1
|
Zhang Z, Li X, Teng H, Han Y, Jin Y, Xu Q. Preparation and characterization of ovomucin self-assembly nanoparticles under glycerol compression for astaxanthin delivery: Sustained release and antioxidant activity. J Food Sci 2024; 89:7336-7347. [PMID: 39374415 DOI: 10.1111/1750-3841.17429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024]
Abstract
Astaxanthin (AST) is a natural hydrophobic nutrient with various biological activities, but its low solubility limits its application. In this study, self-assembly nanoparticles were prepared by ovomucin (OVM) and Ca2+ with the enhancement of glycerol to deliver AST. Glycerol compressed the particle size of nanoparticles from 175.7 ± 1.8 to 142.9 ± 0.6 nm, and the nanoparticles had a strong negative charge (-28.9 ± 0.6 mV). Ultraviolet-visible spectroscopy and X-ray diffraction (XRD) confirmed the successful encapsulation of AST in an amorphous form with a high encapsulation efficiency (82.9% ± 2.1%). Fourier transform infrared and circular dichroism analyses demonstrated that nanoparticles formation mainly involved electrostatic interactions and hydrophobic interactions. AST in nanoparticles presented excellent gastric juice resistance and sustained release ability, whereas free radical scavenging efficiency reached up to 75%. In addition, the nanoparticles had no apparent toxicity to cell viability. This study is expected to provide a new insight into the safe and efficient delivery of AST, while demonstrating the potential of OVM as a delivery carrier in the food and health industries.
Collapse
Affiliation(s)
- Zhenqing Zhang
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao, P. R. China
| | - Xuanchen Li
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao, P. R. China
| | - Haoye Teng
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao, P. R. China
| | - Yumeng Han
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao, P. R. China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Qi Xu
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao, P. R. China
| |
Collapse
|
2
|
Abdoli B, Khoshtaghaza MH, Ghomi H, Torshizi MAK, Mehdizadeh SA, Pishkar G, Dunn IC. Cold atmospheric pressure air plasma jet disinfection of table eggs: Inactivation of Salmonella enterica, cuticle integrity and egg quality. Int J Food Microbiol 2024; 410:110474. [PMID: 37984215 DOI: 10.1016/j.ijfoodmicro.2023.110474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
Eggshell cuticles are first lines of defense against egg-associated pathogens, such as Salmonella enterica serovar Enteritidis (SE). Infections from eggs contaminated with this strain remain a significant risk. In addition, changes in the cuticle are closely related to changes in egg safety. The emerging non-thermal atmospheric pressure plasma technology enables a high rate of microbial inactivation at near-ambient temperatures, making it ideal for food safety applications. This study examines the effects of a cold atmospheric pressure air plasma jet (CAAP-J) on eggshell cuticle and egg quality whilst inactivating SE. Shell eggs inoculated with SE (7 log10 cfu/egg) were used as the samples to test the decontamination performance of the device. The tests were conducted using an industrial CAAP-J with different power levels (600-800 W), exposure times (60-120 s), at a fixeddistance of 20 mm from the plasma jet and an air flow rate of 3600 L/h. It was found that the best results were obtained after 120 s at maximum plasma power (800 W). Subsequent to the implementation of this plasma procedure, it was determined that no viable cells could be detected. After CAAP-J treatment, the temperature remains below 50.5 °C, thereby minimizing the risk of altering egg quality. All specific measurements (egg white pH, yolk pH, yolk color, HU, and eggshell breaking strength) have shown that CAAP-J treatment has no negative effect on egg quality. No changes in eggshell cuticle quality after CAAP-J treatment was confirmed through scanning electron microscope (SEM).
Collapse
Affiliation(s)
- Bahareh Abdoli
- Department of Biosystems Engineering, Tarbiat Modares University, Tehran, Iran
| | | | - Hamid Ghomi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | | | - Saman Abdanan Mehdizadeh
- Mechanics of Biosystems Engineering Department, Faculty of Agricultural Engineering and Rural Development, Agricultural Sciences and Natural Resources University of Khuzestan, Ahvaz, Iran
| | | | - Ian C Dunn
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, Scotland, United Kingdom
| |
Collapse
|
3
|
Zare F, Ghasemi N, Bansal N, Hosano H. Advances in pulsed electric stimuli as a physical method for treating liquid foods. Phys Life Rev 2023; 44:207-266. [PMID: 36791571 DOI: 10.1016/j.plrev.2023.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
There is a need for alternative technologies that can deliver safe and nutritious foods at lower costs as compared to conventional processes. Pulsed electric field (PEF) technology has been utilised for a plethora of different applications in the life and physical sciences, such as gene/drug delivery in medicine and extraction of bioactive compounds in food science and technology. PEF technology for treating liquid foods involves engineering principles to develop the equipment, and quantitative biochemistry and microbiology techniques to validate the process. There are numerous challenges to address for its application in liquid foods such as the 5-log pathogen reduction target in food safety, maintaining the food quality, and scale up of this physical approach for industrial integration. Here, we present the engineering principles associated with pulsed electric fields, related inactivation models of microorganisms, electroporation and electropermeabilization theory, to increase the quality and safety of liquid foods; including water, milk, beer, wine, fruit juices, cider, and liquid eggs. Ultimately, we discuss the outlook of the field and emphasise research gaps.
Collapse
Affiliation(s)
- Farzan Zare
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia; School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Negareh Ghasemi
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia
| | - Nidhi Bansal
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Hamid Hosano
- Biomaterials and Bioelectrics Department, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan.
| |
Collapse
|
4
|
Pulsed electric field as a promising technology for solid foods processing: A review. Food Chem 2022; 403:134367. [DOI: 10.1016/j.foodchem.2022.134367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 08/31/2022] [Accepted: 09/18/2022] [Indexed: 10/14/2022]
|
5
|
Pan J, Zhang Z, Mintah BK, Xu H, Dabbour M, Cheng Y, Dai C, He R, Ma H. Effects of nonthermal physical processing technologies on functional, structural properties and digestibility of food protein: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jiayin Pan
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Zhaoli Zhang
- College of Food Science and Engineering Yangzhou University Yangzhou Jiangsu China
| | | | - Haining Xu
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering Faculty of Agriculture, Benha University Moshtohor Qaluobia Egypt
| | - Yu Cheng
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Chunhua Dai
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Ronghai He
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Haile Ma
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| |
Collapse
|
6
|
Zhou N, Zhao Y, Yao Y, Wu N, Xu M, Du H, Wu J, Tu Y. Antioxidant Stress and Anti-Inflammatory Activities of Egg White Proteins and Their Derived Peptides: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5-20. [PMID: 34962122 DOI: 10.1021/acs.jafc.1c04742] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oxidative stress and chronic inflammation are the common pathological bases of chronic diseases such as atherosclerosis, cancer, and cardiovascular diseases, but most of the treatment drugs for chronic diseases have side effects. There is an increasing interest to identify food-derived bioactive compounds that can mitigate the pathological pathways associated with oxidative stress and chronic inflammation. Egg white contain a variety of biologically active proteins, many of which have antioxidant and anti-inflammatory activities and usually show better activity after enzymatic hydrolysis. This review covers the antioxidative stress and anti-inflammatory activities of egg white proteins and their derived peptides and clarifies their mechanism of action in vivo and in vitro. In addition, the link between oxidative stress and inflammation as well as their markers are reviewed. It suggests the potential application of egg white proteins and their derived peptides and puts forward further research prospects.
Collapse
Affiliation(s)
- Na Zhou
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huaying Du
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianping Wu
- Department of Agricultural Food and Nutritional Science, Faculty of Agricultural Life and Environmental Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
7
|
Agregán R, Munekata PES, Putnik P, Pateiro M, Bursać Kovačević D, Zavadlav S, Lorenzo JM. The Use of Novel Technologies in Egg Processing. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1980887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Rubén Agregán
- Centro Tecnológico De La Carne De Galicia, Adva, Ourense, Spain
| | | | - Predrag Putnik
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Mirian Pateiro
- Centro Tecnológico De La Carne De Galicia, Adva, Ourense, Spain
| | | | - Sandra Zavadlav
- Department of Food Technology, Karlovac University of Applied Sciences, Karlovac Croatia
| | - José M. Lorenzo
- Centro Tecnológico De La Carne De Galicia, Adva, Ourense, Spain
- Área De Tecnología De Los Alimentos, Facultad De Ciencias De Ourense, Universidad De Vigo, Ourense, Spain
| |
Collapse
|
8
|
Afraz MT, Khan MR, Roobab U, Noranizan MA, Tiwari BK, Rashid MT, Inam‐ur‐Raheem M, Hashemi SMB, Aadil RM. Impact of novel processing techniques on the functional properties of egg products and derivatives: A review. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13568] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Muhammad Talha Afraz
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Moazzam Rafiq Khan
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Ume Roobab
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Mohd Adzahan Noranizan
- Department of Food Technology Faculty of Food Science and Technology, Universiti Putra Malaysia Serdang Malaysia
| | - Brijesh K. Tiwari
- Department of Food Biosciences Teagasc Food Research Centre Dublin Ireland
| | | | - Muhammad Inam‐ur‐Raheem
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | | | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| |
Collapse
|
9
|
Tadesse SA, Emire SA. Production and processing of antioxidant bioactive peptides: A driving force for the functional food market. Heliyon 2020; 6:e04765. [PMID: 32913907 PMCID: PMC7472861 DOI: 10.1016/j.heliyon.2020.e04765] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 05/06/2020] [Accepted: 08/18/2020] [Indexed: 02/04/2023] Open
Abstract
Recently, the demand for functional foods in the global market has increased rapidly due to the increasing occurrences of non-communicable diseases and technological advancement. Antioxidant peptides have been suggested as ingredients used to produce health-promoting foods. These peptides are encrypted from various food derived protein sources by chemical and enzymatic hydrolysis, and microbial fermentation. However, the industrial-scale production of antioxidant peptides is hampered by different problems such as high production cost, and low yield and bioactivity. Accordingly, novel processing technologies, such as high pressure, microwave and pulsed electric field, have been recently emerged to overcome the problems associated with the conventional hydrolysis methods. This particular review, therefore, discussed the current processing technologies used to produce antioxidant peptides. The review also suggested further perspectives that should be addressed in the future.
Collapse
Affiliation(s)
- Solomon Abebaw Tadesse
- Department of Food Science and Applied Nutrition, College of Applied Sciences, Addis Ababa Science and Technology University, P.O.Box 16417, Addis Ababa, Ethiopia
| | - Shimelis Admassu Emire
- Department of Food Engineering, School of Chemical and Bioengineering, Addis Ababa Institute of Technology, Addis Ababa University, Ethiopia
| |
Collapse
|