1
|
Nyarko K, Mensah S, Greenlief CM. Examining the Use of Polyphenols and Sugars for Authenticating Honey on the U.S. Market: A Comprehensive Review. Molecules 2024; 29:4940. [PMID: 39459308 PMCID: PMC11510238 DOI: 10.3390/molecules29204940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The rise in honey production and imports into the United States necessitates the need for robust methods to authenticate honey origin and ensure consumer safety. This review addresses the scope of honey authentication, with a specific focus on the exploration of polyphenols and sugar markers to evaluate honeys in the U.S. In the absence of comprehensive federal standards for honey in the United States, challenges related to authenticity and adulteration persist. Examining the global landscape of honey authentication research, we observed a significant gap in the literature pertaining to U.S. honeys. While honeys from Europe, Australia, New Zealand, and Asia have been extensively studied, the decentralized nature of the U.S. honey market and the lack of comprehensive standards have limited the number of investigations conducted. This review consolidates the findings of global honey studies and emphasizes the need for further research studies on honey authenticity markers within the United States. We also explore previous studies on the U.S. that focused on identifying potential markers for honey authenticity. However, the inherent variability in polyphenol profiles and the lack of extensive studies of the sugar contents of honey on a global scale pose challenges to establishing universal markers. We conclude that by addressing these challenges, the field of research on polyphenols and sugars in honey can move toward more reliable and standardized methods. This advancement will enhance the use of polyphenols and other constituents like sugars as authenticity markers, ultimately benefiting both researchers and the honey industry in ensuring honey quality.
Collapse
Affiliation(s)
| | | | - C. Michael Greenlief
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA; (K.N.); (S.M.)
| |
Collapse
|
2
|
Gialouris PLP, Koulis GA, Nastou ES, Dasenaki ME, Maragou NC, Thomaidis NS. Development and validation of a high-throughput headspace solid-phase microextraction gas chromatography-mass spectrometry methodology for target and suspect determination of honey volatiles. Heliyon 2023; 9:e21311. [PMID: 37954321 PMCID: PMC10632477 DOI: 10.1016/j.heliyon.2023.e21311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
The determination of volatile compounds is essential for the chemical characterisation of honey's aroma and its correlation to its sensory profile and botanical origin. The present study describes the development, optimization and validation of a new, simple and reliable method for the determination of volatile compounds in honey using headspace solid-phase microextraction combined with gas chromatography/mass spectrometry (HS-SPME-GC-MS). The optimization of the SPME conditions showed that the ratio of honey: water (2:1) and the incubation temperature (60 °C) are the most critical parameters. Gas chromatography was performed with medium polar Varian CP-Select 624 column and the experimental Retention Index for a number of compounds was determined as an additional identification feature for suspect analysis. The simultaneous use of four internal standards chlorobenzene, benzophenone, 2-pentanol and 4-methyl-2-pentanone and matrix matched calibration enhanced method accuracy achieving recoveries 73-114 % and repeatability ranging between 3.9 and 19 % relative standard deviations. Furthermore, the superiority of the HS-SPME to static head space technique was verified exhibiting four-to nine-fold higher sensitivity. Target and suspect screening were applied to 30 Greek honey samples and 53 volatile compounds belonging to different chemical classes, such as alkanes, aldehydes, ketones, alcohols, and esters were identified with quantified concentrations ranging between 3.1 μg kg-1 (Limonene) up to 20 mg kg-1 (Benzeneacetaldehyde). Among the new findings is the detection of Myrtenol in Greek pine honey and 2,3-butanediol in Greek oak honey. The developed analytical protocol can be a valuable tool in order to chemically characterize honey based on the volatile content.
Collapse
Affiliation(s)
- Panagiotis-Loukas P. Gialouris
- Laboratory of Analytical Chemistry, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
- Laboratory of Food Chemistry, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
| | - Georgios A. Koulis
- Laboratory of Analytical Chemistry, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
- Laboratory of Food Chemistry, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
| | - Eleni S. Nastou
- Laboratory of Analytical Chemistry, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
| | - Marilena E. Dasenaki
- Laboratory of Food Chemistry, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
| | - Niki C. Maragou
- Laboratory of Analytical Chemistry, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
| | - Nikolaos S. Thomaidis
- Laboratory of Analytical Chemistry, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
| |
Collapse
|
3
|
Volatile fingerprinting by solid-phase microextraction mass spectrometry for rapid classification of honey botanical source. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Lozano-Torres B, Carmen Martínez-Bisbal M, Soto J, Juan Borrás M, Martínez-Máñez R, Escriche I. Monofloral honey authentication by voltammetric electronic tongue: A comparison with 1H NMR spectroscopy. Food Chem 2022; 383:132460. [PMID: 35182878 DOI: 10.1016/j.foodchem.2022.132460] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/30/2022] [Accepted: 02/11/2022] [Indexed: 11/04/2022]
Abstract
Proton-nuclear-magnetic-resonance-spectroscopy (1H NMR) is the widely accepted reference method for monitoring honey adulteration; however, the need to find cheaper, faster, and more environmentally friendly methodologies makes the voltammetric-electronic-tongue (VET) a good alternative. The present study aims to demonstrate the ability of VET (in comparison with 1H NMR) to predict the adulteration of honey with syrups. Samples of monofloral honeys (citrus, sunflower and heather, assessed by pollen analysis) simulating different levels of adulteration by adding syrups (barley, rice and corn) from 2.5 to 40% (w/w) were analyzed using both techniques. According to the indicators (slope, intercept, regression coefficient-R2, root mean square error of prediction-RMSEP) of the partial-least-squares (PLS) regression models, in general terms, the performance of these models obtained by both techniques was good, with an average error lower than 5% in both cases. These results support the use of VET as a screening technique to easily detect honey adulteration with syrups.
Collapse
Affiliation(s)
- Beatriz Lozano-Torres
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València - Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, 46012 Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN). Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0, 28029 Madrid, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València - Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell 106, Torre A, Planta 6, lab 6.30, 46026 Valencia, Spain
| | - M Carmen Martínez-Bisbal
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València - Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, 46012 Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN). Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0, 28029 Madrid, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València - Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell 106, Torre A, Planta 6, lab 6.30, 46026 Valencia, Spain; Departamento de Química Física, Universitat de València, C/Doctor Moliner 50, 46100 Burjassot, Valencia, Spain.
| | - Juan Soto
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València - Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Marisol Juan Borrás
- Instituto de Ingeniería de Alimentos Para el Desarrollo, Universitat Politècnica de València, Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València - Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, 46012 Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN). Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0, 28029 Madrid, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València - Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell 106, Torre A, Planta 6, lab 6.30, 46026 Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Isabel Escriche
- Instituto de Ingeniería de Alimentos Para el Desarrollo, Universitat Politècnica de València, Valencia, Spain; Departamento de Tecnología de Alimentos (DTA), Universitat Politècnica de València, Valencia, Spain.
| |
Collapse
|
5
|
Escriche I, Juan‐Borrás M, Visquert M, Asensio‐Grau A, Valiente JM. Volatile profile of Spanish raw citrus honey: The best strategy for its correct labeling. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Isabel Escriche
- Institute of Food Engineering for Development Universitat Politècnica de València Valencia Spain
- Food Technology Department Universitat Politècnica de València Valencia Spain
| | - Marisol Juan‐Borrás
- Institute of Food Engineering for Development Universitat Politècnica de València Valencia Spain
| | - Mario Visquert
- Institute of Food Engineering for Development Universitat Politècnica de València Valencia Spain
| | - Andrea Asensio‐Grau
- Institute of Food Engineering for Development Universitat Politècnica de València Valencia Spain
| | - José Miguel Valiente
- Institute of Control Systems and Industrial Computing (AI2) Universitat Politècnica de València Valencia Spain
| |
Collapse
|
6
|
van der Wal JEM, Gedi II, Spottiswoode CN. Awer Honey-Hunting Culture With Greater Honeyguides in Coastal Kenya. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2021.727479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The remarkable mutualism between humans and greater honeyguides (Indicator indicator) is known still to thrive in only a few places in Africa. Here, we report on the honey-hunting culture of the marginalised Awer people in Kenya, historically a hunter-gatherer culture who today practise a mixed economy including significant amounts of foraging for wild foods. As part of a larger effort to document cross-cultural honey-hunting traditions in Africa, we interviewed six Awer honey-hunters to document their cultural practices. The interviewees reported that they depend on wild honey as a source of income, and that they readily seek the cooperation of honeyguides. Honey-hunting skills and the calls/whistles used to communicate with honeyguides are learnt from their fathers and other elders in village. The best time to honey-hunt is in the months following the big rains (August–December), when interviewees go out honey-hunting once a week on average. Honeyguides are not actively rewarded with wax, as it is believed that once a bird is fed it will not cooperate again for some time, and therefore after the honey harvest is complete, all remaining wax comb is buried. Honey-hunting practices are declining in this region, which interviewees attributed to drought and a lack of interest by the youth. These findings expand our understanding of how human-honeyguide mutualism persists across a range of human cultural variation.
Collapse
|
7
|
Screening of the Honey Aroma as a Potential Essence for the Aromachology. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aim of the study was to determine the aroma profiles of four kinds of Slovak honey (sunflower, honeydew, acacia, and linden) by a qualitative and quantitative screening of their volatile compounds and by gas chromatography for the potential use in the aromachology and the business sphere. The results showed that several unique volatiles were identified in one kind of honey, while they were not identified in the remaining ones. The acacia honey had the unique volatile linalool oxide (1.13–3.9%); linden honey had the unique volatiles nerol oxide (0.6–1.6%), ethyl esters (0.41–8.78%), lilac aldehyde D (6.6%), and acetophenone (0.37%). The honeydew honey had the unique volatiles santene (0.28%) and cyclofenchene (0.59–1.39%), whereas 2-bornene (0.43–0.81%) was typical for sunflower honey. While linden honey was characterized by fruity ethyl esters, honeydew honey had more monoterpenoid compounds. In the principal component analysis model, the four kinds of honey could not be differentiated by aroma volatiles. However, it was possible to classify the linden and sunflower honey using the LDA. In conclusion, the current study provided experimental evidence that the marker compounds from different kinds of honey might be promising candidates for production of inhaling aromas.
Collapse
|
8
|
Türk G, Şen K. Changes of various quality characteristics and aroma compounds of astragalus honey obtained from different altitudes of Adana‐Turkey. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gürkan Türk
- Department of Food Engineering Faculty of Engineering and Architecture Nevsehir Haci Bektas Veli University Nevsehir Turkey
| | - Kemal Şen
- Department of Food Engineering Faculty of Engineering and Architecture Nevsehir Haci Bektas Veli University Nevsehir Turkey
| |
Collapse
|
9
|
Sotiropoulou NS, Xagoraris M, Revelou PK, Kaparakou E, Kanakis C, Pappas C, Tarantilis P. The Use of SPME-GC-MS IR and Raman Techniques for Botanical and Geographical Authentication and Detection of Adulteration of Honey. Foods 2021; 10:foods10071671. [PMID: 34359541 PMCID: PMC8303172 DOI: 10.3390/foods10071671] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this review is to describe the chromatographic, spectrometric, and spectroscopic techniques applied to honey for the determination of botanical and geographical origin and detection of adulteration. Based on the volatile profile of honey and using Solid Phase microextraction-Gas chromatography-Mass spectrometry (SPME-GC-MS) analytical technique, botanical and geographical characterization of honey can be successfully determined. In addition, the use of vibrational spectroscopic techniques, in particular, infrared (IR) and Raman spectroscopy, are discussed as a tool for the detection of honey adulteration and verification of its botanical and geographical origin. Manipulation of the obtained data regarding all the above-mentioned techniques was performed using chemometric analysis. This article reviews the literature between 2007 and 2020.
Collapse
|
10
|
Enrofloxacin treatment on dairy goats: Presence of antibiotic in milk and impact of residue on technological process and characteristics of mature cheese. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Scripcă LA, Amariei S. The Use of Ultrasound for Preventing Honey Crystallization. Foods 2021; 10:773. [PMID: 33916586 PMCID: PMC8066198 DOI: 10.3390/foods10040773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 01/06/2023] Open
Abstract
The aim of this study was to evaluate the effect of ultrasound treatment for preventing honey crystallization on the physicochemical and microbiological properties of unifloral honey and polyfloral honey. Honey samples without any treatment were used as a control group for comparison. The effect of applying ultrasound treatment was evaluated by studying over time the tendency of crystallization, the rheological properties of honey and chemical and microbiological properties. The parameters analyzed for the two groups of samples (treated and untreated with ultrasound), which did not vary or had small variations during the research were water content, acidity, water activity, glucose, fructose, sucrose, glucose/water ratio, glucose/fructose ratio. The crystallization process was installed in the control samples from the first month of the study, and much later in the treated samples. The color of the untreated samples varied considerably, and the color of the treated ones remained stable or slightly varied. For the control samples, the smallest variation in hydroxymethylfurfural (HMF) concentration was in raspberry honey (5%), and the most significant variation was in honeydew honey (30%). For the treated samples, the largest variation of this parameter was found in tillia honey (127%), and the smallest variation was in rapeseed honey (26%). The microbiological quality was higher for the treated samples. In the ultrasound-treated samples of acacia honey, honeydew honey and grassland honey, yeasts, molds or standard plate counts (SPCs) were undetectable. For control samples, SPC values were <10-50 cfu/g. Ultrasound-treated samples maintained their SPC parameter levels or were thus reduced (<10-20 cfu/g). Yeasts and molds were undetectable or had value between <10 and 10 cfu/g. The yeasts and the molds ranged in the control samples between <10 and 40 cfu/g.
Collapse
Affiliation(s)
- Laura Agripina Scripcă
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | | |
Collapse
|
12
|
Tsagkaris AS, Koulis GA, Danezis GP, Martakos I, Dasenaki M, Georgiou CA, Thomaidis NS. Honey authenticity: analytical techniques, state of the art and challenges. RSC Adv 2021; 11:11273-11294. [PMID: 35423655 PMCID: PMC8695996 DOI: 10.1039/d1ra00069a] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Honey is a high-value, globally consumed, food product featuring a high market price strictly related to its origin. Moreover, honey origin has to be clearly stated on the label, and quality schemes are prescribed based on its geographical and botanical origin. Therefore, to enhance food quality, it is of utmost importance to develop analytical methods able to accurately and precisely discriminate honey origin. In this study, an all-time scientometric evaluation of the field is provided for the first time using a structured keyword on the Scopus database. The bibliometric analysis pinpoints that the botanical origin discrimination was the most studied authenticity issue, and chromatographic methods were the most frequently used for its assessment. Based on these results, we comprehensively reviewed analytical techniques that have been used in honey authenticity studies. Analytical breakthroughs and bottlenecks on methodologies to assess honey quality parameters using separation, bioanalytical, spectroscopic, elemental and isotopic techniques are presented. Emphasis is given to authenticity markers, and the necessity to apply chemometric tools to reveal them. Altogether, honey authenticity is an ever-growing field, and more advances are expected that will further secure honey quality.
Collapse
Affiliation(s)
- Aristeidis S Tsagkaris
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis Zographou 15771 Athens Greece http://trams.chem.uoa.gr/ +30 210 7274750 +30 210 7274317
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague Technická 5, 166 28 Prague 6 - Dejvice Prague Czech Republic
| | - Georgios A Koulis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis Zographou 15771 Athens Greece http://trams.chem.uoa.gr/ +30 210 7274750 +30 210 7274317
| | - Georgios P Danezis
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens 75 Iera Odos 118 55 Athens Greece
| | - Ioannis Martakos
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis Zographou 15771 Athens Greece http://trams.chem.uoa.gr/ +30 210 7274750 +30 210 7274317
| | - Marilena Dasenaki
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis Zographou 15771 Athens Greece http://trams.chem.uoa.gr/ +30 210 7274750 +30 210 7274317
| | - Constantinos A Georgiou
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens 75 Iera Odos 118 55 Athens Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis Zographou 15771 Athens Greece http://trams.chem.uoa.gr/ +30 210 7274750 +30 210 7274317
| |
Collapse
|
13
|
Zhu M, Zhao H, Wang Q, Wu F, Cao W. A Novel Chinese Honey from Amorpha fruticosa L.: Nutritional Composition and Antioxidant Capacity In Vitro. Molecules 2020; 25:E5211. [PMID: 33182368 PMCID: PMC7664916 DOI: 10.3390/molecules25215211] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 01/03/2023] Open
Abstract
False indigo (Amorpha fruticosa L., A. fruticosa) is the preferred tree indigenous for windbreak and sand control in Northwest China, while information on nutritional and bioactive characteristics of its honey is rare. Herein, 12 honey of Amorpha fruticosa L. (AFH) were sampled in Northwest China and the nutritional composition was determined. Sixteen mineral element and ten dominant polyphenols content were identified and quantified by ICP-MS (Inductively coupled plasma mass spectrometry) and HPLC-QTOF-MS (High performance liquid chromatography-Quadrupole time-of-flight mass spectrometry), respectively. Moreover, AFH demonstrated high levels of DPPH (1,1-Diphenyl-2-picrylhydrazyl) radical scavenging activity (IC50 100.41 ± 15.35 mg/mL), ferric reducing antioxidant power (2.04 ± 0.29 µmol FeSO4·7H2O/g), and ferrous ion-chelating activity (82.56 ± 16.01 mg Na2EDTA/kg), which were significantly associated with total phenolic contents (270.07 ± 27.15 mg GA/kg) and ascorbic acid contents (213.69 ± 27.87 mg/kg). The cell model verified that AFH exhibited dose-dependent preventive effects on pBR322 plasmid DNA and mouse lymphocyte DNA damage in response to oxidative stress. Taken together, our findings provide evidence for the future application of AFH as a potential antioxidant dietary in food industry.
Collapse
Affiliation(s)
- Min Zhu
- School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Haoan Zhao
- School of Chemical Engineering, Northwest University, Xi'an 710069, China
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Qian Wang
- School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Fanhua Wu
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Wei Cao
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
- Bee Product Research Center of Shaanxi Province, Xi'an 710065, China
| |
Collapse
|
14
|
Tanleque-Alberto F, Juan-Borrás M, Escriche I. Antioxidant characteristics of honey from Mozambique based on specific flavonoids and phenolic acid compounds. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2019.103377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Sobrino-Gregorio L, Tanleque-Alberto F, Bataller R, Soto J, Escriche I. Using an automatic pulse voltammetric electronic tongue to verify the origin of honey from Spain, Honduras, and Mozambique. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:212-217. [PMID: 31487046 DOI: 10.1002/jsfa.10022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/02/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The growing need to classify the origin of honey in a simple way is leading to the development of affordable analytical equipment that is in-line and manageable, enabling rapid on-site screening. The aim of this work was therefore to evaluate whether an electronic tongue (made of four metallic electrodes: Ir, Rh, Pt, Au), based on potential multistep pulse voltammetry with electrochemical polishing, is able to differentiate between honey samples from Spain, Honduras, and Mozambique. RESULTS It was demonstrated, for the first time, that automatic pulse voltammetry, in combination with principal component analysis (PCA) statistical analysis, was able to differentiate honey samples from these three countries. A partial least squares (PLS) analysis predicted the level of certain physicochemical parameters, the best results being for conductivity and moisture with correlation coefficients of 0.948 and 0.879, whereas the weakest correlation was for the sugars. CONCLUSION The tool proposed in this study could be applied to identify the country origin of the three types of multifloral honey considered here. It also offers promising perspectives for expanding knowledge of the provenance of honey. All of this could be achieved when a comprehensive database with the information generated by this electronic tongue has been created. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lara Sobrino-Gregorio
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Valencia, Spain
| | | | - Román Bataller
- Instituto de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Centro Mixto Universitat Politècnica de València. Departamento de Química, Universitat Politècnica de València, Valencia, Spain
| | - Juan Soto
- Instituto de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Centro Mixto Universitat Politècnica de València. Departamento de Química, Universitat Politècnica de València, Valencia, Spain
| | - Isabel Escriche
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Valencia, Spain
- Departamento de Tecnología de Alimentos (DTA), Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|