |
Collapse
|
10
|
Chinchkar AV, Singh A, Singh R, Kamble MG, Dar AH, Sagar NA. Effect of polyvinyl acetate (PVAc) based coating on quality characteristics of capsicum during storage. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1077-1087. [PMID: 36908349 PMCID: PMC9998764 DOI: 10.1007/s13197-022-05457-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022]
Abstract
The effect of PVAc (Polyvinyl acetate) coating on various characteristics of capsicum was determined during postharvest storage at room temperature (30 ± 1 °C) and refrigeration temperature (10 ± 1 °C). Food grade PVAc was used to make different coating formulations (2.5, 5, 7.5, 10 and 12.5%) by dissolving alcohol-water mixtures. After coating, the samples were stored at room temperature (30 ± 1 °C) and refrigeration temperature (10 ± 1 °C) for a comparative study. Various physicochemical parameters viz. weight loss, TSS, acidity, chlorophyll, pH, ascorbic acid, and color were analyzed every three days of storage till spoilage. Results revealed that the physicochemical characteristics and the quality of the bell peppers were improved by coating treatments at both the storage conditions. PVAc concentrations of 10 and 12.5% performed better than other PVAc coatings in retaining the chlorophyll and water content, which ultimately increased the shelf life of capsicum without significantly affecting its green color. The coating reduced the weight loss and color change, maintained total soluble solids, titratable acidity, pH over the storage period. About 40-50% less weight loss was observed in case of higher PVAc coating concentrations (10 and 12%). Therefore, the present study results suggested that PVAc coating can maintain postharvest storage quality of capsicum at 30 ± 1 °C and 10 ± 1 °C storage conditions. Graphical abstract
Collapse
Affiliation(s)
- Ajay V. Chinchkar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, India
| | - Anurag Singh
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, India
| | - Rakhi Singh
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, India
| | - Meenatai G. Kamble
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, Kashmir 12122 India
| | - Narashans Alok Sagar
- Food Microbiology Lab, Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122 India
| |
Collapse
|
11
|
Hanaei S, Bodaghi H, Ghasimi Hagh Z. Alleviation of postharvest chilling injury in sweet pepper using Salicylic acid foliar spraying incorporated with caraway oil coating under cold storage. FRONTIERS IN PLANT SCIENCE 2022; 13:999518. [PMID: 36160955 PMCID: PMC9495611 DOI: 10.3389/fpls.2022.999518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
The decrease in the postharvest quality of sweet peppers in terms of the physiological disorders resulting from cold storage (<7-10°C) results in the significant economic losses. The ability of pre-harvest foliar spraying of Salicylic acid (SA) (1.5 and 3 mM) and the postharvest caraway (Carum carvi) oil coating (0.3% and 0.6%) on chilling injury (CI) and the quality of stored sweet pepper at 4 ± 2°C for 60 d followed by an additional 2 d at 20°C were investigated. The antifungal activity of caraway oil (0.15%, 0.3%, and 0.6%) on Botrytis cinerea mycelia in in vitro showed that the maximum percentage of inhibition was equal to 95% in the medium with 0.6% of this oil. The CI of sweet pepper was significantly reduced by increasing SA, and caraway oil concentrations compared to the control, especially the lowest CI (14.36%), were obtained at 3 mM SA and 0.6% caraway oil treatment. The results showed a significant delay in the changes of weight loss (79.43%), firmness (30%), pH (6%), total soluble solids (TSS) (17%), titratable acidity (TA) (32%), and color surface characteristics and capsaicin content (5%) compared to control fruits at 3 mM SA and 0.6% caraway oil concentrations. Results indicated that the decrease in CI was related to a decrease in electrolyte leakage, malondialdehyde (MDA) content, total phenolic production, decay incidence, and an increase in the activity of antioxidant enzymes, including catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD). Thus, the incorporation of SA (3 mM) and caraway oil (0.6%) to reduce the CI of stored sweet pepper at low temperature can be considered a practical solution to improve the quality and marketability of this product.
Collapse
|
12
|
Ghosh UK, Islam MN, Siddiqui MN, Cao X, Khan MAR. Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:227-239. [PMID: 34796604 DOI: 10.1111/plb.13363] [Citation(s) in RCA: 220] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/21/2021] [Accepted: 10/15/2021] [Indexed: 05/22/2023]
Abstract
Abiotic stresses have a detrimental impact on plant growth and productivity and are a major threat to sustainable crop production in rapidly changing environments. Proline, an important amino acid, plays an important role in maintaining the metabolism and growth of plants under abiotic stress conditions. Many insights indicate a positive relationship between proline accumulation and tolerance of plants to various abiotic stresses. Because of its metal chelator properties, it acts as a molecular chaperone, an antioxidative defence molecule that scavenges reactive oxygen species (ROS), as well as having signalling behaviour to activate specific gene functions that are crucial for plant recovery from stresses. It also acts as an osmoprotectant, a potential source to acquire nitrogen as well as carbon, and plays a significant role in the flowering and development of plants. Overproduction of proline in plant cells contributes to maintaining cellular homeostasis, water uptake, osmotic adjustment and redox balance to restore the cell structures and mitigate oxidative damage. Many reports reveal that transgenic plants, particularly those overexpressing genes tailored for proline accumulation, exhibit better adaptation to abiotic stresses. Therefore, this review aims to provide a comprehensive update on proline biosynthesis and accumulation in plants and its putative regulatory roles in mediating plant defence against abiotic stresses. Additionally, the current and future directions in research concerning manipulation of proline to induce gene functions that appear promising in genetics and genomics approaches to improve plant adaptive responses under changing climate conditions are also highlighted.
Collapse
Affiliation(s)
- U K Ghosh
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - M N Islam
- Department of Agro-Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - M N Siddiqui
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - X Cao
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
| | - M A R Khan
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
13
|
Comparative study of conventional and novel combined modes of microwave- and infrared-assisted thawing on quality of frozen green pepper, carrot and cantaloupe. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
14
|
Mohi-Alden K, Omid M, Soltani Firouz M, Nasiri A. Design and evaluation of an intelligent sorting system for bell pepper using deep convolutional neural networks. J Food Sci 2021; 87:289-301. [PMID: 34940977 DOI: 10.1111/1750-3841.15995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/28/2022]
Abstract
Homogeneity of appearance attributes of bell peppers is essential for consumers and food industries. This research aimed to develop an in-line sorting system using a deep convolutional neural network (DCNN) which is considered the state-of-the-art in the field of machine vision-based classifications, for grading bell peppers into five classes. According to export standards, the crop should be graded based on maturity stage and size. For that, the fully connected layer in the ResNet50 architecture of DCNN was replaced with a developed classifier block, including a global average-pooling layer, dense layers, batch normalization, and dropout layer. The developed model was trained and evaluated through the five-fold cross-validation method. The required processing time to classify each sample in the proposed model was estimated as 4 ms which is fast enough for real-time applications. Accordingly, the DCNN model was integrated with a machine vision-based designed sorting machine. Then, the developed system was evaluated in the in-line phase. The performance parameters in the in-line phase include accuracy, precision, sensitivity, specificity, F1-score, and overall accuracies were 98.7%, 97%, 96.9%, 99%, 96.9%, and 96.9%, respectively. The total rate of sorting the bell pepper was also measured as approximately 3000 sample/h with one sorting line. The proposed sorting system demonstrates a very good capability that allows it to be used in industrial applications. PRACTICAL APPLICATION: A developed intelligent model was integrated with a machine vision-based designed sorting machine for bell peppers. The developed system can sort the crop according to export criteria with an accuracy of 96.9%. The proposed sorting system demonstrated a very good capability that allows it to be used in industrial applications.
Collapse
Affiliation(s)
- Khaled Mohi-Alden
- Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran
| | - Mahmoud Omid
- Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran
| | - Mahmoud Soltani Firouz
- Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran
| | - Amin Nasiri
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
15
|
Shivangi S, Dorairaj D, Negi PS, Shetty NP. Development and characterisation of a pectin-based edible film that contains mulberry leaf extract and its bio-active components. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107046] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Kamiab F, Tavassolian I, Hosseinifarahi M. Biologia futura: the role of polyamine in plant science. Biol Futur 2021; 71:183-194. [PMID: 34554509 DOI: 10.1007/s42977-020-00027-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 06/10/2020] [Indexed: 12/27/2022]
Abstract
Polyamines (PAs) are positively charged amines such as putrescine, spermidine and spermine that ubiquitously exist in all organisms. They have been considered as a new type of plant biostimulants, with pivotal roles in many physiological processes. Polyamine levels are controlled by intricate regulatory feedback mechanisms. PAs are directly or indirectly regulated through interaction with signaling metabolites (H202, NO), aminobutyric acid (GABA), phytohormones (abscisic acid, gibberellins, ethylene, cytokinins, auxin, jasmonic acid and brassinosteroids) and nitrogen metabolism (maintaining the balance of C:N in plants). Exogenous applications of PAs enhance the stress resistance, flowering and fruit set, synthesis of bioactive compounds and extension of agricultural crops shelf life. Up-regulation of PAs biosynthesis by genetic manipulation can be a novel strategy to increase the productivity of agricultural crops. Recently, the role of PAs in symbiosis relationships between plants and beneficial microorganisms has been confirmed. PA metabolism has also been targeted to design new harmless fungicides.
Collapse
Affiliation(s)
- Fereshteh Kamiab
- Department of Horticulture, Faculty of Agriculture, Rafsanjan Branch, Islamic Azad University, Rafsanjan, Iran.
| | - Iraj Tavassolian
- Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran.,Department of Horticulture, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Hosseinifarahi
- Department of Horticultural Science, Yasooj Branch, Islamic Azad University, Yasooj, Iran
| |
Collapse
|
17
|
Prajapati U, Asrey R, Varghese E, Singh A, Pal Singh M. Effects of postharvest ultraviolet-C treatment on shelf-life and quality of bitter gourd fruit during storage. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Ghosh A, Saha I, Debnath SC, Hasanuzzaman M, Adak MK. Chitosan and putrescine modulate reactive oxygen species metabolism and physiological responses during chili fruit ripening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:55-67. [PMID: 33812227 DOI: 10.1016/j.plaphy.2021.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
We investigated the combined effect of chitosan (CHT) and putrescine (PUT) on the postharvest shelf life of Capsicum fruit concerning the metabolism of reactive oxygen species (ROS) through direct and indirect effects on ripening characters cell wall hydrolyzing enzyme and ROS metabolism. The PUT and CHT directly affected quality indices like color, firmness and water loss with a concomitant oxidative bust in the development of O2•- and H2O2 in fruit pulp. This was accompanied by significant suppression of respiratory flux, a decrease of total soluble solids and ascorbic acid content throughout postharvest storage. PUT applied with CHT modified the oxidative metabolism of fruits by a significant reduction in the level of O2•- and H2O2 content. In addition, a significant accumulation of total polyamine under respective treatment was reasonably correlated with both ROS producing enzyme as well as H2O2 and O2•-. Wall hydrolyzing enzymes like pectin methyl esterase and cellulase had marked downregulation both under PUT and CHT + PUT treatment. Moreover, on close observation, the combinational effects of PUT and CHT had better effects in the regulation of those enzymes as compared to individual treatment. Fruits restore higher antioxidative capacities as evident with superoxide dismutase (SOD), guaiacol peroxidases (GPX), ascorbate peroxidase (APX) catalase (CAT), glutathione peroxidase (GPX), NADPH oxidase (NOX) and glutathione reductase (GR), indicating their roles on fruit coat softening. Finally, the treatment of PUT and CHT in combination increased shelf life vis-à-vis the quality of fruit.
Collapse
Affiliation(s)
- Arijit Ghosh
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 74 1235, Nadia, W.B., India
| | - Indraneel Saha
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 74 1235, Nadia, W.B., India
| | | | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh.
| | - Malay Kumar Adak
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 74 1235, Nadia, W.B., India.
| |
Collapse
|
19
|
Hernández-López G, Ventura-Aguilar RI, Correa-Pacheco ZN, Bautista-Baños S, Barrera-Necha LL. Nanostructured chitosan edible coating loaded with α-pinene for the preservation of the postharvest quality of Capsicum annuum L. and Alternaria alternata control. Int J Biol Macromol 2020; 165:1881-1888. [PMID: 33096179 DOI: 10.1016/j.ijbiomac.2020.10.094] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 12/26/2022]
Abstract
Bell peppers are susceptible to postharvest diseases caused by the fungus Alternaria alternata that limit its commercialization. Nowadays, nanotechnology allows encapsulation of natural components such as terpenes. The objective of this work was to develop chitosan nanoparticles with α-pinene (P-CSNPs) and a nanostructured edible coating (EC-P-CSNPs). The P-CSNPs were characterized by TEM (Transmission Electron Microscopy), FTIR (Fourier-Transform Infrared Spectroscopy), DLS (Dynamic Light Scattering) and ζ potential. The P-CSNPs and the EC-P-CSNPs were applied to the bell peppers inoculated with A. alternata under cold storage for either 0, 7, 14 and 21 days at 12 ± 2 °C followed by a shelf-life period of 5 days at 20 ± 2 °C to assess their post-harvest quality. Nanoparticles size was 3.9 ± 0.5 nm and the ζ potential value was between 13.4 and 14.9 mV. The incorporation of α-pinene was corroborated by FTIR. Significant changes in weight loss were obtained for P-CSNPs and EC-P-CSNPs at percentage of 3 and 6% compared to the control. For firmness, color, total soluble solids, titratable acids, maturity index, total flavonoid content and antioxidant capacity, no differences were found. Total carotenes were higher in bell peppers without A. alternata. The chitosan nanoparticles and edible coating inhibited A. alternata during the cold storage period of bell pepper and preserved the physicochemical quality.
Collapse
Affiliation(s)
- Gonzalo Hernández-López
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Carretera Yautepec-Jojutla km 6, 62731 Yautepec, Morelos, Mexico
| | - Rosa Isela Ventura-Aguilar
- CONACYT-Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Carretera Yautepec-Jojutla km 6, 62731 Yautepec, Morelos, Mexico
| | - Zormy Nacary Correa-Pacheco
- CONACYT-Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Carretera Yautepec-Jojutla km 6, 62731 Yautepec, Morelos, Mexico
| | - Silvia Bautista-Baños
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Carretera Yautepec-Jojutla km 6, 62731 Yautepec, Morelos, Mexico
| | - Laura Leticia Barrera-Necha
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Carretera Yautepec-Jojutla km 6, 62731 Yautepec, Morelos, Mexico.
| |
Collapse
|
20
|
Effects of ethephon on ethephon residue and quality properties of chili pepper during pre-harvest ripening. Journal of Food Science and Technology 2020; 58:2098-2108. [PMID: 33967308 DOI: 10.1007/s13197-020-04719-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/07/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
Abstract
The application of ethephon was investigated to examine its effects on both ethephon residue and quality properties of chili peppers during pre-harvest ripening with the goal of facilitating maximum commercial harvest along with improving color and flavor. A single ethephon treatment significantly increased L* and a* values and capsanthin concentration, while decreased total chlorophyll contents. Moreover, ethephon treatment induced significant promotion of capsaicin synthesis and reduction of soluble sugar content. While repeated treatments did not increase the total capsaicin content, and the consumption of soluble sugar was accelerated. Additionally, the maximum ethephon residue in chili pepper after ethephon treatment was 21.18 mg kg-1, which is lower than the permissible residue level of 50 mg kg-1 for chili peppers. The ethephon residual decreased with prolonging harvest time of chili peppers. The effects of ethephon treatment on different types of chili peppers were variable. The results of this study indicated that ethephon could hasten the ripening process and increase the quality of chili peppers.
Collapse
|