1
|
Wang T, Tang C, Xiao M, He M, Li Y, Li X. Characteristics of lipid accumulation induced by high-altitude environment improve the total antioxidant capacity of Ophiocordyceps sinensis. Food Chem 2025; 480:143812. [PMID: 40112714 DOI: 10.1016/j.foodchem.2025.143812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Ophiocordyceps sinensis is a traditional Chinese herbal medicine and nutritional supplement, which is rich in functional components beneficial to health. The biosynthesis of these components is affected by environment factors, especially lipids. This study analyzed the lipid mass spectrometry characteristics and total antioxidant capacity (TAC) of O. sinensis in 5 different altitude environments and explored the important contributions of environmental factors. The pathway of glycerophospholipid metabolism and biosynthesis of secondary metabolites in O. sinensis was activated by altitude (AM) and mean annual temperature (MAT) at high altitudes. This stimulated the degradation of triglycerides (TG) and the biosynthesis of phosphatidylcholine (PC), and phosphatidylethanolamine (PE), promoted the accumulation of free radical scavenging (FRS) abilities and antioxidant components (AC), and increased its TAC. This study reflects the important role of high altitude environment on lipid metabolism and the formation of bioactive components in O. sinensis and provides a scientific basis for exploring its medicinal value and nutritional value.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Plateau Ecology and Agriculture, College of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China
| | - Chuyu Tang
- State Key Laboratory of Plateau Ecology and Agriculture, College of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China
| | - Mengjun Xiao
- State Key Laboratory of Plateau Ecology and Agriculture, College of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China
| | - Min He
- State Key Laboratory of Plateau Ecology and Agriculture, College of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China
| | - Yuling Li
- State Key Laboratory of Plateau Ecology and Agriculture, College of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China
| | - Xiuzhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, College of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China.
| |
Collapse
|
2
|
Xie X, Wang Y, Wen B, Tian J, Cheng Z, Tang S, Nie Y, Wu X, Guo X, Li B. Characterization and metabolism pathway of volatile compounds in blueberries of different varieties and origins analyzed via HS-GC-IMS and HS-SPME-GC-MS. Food Chem 2025; 480:143813. [PMID: 40199057 DOI: 10.1016/j.foodchem.2025.143813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025]
Abstract
This study comprehensively identified 10 blueberry varieties from 3 regions using headspace gas chromatography ion mobility spectrometry (HS-GC-IMS) and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). The former identified 70 volatile organic compounds, while the latter identified 618. The blueberry varieties, Bluecrop, Reka, and Northland in Northeast China have significant advantages in fresh and sweet flavors were found through HS-GC-IMS. HS-SPME-GC-MS found that terpenes, esters, and heterocyclic are the main volatile components in blueberry (47.09 %), with nine volatile organic metabolites (benzene, 1,3-dimethyl, etc.) serving as potential biomarkers for distinguishing blueberry varieties from the three regions. In addition, the top 10 aromatic compounds in different blueberry varieties were screened, among which 5-ethyl-3-hydroxy-4-methyl-2 (5H) - furanone had the highest rOAV value. These findings provide theoretical support for exploring the key flavor characteristics of different varieties of blueberries and effectively distinguishing blueberries from various production areas.
Collapse
Affiliation(s)
- Xu Xie
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Bosu Wen
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhen Cheng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Siyi Tang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yujie Nie
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xilin Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xin Guo
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
3
|
Dhuique‐Mayer C, Servent A. An overview of the nutritional quality and health benefits linked to the world diversity of citrus fruits/juices. J Food Sci 2025; 90:e17576. [PMID: 39731722 PMCID: PMC11717066 DOI: 10.1111/1750-3841.17576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 12/30/2024]
Abstract
Citrus juices represent a nutrient-dense beverage due to the remarkable balance in their bioactive compounds (vitamins, minerals, dietary fibers, and phytochemicals such as flavonoids and carotenoids). This review aims to examine the nutritional quality and the health benefits of citrus juice consumption linked to the world diversity of citrus fruits. This work provides heterogenous data found on the main citrus bioactive compounds, especially carotenoids and flavonoids, which are difficult to correlate to particular geographic areas. Through an example of study, this work addresses the question of how and to what extent the content of citrus bioactive compounds is linked to the health benefits observed in humans. We explore through the more recent human clinical trials, the health effects of consuming citrus fruit or taking dietary supplements of bioactive compounds to prevent the exponential increase of world chronic diseases (type 2 diabetes, cardiovascular diseases, and obesity) and discuss the effects of dose. Finally, even if the data highlight the importance of geographical origin in accumulation of carotenoids or flavonoids from different Citrus species, the difference of content in front of the complex human metabolism of their absorption has lesser consequences for health than the fact of consuming citrus or not. The citrus health effect results in a synergistic action of numerous phytochemicals whose targeted health benefits vary depending more on the diversity of Citrus species than their geographic origin. Therefore, the use of the diversity of Citrus species could be an interesting approach to providing functional food.
Collapse
Affiliation(s)
- Claudie Dhuique‐Mayer
- QualiSud, Univ. Montpellier, CIRAD, Institut AgroUniversité d'Avignon, Université de La RéunionMontpellierFrance
- CIRADUMR QualiSudMontpellierFrance
| | - Adrient Servent
- QualiSud, Univ. Montpellier, CIRAD, Institut AgroUniversité d'Avignon, Université de La RéunionMontpellierFrance
- CIRADUMR QualiSudMontpellierFrance
| |
Collapse
|
4
|
Woldetsadik D, Sims DB, Herrera Huerta E, Nelson T, Garner MC, Monk J, Hudson AC, Schlick K. Elemental profile of wheat in the las vegas market: Geographic origin discrimination and probabilistic health risk assessment. Food Chem Toxicol 2024; 191:114862. [PMID: 38986833 DOI: 10.1016/j.fct.2024.114862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
This study investigates concentrations of toxic and potentially toxic elements (PTEs) in organic and conventional wheat flour and grains marketed in Las Vegas. Geographic origins of the samples were evaluated using Linear Discriminant Analysis (LDA). Monte Carlo Simulation technique was also employed to evaluate non-carcinogenic risk in four life stages. Concentrations of Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Se, Sr, and Zn were determined using inductively coupled plasma mass spectrometry (ICP-MS) following hot block-assisted digestion. Obtained results showed non-significant differences in contents of toxic and PTEs between conventional and organic wheat grains/flour. Using LDA, metal (loid)s were found to be indicative of geographical origin. The LDA produced a total correct classification rate of 95.8% and 100% for US and West Pacific Region samples, respectively. The results of the present study indicate that the estimated non-carcinogenic risk associated with toxic element intakes across the four life stages were far lower than the threshold value (Target Hazard Quotient (THQ) > 1). However, the probability of exceeding the threshold value for Mn is approximately 32% in children aged between 5 and 8 years. The findings of this study can aid in understanding dietary Mn exposure in children in Las Vegas.
Collapse
Affiliation(s)
| | | | | | | | | | - Joshua Monk
- College of Southern Nevada, Las Vegas, NV, USA.
| | | | | |
Collapse
|
5
|
Li H, Wang Q, Han L, Chen Z, Wang G, Wang Q, Ma S, Ai B, Xi G. Quality characterization of tobacco flavor and tobacco leaf position identification based on homemade electronic nose. Sci Rep 2024; 14:19229. [PMID: 39164410 PMCID: PMC11336110 DOI: 10.1038/s41598-024-70180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
A set of nine unique tobacco extract samples was analyzed using a self-developed electronic nose (E-nose) system, a commercial E-nose, and gas chromatography-mass spectrometry (GC-MS). The evaluation employed principal component analysis, statistical quality control, and soft independent modeling of class analogies (SIMCA). These multifaceted statistical methods scrutinized the collected data. Subsequently, a quality control model was devised to assess the stability of the sample quality. The results showed that the custom E-nose system could successfully distinguish between tobacco extracts with similar odors. After further training and the development of a quality control model for accepted tobacco extracts, it was possible to identify samples with normal and abnormal quality. To further validate our E-nose and extend its use within the tobacco industry, we collected and accurately classified the flavors of different tobacco leaf positions, with a remarkable accuracy rate of 0.9744. This finding facilitates the practical application of our E-nose system for the efficient identification of tobacco leaf positions.
Collapse
Affiliation(s)
- Hao Li
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, 450016, China
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, China
| | - Qiuling Wang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, 450016, China
| | - Lu Han
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, 450016, China
| | - Zhifei Chen
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, 450016, China
| | - Genfa Wang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, 450016, China
| | - Qingfu Wang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, 450016, China
| | - Shengtao Ma
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, 450016, China.
| | - Bin Ai
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, China.
| | - Gaolei Xi
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, 450016, China.
| |
Collapse
|
6
|
He HJ, da Silva Ferreira MV, Wu Q, Karami H, Kamruzzaman M. Portable and miniature sensors in supply chain for food authentication: a review. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 39066550 DOI: 10.1080/10408398.2024.2380837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Food fraud, a pervasive issue in the global food industry, poses significant challenges to consumer health, trust, and economic stability, costing an estimated $10-15 billion annually. Therefore, there is a rising demand for developing portable and miniature sensors that facilitate food authentication throughout the supply chain. This review explores the recent advancements and applications of portable and miniature sensors, including portable/miniature near-infrared (NIR) spectroscopy, e-nose and colorimetric sensors based on nanozyme for food authentication within the supply chain. After briefly presenting the architecture and mechanism, this review discusses the application of these portable and miniature sensors in food authentication, addressing the challenges and opportunities in integrating and deploying these sensors to ensure authenticity. This review reveals the enhanced utility of portable/miniature NIR spectroscopy, e-nose, and nanozyme-based colorimetric sensors in ensuring food authenticity and enabling informed decision-making throughout the food supply chain.
Collapse
Affiliation(s)
- Hong-Ju He
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | | | - Qianyi Wu
- Department of Agriculture and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hamed Karami
- Department of Petroleum Engineering, Collage of Engineering, Knowledge University, Erbil, Iraq
| | - Mohammed Kamruzzaman
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
7
|
Kaldeli A, Zakidou P, Paraskevopoulou A. Volatilomics as a tool to ascertain food adulteration, authenticity, and origin. Compr Rev Food Sci Food Saf 2024; 23:e13387. [PMID: 38865237 DOI: 10.1111/1541-4337.13387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/02/2024] [Accepted: 05/18/2024] [Indexed: 06/14/2024]
Abstract
Over recent years, there has been an increase in the number of reported cases of food fraud incidents, whereas at the same time, consumers demand authentic products of high quality. The emerging volatilomics technology could be the key to the analysis and characterization of the quality of different foodstuffs. This field of omics has aroused the interest of scientists due to its noninvasive, rapid, and cost-profitable nature. This review aims to monitor the available scientific information on the use of volatilomics technology, correlate it to the relevant food categories, and demonstrate its importance in the food adulteration, authenticity, and origin areas. A comprehensive literature search was performed using various scientific search engines and "volatilomics," "volatiles," "food authenticity," "adulteration," "origin," "fingerprint," "chemometrics," and variations thereof as keywords, without chronological restriction. One hundred thirty-seven relevant publications were retrieved, covering 11 different food categories (meat and meat products, fruits and fruit products, honey, coffee, tea, herbal products, olive oil, dairy products, spices, cereals, and others), the majority of which focused on the food geographical origin. The findings show that volatilomics typically involves various methods responsible for the extraction and consequential identification of volatile compounds, whereas, with the aid of data analysis, it can handle large amounts of data, enabling the origin classification of samples or even the detection of adulteration practices. Nonetheless, a greater number of specific research studies are needed to unlock the full potential of volatilomics.
Collapse
Affiliation(s)
- Aikaterini Kaldeli
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiota Zakidou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
- European Food Safety Authority (EFSA), Parma, Italy
| | - Adamantini Paraskevopoulou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
8
|
Thomas G, Caulfield J, Nikolaeva-Reynolds L, Birkett MA, Vuts J. Solvent Extraction of PDMS Tubing as a New Method for the Capture of Volatile Organic Compounds from Headspace. J Chem Ecol 2024; 50:85-99. [PMID: 38246946 DOI: 10.1007/s10886-024-01469-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Polydimethylsiloxane (PDMS) tubing is increasingly being used to collect volatile organic compounds (VOCs) from static biological headspace. However, analysis of VOCs collected using PDMS tubing often deploys thermal desorption, where samples are considered as 'one-offs' and cannot be used in multiple experiments. In this study, we developed a static headspace VOC collection method using PDMS tubing which is solvent-based, meaning that VOC extracts can be used multiple times and can be linked to biological activity. Using a synthetic blend containing a range of known semiochemicals (allyl isothiocyanate, (Z)-3-hexen-1-ol, 1-octen-3-one, nonanal, (E)-anethol, (S)-bornyl acetate, (E)-caryophyllene and pentadecane) with differing chemical and physicochemical properties, VOCs were collected in static headspace by exposure to PDMS tubing with differing doses, sampling times and lengths. In a second experiment, VOCs from oranges were collected using PDMS sampling of static headspace versus dynamic headspace collection. VOCs were eluted with diethyl ether and analysed using gas chromatography - flame ionization detector (GC-FID) and coupled GC - mass spectrometry. GC-FID analysis of collected samples showed that longer PDMS tubes captured significantly greater quantities of compounds than shorter tubes, and that sampling duration significantly altered the recovery of all tested compounds. Moreover, greater quantities of compounds were recovered from closed compared to open systems. Finally, analysis of orange headspace VOCs showed no qualitative differences in VOCs recovered compared to dynamic headspace collections, although quantities sampled using PDMS tubing were lower. In summary, extraction of PDMS tubing with diethyl ether solvent captures VOCs from the headspace of synthetic blends and biological samples, and the resulting extracts can be used for multiple experiments linking VOC content to biological activity.
Collapse
Affiliation(s)
- Gareth Thomas
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - John Caulfield
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | | | - Michael A Birkett
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - József Vuts
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK.
| |
Collapse
|
9
|
Yang F, Wen X, Xie S, He X, Qu G, Zhang X, Sun S, Luo Z, Liu Z, Lin Q. Characterization of lipid composition and nutritional quality of yak ghee at different altitudes: A quantitative lipidomic analysis. Food Chem X 2024; 21:101166. [PMID: 38322764 PMCID: PMC10844969 DOI: 10.1016/j.fochx.2024.101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 02/08/2024] Open
Abstract
Efficient and comprehensive analysis of lipid profiles in yak ghee samples collected from different elevations is crucial for optimal utilization of these resources. Unfortunately, such research is relatively rare. Yak ghee collected from three locations at different altitudes (S2: 2986 m; S5: 3671 m; S6: 4508 m) were analyzed by quantitative lipidomic. Our analysis identified a total of 176 lipids, and 147 s lipid of them were upregulated and 29 lipids were downregulated. These lipids have the potential to serve as biomarkers for distinguishing yak ghee from different altitudes. Notably, S2 exhibited higher levels of fatty acids (21:1) and branched fatty acid esters of hydroxy fatty acids (14:0/18:0), while S5 showed increased levels of phosphatidylserine (O-20:0/19:1) and glycerophosphoric acid (19:0/22:1). S6 displayed higher levels of triacylglycerol (17:0/20:5/22:3), ceramide alpha-hydroxy fatty acid-sphingosine (d17:3/34:2), and acyl glucosylceramides (16:0-18:0-18:1). Yak ghee exhibited a high content of neutralizing glycerophospholipids and various functional lipids, including sphingolipids and 21 newly discovered functional lipids. Our findings provide insights into quantitative changes in yak ghee lipids during different altitudes, development of yak ghee products, and screening of potential biomarkers.
Collapse
Affiliation(s)
- Feiyan Yang
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha Engineering Research Center of Food Storage and Preservation, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xin Wen
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha Engineering Research Center of Food Storage and Preservation, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Siwei Xie
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha Engineering Research Center of Food Storage and Preservation, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xudong He
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha Engineering Research Center of Food Storage and Preservation, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Guangfan Qu
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha Engineering Research Center of Food Storage and Preservation, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xueying Zhang
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha Engineering Research Center of Food Storage and Preservation, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Shuguo Sun
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha Engineering Research Center of Food Storage and Preservation, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Zhang Luo
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, Tibet, China
| | - Zhendong Liu
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, Tibet, China
| | - Qinlu Lin
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha Engineering Research Center of Food Storage and Preservation, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| |
Collapse
|
10
|
Woldetsadik D, Sims DB, Garner MC, Hailu H. Metal(loid)s Profile of Four Traditional Ethiopian Teff Brands: Geographic Origin Discrimination. Biol Trace Elem Res 2024; 202:1305-1315. [PMID: 37369964 DOI: 10.1007/s12011-023-03736-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
Among the most renowned Ethiopian food crops, teff (Eragrostis tef (Zucc.)Trotter) is the most nutritious and gluten-free cereal. Because of the increase in demand for teff, it is necessary to establish geographic origin authentication of traditional teff brands based on multi-element fingerprint. For this purpose, a total of 60 teff samples were analysed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Accuracy of the laboratory procedure was verified by the analysis of rice flour standard reference material (NIST SRM 1568b). In this context, four traditional teff brands (Ada'a, Ginchi, Gojam and Tulu Bolo) were analytically characterized using multi-element fingerprint and further treated statistically using linear discriminant analysis (LDA). Due to obvious extrinsic Fe, Al and V contamination, these elements were excluded from the discriminant model. Five elements (Cu, Mo, Se, Sr, and Zn) significantly contributed to discriminate the geographical origin of white teff. On the other hand, Mn, Mo, Se and Sr were used as discriminant variables for brown teff. LDA revealed 90 and 100% correct classifications for white and brown teff, respectively. Overall, multi-element fingerprint coupled with LDA can be considered a suitable tool for geographic origin discrimination of traditional teff brands.
Collapse
Affiliation(s)
- Desta Woldetsadik
- Department of Soil and Water Resources Management, Wollo University, Dessie, Ethiopia.
| | | | | | - Hillette Hailu
- Department of Soil and Water Resources Management, Wollo University, Dessie, Ethiopia
| |
Collapse
|
11
|
Asadi M, Ghasemnezhad M, Bakhshipour A, Olfati JA, Mirjalili MH. Predicting the quality attributes related to geographical growing regions in red-fleshed kiwifruit by data fusion of electronic nose and computer vision systems. BMC PLANT BIOLOGY 2024; 24:13. [PMID: 38163882 PMCID: PMC10759769 DOI: 10.1186/s12870-023-04661-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
The ability of a data fusion system composed of a computer vision system (CVS) and an electronic nose (e-nose) was evaluated to predict key physiochemical attributes and distinguish red-fleshed kiwifruit produced in three distinct regions in northern Iran. Color and morphological features from whole and middle-cut kiwifruits, along with the maximum responses of the 13 metal oxide semiconductor (MOS) sensors of an e-nose system, were used as inputs to the data fusion system. Principal component analysis (PCA) revealed that the first two principal components (PCs) extracted from the e-nose features could effectively differentiate kiwifruit samples from different regions. The PCA-SVM algorithm achieved a 93.33% classification rate for kiwifruits from three regions based on data from individual e-nose and CVS. Data fusion increased the classification rate of the SVM model to 100% and improved the performance of Support Vector Regression (SVR) for predicting physiochemical indices of kiwifruits compared to individual systems. The data fusion-based PCA-SVR models achieved validation R2 values ranging from 90.17% for the Brix-Acid Ratio (BAR) to 98.57% for pH prediction. These results demonstrate the high potential of fusing artificial visual and olfactory systems for quality monitoring and identifying the geographical growing regions of kiwifruits.
Collapse
Affiliation(s)
- Mojdeh Asadi
- Department of Horticultural Sciences, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Mahmood Ghasemnezhad
- Department of Horticultural Sciences, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
| | - Adel Bakhshipour
- Department of Biosystems Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
| | - Jamal-Ali Olfati
- Department of Horticultural Sciences, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
12
|
Sim KS, Kim H, Hur SH, Na TW, Lee JH, Kim HJ. Geographical origin discriminatory analysis of onions: Chemometrics methods applied to ICP-OES and ICP-MS analysis. Food Res Int 2024; 175:113676. [PMID: 38129025 DOI: 10.1016/j.foodres.2023.113676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
Geographical origin is an important determinant of agricultural product quality and safety. Herein, inductively coupled plasma (ICP) analysis was applied to determine the inorganic elemental content of onions and identify their geographical origin (Korean or Chinese). Chemometric, including principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least square discriminant analysis (OPLS-DA) were applied to the ICP results. OPLS-DA distinguished each group, and 17 elements with variable importance in projection (VIP) values of ≥ 1 were selected. The receiver operating characteristic (ROC) curve had an area under the curve (AUC) of 1, indicating excellent discriminatory power. Differences in elemental content between groups were visually observed in a heatmap, and the country of origin was determined with 100% accuracy using canonical discriminant analysis (CDA). This method accurately distinguishes between Korean and Chinese onions and is expected to be beneficial for identifying agricultural products.
Collapse
Affiliation(s)
- Kyu Sang Sim
- National Agricultural Products Quality Management Service, Gimcheon 39660, Republic of Korea
| | - Hyoyoung Kim
- National Agricultural Products Quality Management Service, Gimcheon 39660, Republic of Korea
| | - Suel Hye Hur
- National Agricultural Products Quality Management Service, Gimcheon 39660, Republic of Korea
| | - Tae Woong Na
- National Agricultural Products Quality Management Service, Gimcheon 39660, Republic of Korea
| | - Ji Hye Lee
- National Agricultural Products Quality Management Service, Gimcheon 39660, Republic of Korea
| | - Ho Jin Kim
- National Agricultural Products Quality Management Service, Gimcheon 39660, Republic of Korea.
| |
Collapse
|
13
|
Asikin Y, Tamura Y, Aono Y, Kusano M, Shiba H, Yamamoto M, Mitsube F, Lin SY, Takara K, Wada K. Multivariate Profiling of Metabolites and Volatile Organic Compounds in Citrus depressa Hayata Fruits from Kagoshima, Okinawa, and Taiwan. Foods 2023; 12:2951. [PMID: 37569221 PMCID: PMC10418860 DOI: 10.3390/foods12152951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Citrus depressa Hayata is a small-fruit citrus species; it is indigenous to Kagoshima, Okinawa, and Taiwan. The metabolites and volatile organic compounds (VOCs) that affect the flavor of its fruits have not been investigated based on geographical origin. In the present study, we investigated the metabolite and VOC profiles of 18 C. depressa cultivation lines from these regions. Multivariate analysis revealed differences in the metabolites of C. depressa based on its cultivation origins; variations in sugar, sugar alcohol, and amino acid contents were also observed. Fruits from Kagoshima and Okinawa had higher galactinol, trehalose, xylose, glucose, and sucrose intensities than fruits from Taiwan (log2-fold change; 2.65-3.44, 1.68-2.13, 1.37-2.01, 1.33-1.57, and 1.07-1.43, respectively), whereas the Taiwanese lines contained higher leucine, isoleucine, serine, and alanine. In contrast to the Taiwanese Nantou line, other cultivation lines had comparable total VOC contents, and the VOCs of all lines were dominated by limonene, γ-terpinene, and p-cymene. Accordingly, the highest VOC intensities were recorded in the Nantou line, which was followed by Shikunin sweet (Kagoshima) and Taoyuan (Taiwan) (log10 normalize concentration; 5.11, 3.08, and 3.01, respectively). Moreover, multivariate analysis plots elucidated the difference in the VOCs of Ishikunibu (Okinawa), Shikunin sweet, and Taoyuan and between those of most Kagoshima and Okinawa cultivation lines. These results suggest that both the cultivation line and origin influence the metabolites and VOCs of C. depressa, thus possibly affecting its flavor quality; the data provide a valuable insight for utilizing C. depressa of different cultivation lines and origins to produce foods and beverages.
Collapse
Affiliation(s)
- Yonathan Asikin
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihara 903-0213, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| | - Yoshio Tamura
- Feed and Livestock Production Division, Zennoh, Tokyo 100-6832, Japan
| | - Yusuke Aono
- Degree Programs in Life and Earth Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Miyako Kusano
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba 305-8572, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Hiroshi Shiba
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Masashi Yamamoto
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
- Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Fumimasa Mitsube
- Okinawa Prefectural Agricultural Research Center Nago Branch, Nago 905-0012, Japan
| | - Shu-Yen Lin
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan
| | - Kensaku Takara
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihara 903-0213, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| | - Koji Wada
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihara 903-0213, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
14
|
Peng Y, Zheng C, Guo S, Gao F, Wang X, Du Z, Gao F, Su F, Zhang W, Yu X, Liu G, Liu B, Wu C, Sun Y, Yang Z, Hao Z, Yu X. Metabolomics integrated with machine learning to discriminate the geographic origin of Rougui Wuyi rock tea. NPJ Sci Food 2023; 7:7. [PMID: 36928372 PMCID: PMC10020150 DOI: 10.1038/s41538-023-00187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
The geographic origin of agri-food products contributes greatly to their quality and market value. Here, we developed a robust method combining metabolomics and machine learning (ML) to authenticate the geographic origin of Wuyi rock tea, a premium oolong tea. The volatiles of 333 tea samples (174 from the core region and 159 from the non-core region) were profiled using gas chromatography time-of-flight mass spectrometry and a series of ML algorithms were tested. Wuyi rock tea from the two regions featured distinct aroma profiles. Multilayer Perceptron achieved the best performance with an average accuracy of 92.7% on the training data using 176 volatile features. The model was benchmarked with two independent test sets, showing over 90% accuracy. Gradient Boosting algorithm yielded the best accuracy (89.6%) when using only 30 volatile features. The proposed methodology holds great promise for its broader applications in identifying the geographic origins of other valuable agri-food products.
Collapse
Affiliation(s)
- Yifei Peng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chao Zheng
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuang Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fuquan Gao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaxia Wang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenghua Du
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Feng Gao
- Fujian Farming Technology Extension Center, Fuzhou, 350003, China
| | - Feng Su
- Fujian Farming Technology Extension Center, Fuzhou, 350003, China
| | - Wenjing Zhang
- Fujian Farming Technology Extension Center, Fuzhou, 350003, China
| | - Xueling Yu
- Fujian Farming Technology Extension Center, Fuzhou, 350003, China
| | - Guoying Liu
- Wuyishan Institute of Agricultural Sciences, Wuyishan, 354300, China
| | - Baoshun Liu
- Wuyishan Tea Bureau, Wuyishan, 354300, China
| | - Chengjian Wu
- Fujian Vocational College of Agriculture, Fuzhou, 350119, China
| | - Yun Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenbiao Yang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhilong Hao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xiaomin Yu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
15
|
The young fruit of Citrus aurantium L. or Citrus sinensis Osbeck as a natural health food: A deep insight into the scientific evidence of its health benefits. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
16
|
Aznan A, Gonzalez Viejo C, Pang A, Fuentes S. Rapid Detection of Fraudulent Rice Using Low-Cost Digital Sensing Devices and Machine Learning. SENSORS (BASEL, SWITZERLAND) 2022; 22:8655. [PMID: 36433249 PMCID: PMC9697730 DOI: 10.3390/s22228655] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Rice fraud is one of the common threats to the rice industry. Conventional methods to detect rice adulteration are costly, time-consuming, and tedious. This study proposes the quantitative prediction of rice adulteration levels measured through the packaging using a handheld near-infrared (NIR) spectrometer and electronic nose (e-nose) sensors measuring directly on samples and paired with machine learning (ML) algorithms. For these purposes, the samples were prepared by mixing rice at different ratios from 0% to 100% with a 10% increment based on the rice's weight, consisting of (i) rice from different origins, (ii) premium with regular rice, (iii) aromatic with non-aromatic, and (iv) organic with non-organic rice. Multivariate data analysis was used to explore the sample distribution and its relationship with the e-nose sensors for parameter engineering before ML modeling. Artificial neural network (ANN) algorithms were used to predict the adulteration levels of the rice samples using the e-nose sensors and NIR absorbances readings as inputs. Results showed that both sensing devices could detect rice adulteration at different mixing ratios with high correlation coefficients through direct (e-nose; R = 0.94-0.98) and non-invasive measurement through the packaging (NIR; R = 0.95-0.98). The proposed method uses low-cost, rapid, and portable sensing devices coupled with ML that have shown to be reliable and accurate to increase the efficiency of rice fraud detection through the rice production chain.
Collapse
Affiliation(s)
- Aimi Aznan
- Digital Agriculture, Food and Wine Group, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Agrotechnology, Faculty of Mechanical Engineering and Technology, University Malaysia Perlis, Arau 02600, Perlis, Malaysia
| | - Claudia Gonzalez Viejo
- Digital Agriculture, Food and Wine Group, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexis Pang
- Digital Agriculture, Food and Wine Group, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sigfredo Fuentes
- Digital Agriculture, Food and Wine Group, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
17
|
Detection of fraud in sesame oil with the help of artificial intelligence combined with chemometrics methods and chemical compounds characterization by gas chromatography–mass spectrometry. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Mialon N, Roig B, Capodanno E, Cadiere A. Untargeted metabolomic approaches in food authenticity: a review that showcases biomarkers. Food Chem 2022; 398:133856. [DOI: 10.1016/j.foodchem.2022.133856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022]
|
19
|
Cervellieri S, Lippolis V, Mancini E, Pascale M, Logrieco AF, De Girolamo A. Mass spectrometry-based electronic nose to authenticate 100% Italian durum wheat pasta and characterization of volatile compounds. Food Chem 2022; 383:132548. [PMID: 35413754 DOI: 10.1016/j.foodchem.2022.132548] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/04/2022]
Abstract
Headspace solid-phase microextraction (HS-SPME) coupled with mass spectrometry-based electronic nose (MS-eNose), in combination with multivariate statistical analysis was used as untargeted method for the rapid authentication of 100% Italian durum wheat pasta. Among the tested classification models, i.e. PCA-LDA, PLS-DA and SVMc, SVMc provided the highest accuracy results in both calibration (90%) and validation (92%) processes. Potential markers discriminating pasta samples were identified by HS-SPME/GC-MS analysis. Specifically, the content of a pattern of 8 out of 59 volatile organic compounds (VOCs) was significantly different between samples of 100% Italian durum wheat pasta and pasta produced with durum wheat of different origins, most of which were related to different lipidic oxidation in the two classes of pasta. The proposed MS-eNose method is a rapid and reliable tool to be used for authenticating Italian pasta useful to promote its typicity and preserving consumers from fraudulent practices.
Collapse
Affiliation(s)
- Salvatore Cervellieri
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Vincenzo Lippolis
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Erminia Mancini
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Michelangelo Pascale
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Antonio Francesco Logrieco
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Annalisa De Girolamo
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
20
|
Zhang J, Liu H, Sun R, Zhao Y, Xing R, Yu N, Deng T, Ni X, Chen Y. Volatolomics approach for authentication of not-from-concentrate (NFC) orange juice based on characteristic volatile markers using headspace solid phase microextraction (HS-SPME) combined with GC-MS. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
21
|
Saini MK, Capalash N, Varghese E, Kaur C, Singh SP. A Targeted Metabolomics Approach to Study Secondary Metabolites and Antioxidant Activity in 'Kinnow Mandarin' during Advanced Fruit Maturity. Foods 2022; 11:1410. [PMID: 35626980 PMCID: PMC9141733 DOI: 10.3390/foods11101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
In this study, we investigated the impact of harvest maturity stages and contrasting growing climates on secondary metabolites in Kinnow mandarin. Fruit samples were harvested at six harvest maturity stages (M1−M6) from two distinct growing locations falling under subtropical−arid (STA) and subtropical−humid (STH) climates. A high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) technique was employed to identify and quantify secondary metabolites in the fruit juice. A total of 31 polyphenolics and 4 limonoids, with significant differences (p < 0.05) in their concentration, were determined. With advancing maturity, phenolic acids and antioxidant activity were found to increase, whereas flavonoids and limonoids decreased in concentration. There was a transient increase in the concentration of some polyphenolics such as hesperidin, naringin, narirutin, naringenin, neoeriocitrin, rutin, nobiletin and tangeretin, and limonoid aglycones such as limonin and nomilin at mid-maturity stage (M3) which coincided with prevailing low temperature and frost events at growing locations. A higher concentration of limonin and polyphenolics was observed for fruit grown under STH climates in comparison to those grown under STA climates. The data indicate that fruit metabolism during advanced stages of maturation under distinct climatic conditions is fundamental to the flavor, nutrition and processing quality of Kinnow mandarin. This information can help in understanding the optimum maturity stage and preferable climate to source fruits with maximum functional compounds, less bitterness and high consumer acceptability.
Collapse
Affiliation(s)
- Manpreet Kaur Saini
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali 160071, India;
- Department of Biotechnology, Panjab University, Chandigarh 160014, India;
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh 160014, India;
| | - Eldho Varghese
- Fishery Resources Assessment Division, ICAR-Central Marine Fisheries Research Institute, Kochi 682018, India;
| | - Charanjit Kaur
- Division of Food Science and Post–Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Sukhvinder Pal Singh
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali 160071, India;
- New South Wales Department of Primary Industries, Ourimbah, NSW 2258, Australia
| |
Collapse
|
22
|
Dou X, Zhang L, Yang R, Wang X, Yu L, Yue X, Ma F, Mao J, Wang X, Zhang W, Li P. Mass spectrometry in food authentication and origin traceability. MASS SPECTROMETRY REVIEWS 2022:e21779. [PMID: 35532212 DOI: 10.1002/mas.21779] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/10/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Food authentication and origin traceability are popular research topics, especially as concerns about food quality continue to increase. Mass spectrometry (MS) plays an indispensable role in food authentication and origin traceability. In this review, the applications of MS in food authentication and origin traceability by analyzing the main components and chemical fingerprints or profiles are summarized. In addition, the characteristic markers for food authentication are also reviewed, and the advantages and disadvantages of MS-based techniques for food authentication, as well as the current trends and challenges, are discussed. The fingerprinting and profiling methods, in combination with multivariate statistical analysis, are more suitable for the authentication of high-value foods, while characteristic marker-based methods are more suitable for adulteration detection. Several new techniques have been introduced to the field, such as proton transfer reaction mass spectrometry, ambient ionization mass spectrometry (AIMS), and ion mobility mass spectrometry, for the determination of food adulteration due to their fast and convenient analysis. As an important trend, the miniaturization of MS offers advantages, such as small and portable instrumentation and fast and nondestructive analysis. Moreover, many applications in food authentication are using AIMS, which can help food authentication in food inspection/field analysis. This review provides a reference and guide for food authentication and traceability based on MS.
Collapse
Affiliation(s)
- Xinjing Dou
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Ruinan Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiao Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Li Yu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xiaofeng Yue
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Fei Ma
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xiupin Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Wen Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
23
|
Combining bioactive compounds and antioxidant activity profiling provide insights into assessment of geographical features of Chinese jujube. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
24
|
Chen M, Huang W, Yin Z, Zhang W, Kong Q, Wu S, Li W, Bai Z, Fernie AR, Huang X, Yan S. Environmentally-driven metabolite and lipid variations correspond to altered bioactivities of black wolfberry fruit. Food Chem 2022; 372:131342. [PMID: 34818746 DOI: 10.1016/j.foodchem.2021.131342] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/10/2021] [Accepted: 10/02/2021] [Indexed: 12/18/2022]
Abstract
Black wolfberry is a commonly cultivated woody plant in China, and is rich in nutrients that are beneficial for human. To characterize the endogenous metabolite differences among black wolfberry fruits grown in different geographical regions, mass spectrometry-based metabolomic and lipidomic analyses were performed in black wolfberry grown in nine locations throughout five provinces in China, from which 204 primary and specialized metabolites, and 267 lipids were identified in their fruits. Three samples from Alxa Left Banner, Jinta, and Minqin showed dramatically altered metabolite profiles, displaying higher levels of phenolic acids, soluble sugars and flavonoids, but lower levels of tricarboxylic acid cycle intermediates and aromatic amino acids. Moreover, the lipid profile of the Alxa Left Banner sample was strikingly distinct from all other samples, with high levels of monogalactosyl diacylglycerol and sulfoquinovosyl diacylglycerol, which are positively correlated with their anti-inflammatory capacities. These findings thus prompt for further studies on black wolfberry fruit for their health benefits.
Collapse
Affiliation(s)
- Mengyu Chen
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; School of Public Health, Lanzhou University, South Tianshui Road, Lanzhou 730000, China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhibin Yin
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Wenyang Zhang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qian Kong
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shaowen Wu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Wenyan Li
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhao Bai
- School of Public Health, Lanzhou University, South Tianshui Road, Lanzhou 730000, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, South Tianshui Road, Lanzhou 730000, China.
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; School of Public Health, Lanzhou University, South Tianshui Road, Lanzhou 730000, China.
| |
Collapse
|
25
|
Li X, Yang Y, Zhu Y, Ben A, Qi J. A novel strategy for discriminating different cultivation and screening odor and taste flavor compounds in Xinhui tangerine peel using E-nose, E-tongue, and chemometrics. Food Chem 2022; 384:132519. [PMID: 35219989 DOI: 10.1016/j.foodchem.2022.132519] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/04/2022]
Abstract
A rapid strategy for discriminating Quanzhi (QZ) and Bozhi (BZ) of different cultivation of Xinhui tangerine peel was established by combining electronic nose, electronic tongue and chemometrics, which can be used as tool in the market to identify food fraud. 30 volatiles and 34 low molecular weight compounds of characteristic fingerprints of Xinhui tangerine peel of 108 samples were identified using GC-MS and UHPLC-Q-TOF-MS. Key compounds of BZ and QZ were screened and further compared by chemometrics. We discriminated odor and taste of BZ and QZ using electronic nose and electronic tongue, respectively. Our studies showed that β-myrcene, limonene, β-trans-Ocimene, γ-terpinene and terpinolene, etc, were screened the chief volatile flavor compounds by Spearman's rank correlation. Hydroxymethyl furfural, hesperitin, nobiletin and tangeretin, etc, were screened the key taste flavor compounds based gray relational analysis and partial least squares regression. Our study provides further insight for quality evaluation of Xinhui tangerine peel.
Collapse
Affiliation(s)
- Xinqi Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yahui Yang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yitian Zhu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Ailing Ben
- Nanjing XiaoZhuang University, College of Food Science, Nanjing Key Laboratory of Quality and Safety of Agricultural Products, PR China.
| | - Jin Qi
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
26
|
Mohd Ali M, Hashim N. Non-destructive methods for detection of food quality. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
27
|
NMR-based quantitative component analysis and geographical origin identification of China's sweet orange. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Fusani P, Aiello N, Shachter A, Dudai N. Volatile Composition Variability of Arnica montana Wild Populations of Trentino-Alto Adige, Italy, Determined by Headspace-Solid Phase Microextraction. Chem Biodivers 2021; 19:e202100593. [PMID: 34755931 DOI: 10.1002/cbdv.202100593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/09/2021] [Indexed: 11/10/2022]
Abstract
Arnica montana is a plant distributed in most of Europe, including the Alpine arc and Apennines in Italy, and traditionally used worldwide for medicinal properties. Twelve natural populations of the species from Trentino-Alto Adige, Italy, were characterized using Headspace-Solid Phase Microextraction analysis for their volatile profile. Fifty-one compounds were detected in flower heads, the most abundant being (E)-Caryophyllene (23.4 %), 2,2,4,6,6-Pentamethylheptane (8.3 %), α- trans-Bergamotene (7.2 %), Germacrene D (5.7 %), and Hexanal (5.3 %). A multivariate analysis performed on the ten most abundant compounds grouped these investigated accessions into five main clusters. Three clusters, comprising together five accessions, were linked to the geographical origin of two collection sites. This work is a complete characterization of volatiles of the species by SPME analysis reported to date. Furthermore, results suggest that the species' volatile profile can be linked to the geographical origin of the natural populations and, therefore, represent a tool for evaluating biodiversity within the species.
Collapse
Affiliation(s)
- Pietro Fusani
- Council for Agricultural Research and Economics, Research Centre for Forestry and Wood, piazza Nicolini 6, 38123, Trento, Italy
| | - Nicola Aiello
- Council for Agricultural Research and Economics, Research Centre for Forestry and Wood, piazza Nicolini 6, 38123, Trento, Italy
| | - Alona Shachter
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat-Yishay, IL-30095, Israel
| | - Nativ Dudai
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat-Yishay, IL-30095, Israel
| |
Collapse
|
29
|
Optimization of HS-SPME for GC-MS Analysis and Its Application in Characterization of Volatile Compounds in Sweet Potato. Molecules 2021; 26:molecules26195808. [PMID: 34641353 PMCID: PMC8510106 DOI: 10.3390/molecules26195808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Volatile compounds are the main chemical species determining the characteristic aroma of food. A procedure based on headspace solid-phase microextraction (HP-SPME) coupled to gas chromatography-mass spectrometry (GC-MS) was developed to investigate the volatile compounds of sweet potato. The experimental conditions (fiber coating, incubation temperature and time, extraction time) were optimized for the extraction of volatile compounds from sweet potato. The samples incubated at 80 °C for 30 min and extracted at 80 °C by the fiber with a divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) coating for 30 min gave the most effective extraction of the analytes. The optimized method was applied to study the volatile profile of four sweet potato cultivars (Anna, Jieshu95-16, Ayamursaki, and Shuangzai) with different aroma. In total, 68 compounds were identified and the dominants were aldehydes, followed by alcohols, ketones, and terpenes. Significant differences were observed among the volatile profile of four cultivars. Furthermore, each cultivar was characterized by different compounds with typical flavor. The results substantiated that the optimized HS-SPME GC-MS method could provide an efficient and convenient approach to study the flavor characteristics of sweet potato. This is the basis for studying the key aroma-active compounds and selecting odor-rich accessions, which will help in the targeted improvement of sweet potato flavor in breeding.
Collapse
|
30
|
Jiang H, He Y, Chen Q. Qualitative identification of the edible oil storage period using a homemade portable electronic nose combined with multivariate analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3448-3456. [PMID: 33270243 DOI: 10.1002/jsfa.10975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/17/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The edible oil storage period is one of the important indicators for evaluating the intrinsic quality of edible oil. The present study aimed to develop a portable electronic nose device for the qualitative identification of the edible oil storage period. First, four metal oxide semiconductor gas sensors, comprising TGS2600, TGS2611, TGS2620 and MQ138, were selected to prepare a sensor array to assemble a portable electronic nose device. Second, the homemade portable electronic nose device was used to obtain the odor change information of edible oil samples during different storage periods, and the sensor features were extracted. Finally, three pattern recognition methods, comprising linear discriminant analysis (LDA), K-nearest neighbors (KNN) and support vector machines (SVM), were compared to establish a qualitative identification model of the edible oil storage period. The input features and related parameters of the model were optimized by a five-fold cross-validation during the process of model establishment. RESULTS The research results showed that the recognition performance of the non-linear SVM model was significantly better than that of the linear LDA and KNN models, especially in terms of generalization performance, which had a correct recognition rate of 100% when predicting independent samples in the prediction set. CONCLUSION The overall results demonstrate that it is feasible to apply the homemade portable electronic nose device with the help of the appropriate pattern recognition methods to achieve the fast and efficient identification of the edible oil storage period, which provides an effective analysis tool for the quality detection of the edible oil storage. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hui Jiang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yingchao He
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
31
|
Sun Z, Li J, Wu J, Zou X, Ho CT, Liang L, Yan X, Zhou X. Rapid qualitative and quantitative analysis of strong aroma base liquor based on SPME-MS combined with chemometrics. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.02.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Kammoun AK, Altyar AE, Gad HA. Comparative metabolic study of Citrus sinensis leaves cultivars based on GC-MS and their cytotoxic activity. J Pharm Biomed Anal 2021; 198:113991. [PMID: 33676167 DOI: 10.1016/j.jpba.2021.113991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 11/29/2022]
Abstract
Citrus sinensis L. Osbeck, (family Rutaceae), known as sweet orange, is a fruit-bearing shrub that widely cultivated all over the world due to its nutritive value, nutraceutical attributes and economic importance. In the present study, a comparative metabolic profile study of the essential oils of the leaves of nine cultivars of Citrus sinensis cultivated in Egypt was carried out based on GC-MS analysis coupled to chemometrics. A total of 47 compounds were identified, where monoterpenes hydrocarbons (61.39 %-78.26 %) represented the main recognized class in the essential oils. Sabinene (8.25 %-28.81 %), 2-carene (11.25 %-16.72 %) and cis-β-ocimene (10.22 %-13.93 %) were the major components identified in different cultivars. Chemometric analyses comprising Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) were experienced for their ability to discriminate between closely related cultivars. Both PCA score plot and HCA dendrogram could successfully segregate different cultivars based on their metabolic profiles. The MTT assay was used to evaluate the cytotoxicity of essential oils of Citrus sinensis leaves cultivars on different cell lines; MCF-7, HepG-2, HeLa, were all essential oils showed moderate cytotoxic activity. The MCF-7 cell lines were the most resistant cells with IC50 range from 243 to 343 μg/mL, while HeLa cells were the most sensitive cell lines IC50 range from 203 to 283 μg/mL. This may be attributed to the synergistic effects of different chemical components.
Collapse
Affiliation(s)
- Ahmed K Kammoun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed E Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haidy A Gad
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
33
|
UPLC-Q-TOF/MS-based untargeted metabolomics for discrimination of navel oranges from different geographical origins of China. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
34
|
Guo Z, Ge X, Yang L, Ma G, Ma J, Yu QL, Han L. Ultrasound-assisted thawing of frozen white yak meat: Effects on thawing rate, meat quality, nutrients, and microstructure. ULTRASONICS SONOCHEMISTRY 2021; 70:105345. [PMID: 32932225 PMCID: PMC7786592 DOI: 10.1016/j.ultsonch.2020.105345] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 09/05/2020] [Indexed: 05/04/2023]
Abstract
The objective of this study was to assess the effects of ultrasound-assisted thawing (UAT) on the quality of longissimus dorsi muscles from white yak meat (WYM). Ultrasonic power levels of 0, 200, 400, and 600 W (frequency of 20 kHz) were used to assist thawing. The thawing rate, meat quality, nutrient substances, volatile compounds, and microstructure of the WYM were determined. The results showed that ultrasonic thawing treatment reduced thawing times by 30.95-64.28% compared to control. The meat quality results revealed that the thawing loss, cooking loss, L* and b* values, and pH values decreased significantly while the a* value and cutting force increased significantly (P < 0.05) at the lower 400 W power level compared with the control. In addition, the free amino acid (FAA), mineral, and vitamin (especially water-soluble vitamins) contents were significantly (P < 0.05) increased with the ultrasound treatment. UAT significantly (P < 0.05) increased the content of volatile compounds, an effect that was highest in the UAT-400 W group. Partial least squares discrimination analysis (PLS-DA) showed that 2,4-heptadienal was critical in distinguishing the UAT groups from the control. When the ultrasonic power was lower than 400 W, the muscle cell area was significantly (P < 0.05) increased but decreased when higher power was used. Therefore, UAT improves the thawing efficiency and quality of frozen WYM, particularly at a power level of 400 W, and these findings have potential applications in the meat industry.
Collapse
Affiliation(s)
- Zonglin Guo
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Xiangzhen Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Lihua Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Guoyuan Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Jibing Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Qun-Li Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
35
|
Mohd Ali M, Hashim N, Aziz SA, Lasekan O. Emerging non-destructive thermal imaging technique coupled with chemometrics on quality and safety inspection in food and agriculture. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Rao J, Zhang Y, Yang Z, Li S, Wu D, Sun C, Chen K. Application of electronic nose and GC–MS for detection of strawberries with vibrational damage. FOOD QUALITY AND SAFETY 2020. [DOI: 10.1093/fqsafe/fyaa025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Objectives
This study evaluated the potential of using electronic nose (e-nose) technology to non-destructively detect strawberry fruits with vibrational damage based on their volatile substances (VOCs).
Materials and methods
Four groups of strawberries with different durations of vibrations (0, 0.5, 1, and 2 h) were prepared, and their e-nose signals were collected at 0, 1, 2, and 3 days after vibration treatment.
Results
The results showed that when the samples from all four sampling days during storage were used for modelling, both the levels of vibrational damage and the day after the damage happened were accurately predicted. The best models had residual prediction deviation values of 2.984 and 5.478. The discrimination models for damaged strawberries also obtained good classification results, with an average correct answer rate of calibration and prediction of 99.24%. When the samples from each sampling day or vibration time were used for modelling, better results were obtained, but these models were not suitable for an actual situation. The gas chromatography–mass spectrophotometry results showed that the VOCs of the strawberries varied after experiencing vibrations, which was the basis for e-nose detection.
Limitations
The changes in VOCs released by other forces should be studied in the future.
Conclusions
The above results showed the potential use of e-nose technology to detect strawberries that have suffered vibrational damage.
Collapse
Affiliation(s)
- Jingshan Rao
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Yuchen Zhang
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Zhichao Yang
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Shaojia Li
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Di Wu
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
- Zhejiang University Zhongyuan Institute, Zhengzhou, China
| | - Chongde Sun
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Kunsong Chen
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| |
Collapse
|
37
|
Pinto L, Cefola M, Bonifacio MA, Cometa S, Bocchino C, Pace B, De Giglio E, Palumbo M, Sada A, Logrieco AF, Baruzzi F. Effect of red thyme oil (Thymus vulgaris L.) vapours on fungal decay, quality parameters and shelf-life of oranges during cold storage. Food Chem 2020; 336:127590. [PMID: 32763742 DOI: 10.1016/j.foodchem.2020.127590] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Abstract
This work has been aimed at studying the effect of red thyme oil (RTO, Thymus vulgaris L.) on the shelf-life and Penicillium decay of oranges during cold storage. RTO vapours significantly reduced (P ≤ 0.05) the percentage of infected wounds, the external growth area and the production of spores in inoculated orange fruit stored for 12 days at 7 °C in a polypropylene film selected for its appropriate permeability. Among the RTO compounds, p-cymene and thymol were the most abundant in packed boxes at the end of cold storage. The RTO vapours did not affect the main quality parameters of the oranges, or the taste and odour of the juice. The results have shown that an active packaging, using RTO vapours, could be employed, by the citrus industry, to extend the shelf-life of oranges for fresh market use and juice processing.
Collapse
Affiliation(s)
- L Pinto
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy.
| | - M Cefola
- Institute of Sciences of Food Production, National Research Council of Italy, Via M. Protano, 71121 Foggia, Italy.
| | - M A Bonifacio
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy.
| | - S Cometa
- Jaber Innovation S.r.l., Via Calcutta 8, 00144 Rome, Italy.
| | - C Bocchino
- Sada Packaging S.r.l., Via G. Salvemini snc, 84098 Pontecagnano Faiano, Salerno, Italy.
| | - B Pace
- Institute of Sciences of Food Production, National Research Council of Italy, Via M. Protano, 71121 Foggia, Italy.
| | - E De Giglio
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy.
| | - M Palumbo
- Institute of Sciences of Food Production, National Research Council of Italy, Via M. Protano, 71121 Foggia, Italy.
| | - A Sada
- Antonio Sada & Figli S.p.a., Via A. Pacinotti 30, 84098 Pontecagnano Faiano, Salerno, Italy.
| | - A F Logrieco
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy.
| | - F Baruzzi
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy.
| |
Collapse
|
38
|
Katerinopoulou K, Kontogeorgos A, Salmas CE, Patakas A, Ladavos A. Geographical Origin Authentication of Agri-Food Products: Α Review. Foods 2020; 9:E489. [PMID: 32295019 PMCID: PMC7230915 DOI: 10.3390/foods9040489] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 11/17/2022] Open
Abstract
This study is a systematic literature review of geographical origin authentication by elemental analytical techniques. Authentication and certification of geographic origin of agri-food products is a useful tool toward the protection of the quality for products. The aim of this work was to map the current state of research in the area of agricultural products and food, identifying emerging fields to the geographical origin of products. The article is divided in three parts. The first part of the article deals with the analytical techniques applied in the food authentication. Special mention is made to elemental analysis and multiple isotope ratio. The second section focuses on statistically published data concerning published research for geographical origin authentication for the period 2015-2019. Specific results are presented inter alia: number of articles according to the type of product, articles according to the type of the analytical techniques, and others. The third part contains characteristic results from articles that were published in the period 2015-2019, on certification of geographical origin on specific agricultural products.
Collapse
Affiliation(s)
- Katerina Katerinopoulou
- Department of Business Administration of Food and Agricultural Enterprises, University of Patras, 30100 Agrinio, Greece; (K.K.); (A.K.); (A.P.)
| | - Achilleas Kontogeorgos
- Department of Business Administration of Food and Agricultural Enterprises, University of Patras, 30100 Agrinio, Greece; (K.K.); (A.K.); (A.P.)
| | - Constantinos E. Salmas
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece;
| | - Angelos Patakas
- Department of Business Administration of Food and Agricultural Enterprises, University of Patras, 30100 Agrinio, Greece; (K.K.); (A.K.); (A.P.)
| | - Athanasios Ladavos
- Department of Business Administration of Food and Agricultural Enterprises, University of Patras, 30100 Agrinio, Greece; (K.K.); (A.K.); (A.P.)
| |
Collapse
|
39
|
Sun Y, Dou X, Yue X, Yu L, Zhang L, Li J, Li P. Optimization of Headspace SPME GC × GC-TOF/MS Analysis of Volatile Organic Compounds in Edible Oils by Central Composite Design for Adulteration Detection of Edible Oil. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01741-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
40
|
Wang X, Rogers KM, Li Y, Yang S, Chen L, Zhou J. Untargeted and Targeted Discrimination of Honey Collected by Apis cerana and Apis mellifera Based on Volatiles Using HS-GC-IMS and HS-SPME-GC-MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12144-12152. [PMID: 31587558 DOI: 10.1021/acs.jafc.9b04438] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fraudulent acts regarding honey authenticity that use Apis mellifera honey as a substitute for Apis cerana honey have garnered considerable concern in China and triggered a trust crisis from consumers. In this study, untargeted metabolomics analysis was carried out based on volatile fractions in honey from A. cerana and A. mellifera using headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS). Honey from A. cerana and A. mellifera was discriminated by HS-GC-IMS profiling, principal component analysis, and orthogonal partial least-squares discrimination analysis. Tentative markers were identified from p-values and the variable importance in projection analysis and confirmed using the retention index, mass fragments, and reference standards by gas chromatography-mass spectrometry (GC-MS). A targeted method was established using the headspace solid phase coupled with microextraction GC-MS (HS-SPME-GC-MS) to quantitate the markers. The results demonstrated that the developed untargeted and targeted metabolomics approach performed well when discriminating honey from A. cerana and A. mellifera.
Collapse
Affiliation(s)
- Xinran Wang
- Institute of Apicultural Research , Chinese Academy of Agricultural Sciences , Beijing 100093 , PR China
| | - Karyne M Rogers
- National Isotope Centre , GNS Science , 30 Gracefield Road , Lower Hutt 5040 , New Zealand
| | - Yi Li
- Institute of Apicultural Research , Chinese Academy of Agricultural Sciences , Beijing 100093 , PR China
| | - Shupeng Yang
- Institute of Apicultural Research , Chinese Academy of Agricultural Sciences , Beijing 100093 , PR China
| | - Lanzhen Chen
- Institute of Apicultural Research , Chinese Academy of Agricultural Sciences , Beijing 100093 , PR China
| | - Jinhui Zhou
- Institute of Apicultural Research , Chinese Academy of Agricultural Sciences , Beijing 100093 , PR China
| |
Collapse
|
41
|
Zhong Y, Hu Y, Li G, Zhang R. Multistage Signals Based on Cyclic Chemiluminescence for Decoding Complex Samples. Anal Chem 2019; 91:12063-12069. [PMID: 31438668 DOI: 10.1021/acs.analchem.9b03189] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Identification of complex samples presents a difficult challenge for modern analytical techniques, and the differentiation among closely similar mixtures often remains indeterminate. In this article, we designed a simplified cyclic chemiluminescence (CCL) system that is able to measure multistage signals in a single sample injection. The system was used to investigate the CCL reactions of the binary, ternary, and multicomponent mixtures. Results showed that each mixture has a unique exponential decay equation (EDE) with a constant decay coefficient (k-value) to describe the change law of its multistage signals. Further studies found that different brands of liquor, beer, toner, and baby powder have different k-values, and the same brand of the commodities between different batches have the same k-values, which allows facile identification of these complex samples. We then used different catalysts to design digital codes of the k-value for further improving the identifying ability of CCL. Moreover, the multistage signals are like fingerprints and could be used for linear discriminate analysis, which provides another complementary approach for identification of complex samples. Finally, we demonstrated that CCL shows potential applications in certification and quality assurance according to the change of the k-values of the sample. This work demonstrates that excellent discrimination ability of CCL for the identification of complex samples and provides a promising technology for quality assurance.
Collapse
Affiliation(s)
- Yanhui Zhong
- School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , China
| | - Yufei Hu
- School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , China
| | - Gongke Li
- School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , China
| | - Runkun Zhang
- School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , China
| |
Collapse
|
42
|
Jia W, Liang G, Jiang Z, Wang J. Advances in Electronic Nose Development for Application to Agricultural Products. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01552-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
43
|
Perilla frutescens Britton: A Comprehensive Study on Flavor/Taste and Chemical Properties During the Roasting Process. Molecules 2019; 24:molecules24071374. [PMID: 30965657 PMCID: PMC6479574 DOI: 10.3390/molecules24071374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 11/30/2022] Open
Abstract
This study investigated changes of volatile compounds, sniffing test-assisted sensory properties, taste associated-constituent and free amino acid compositions, taste description by electronic-tongue, and chemical characteristics in Perilla frutescens Britton var. acuta Kudo after roasting at 150 °C for 0–8 min. A total of 142 volatile compounds were identified, among which methyl benzoate and limonene were predominant, regardless of roasting time, and these were also detected as the major compounds in the sniffing test by GC-olfactometry. For constituent amino acids analyzed by the acid hydrolysis method using hydrochloric acid (HCl), the concentration of glutamic acid, aspartic acid, and leucine showed an increase pattern with increased roasting time, which results in umami taste, sour taste, and bitter taste, respectively. For free amino acids, valine and hydroxylysine eliciting bitter and bitter and sweet tastes, respectively, also tend to increase by roasting. The pattern of amino acid concentration by roasting was readily matched to the taste description by electronic-tongue but that of sweetness and sourness by electronic-tongue did not coincide with the amino acid composition. For the chemical properties, total phenolic content, antioxidative capacity, and browning intensity tend to increase with roasting but decreased by 8 min. The results of this study provide fundamental information on perilla in both the food industry and cooking environment for the sake of increasing the utilization of perilla as a food source and ingredient.
Collapse
|