1
|
Kim S, Larnani S, Taymour N, Chung SH, Srinivasan M, Kim YJ, Park YS. Effect of coffee roasting level on tooth discoloration. J Oral Sci 2025; 67:14-18. [PMID: 39647855 DOI: 10.2334/josnusd.24-0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
PURPOSE Coffee consumption is a well-known contributor to tooth discoloration, and the extent of staining is influenced by the chemical composition of the coffee. This study investigated the associations of coffee roasting level, chlorogenic acid (CGA) content, absorbance level, and their combined effects with tooth discoloration. METHODS Bovine tooth enamel specimens were immersed in light, medium, and dark roasts of four coffee types (two Arabica and two Robusta coffees) for 72 h. High-performance liquid chromatography (HPLC) was used to measure CGA content, absorbance levels were estimated by using pigment concentration, and discoloration was assessed by spectrophotometry. The data were analyzed with the Friedman test. RESULTS Medium roasts induced the greatest discoloration, and tooth specimens immersed in Ethiopia Arabica exhibited the greatest color difference based on CIEDE2000 (ΔE00 at 72 h: 13.51 ± 4.63). Light roasts induced the least staining, despite having the highest CGA content. Dark roasts showed the highest absorbance, indicating a higher pigment concentration. Friedman analysis revealed a significant difference in color change in relation to roasting level for all coffee types. CONCLUSION The present findings indicate that tooth discoloration is caused by the complex interaction of CGA, melanoidins, and roasting level. Because of the interplay of these factors, medium roasting had the greatest effect on discoloration.
Collapse
Affiliation(s)
- Soyeon Kim
- Department of Oral Anatomy and Dental Research Institute, School of Dentistry, Seoul National University
| | - Sri Larnani
- Department of Oral Anatomy and Dental Research Institute, School of Dentistry, Seoul National University
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University
| | - Shin Hye Chung
- Department of Dental Biomaterials Science and Dental Research Institute, School of Dentistry, Seoul National University
| | - Murali Srinivasan
- Clinic of General-, Special Care- and Geriatric Dentistry, Center for Dental Medicine, University of Zurich
| | - Young-Jae Kim
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University
| | - Young-Seok Park
- Department of Oral Anatomy and Dental Research Institute, School of Dentistry, Seoul National University
- Center for Future Dentistry, School of Dentistry, Seoul National University
| |
Collapse
|
2
|
Grządka E, Starek-Wójcicka A, Krajewska M, Matusiak J, Orzeł J, Studziński M, Bonczyk M, Chmielewska I, Mieczkowska A, Ronda O, Cieślik BM. Chemical insight into pros and cons of coffees from different regions. Sci Rep 2025; 15:455. [PMID: 39747393 PMCID: PMC11695618 DOI: 10.1038/s41598-024-84669-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/25/2024] [Indexed: 01/04/2025] Open
Abstract
The main aim of this work was to study the chemical composition of eighteen ground coffees from different countries and continents with regard to the content of hazardous substances as radioactive elements (40K, 226Ra, 228Ra, 234U, 238U and 137Cs), metals, including heavy metals, aluminum and some microelements (V, Cr, Mn, Fe, Co, Ni, Cu, Zn) as well as substances that have a positive effect on human health and well-being (polyphenols, proteins, fats and caffeine). The tests were carried out before and after the brewing process using the following techniques: gamma and beta spectrometry, a microwave-induced plasma optical emission spectrometer (MIP-OES), gravimetric method, UV-Vis spectrophotometry as well as thin-layer chromatography. The leaching percentage of certain elements/compounds in coffee infusions was also measured. The research showed clear differences between Arabica and Robusta coffees, and also allowed for identifying some differences between Arabica coffees depending on the place of their origin. The results presented can raise consumer awareness and help them make better food choices.
Collapse
Affiliation(s)
- Elżbieta Grządka
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Skłodowska Sq 3, 20-031, Lublin, Poland
| | - Agnieszka Starek-Wójcicka
- Department of Biological Basis of Food and Feed Technology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
| | - Marta Krajewska
- Department of Biological Basis of Food and Feed Technology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Jakub Matusiak
- Department of Construction Materials Engineering and Geoengineering, Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40, 20-618, Lublin, Poland
| | - Jolanta Orzeł
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Skłodowska Sq 3, 20-031, Lublin, Poland
| | - Marek Studziński
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Skłodowska Sq 3, 20-031, Lublin, Poland
| | - Michał Bonczyk
- Central Mining Institute - National Research Institute (GIG-PIB), Silesian Centre for Environmental Radioactivity, Gwarków Sq. 1, 40-166, Katowice, Poland
| | - Izabela Chmielewska
- Central Mining Institute - National Research Institute (GIG-PIB), Silesian Centre for Environmental Radioactivity, Gwarków Sq. 1, 40-166, Katowice, Poland
| | - Aleksandra Mieczkowska
- Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 Str., 80-233, Gdańsk, Poland
| | - Oskar Ronda
- Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 Str., 80-233, Gdańsk, Poland
| | - Bartłomiej Michał Cieślik
- Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 Str., 80-233, Gdańsk, Poland
| |
Collapse
|
3
|
Mo Y, Xu J, Zhou H, Zhao Y, Chen K, Zhang J, Deng L, Zhang S. A machine learning-assisted fluorescent sensor array utilizing silver nanoclusters for coffee discrimination. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124760. [PMID: 38959644 DOI: 10.1016/j.saa.2024.124760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/04/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Coffee is a globally consumed commodity of substantial commercial significance. In this study, we constructed a fluorescent sensor array based on two types of polymer templated silver nanoclusters (AgNCs) for the detection of organic acids and coffees. The nanoclusters exhibited different interactions with organic acids and generated unique fluorescence response patterns. By employing principal component analysis (PCA) and random forest (RF) algorithms, the sensor array exhibited good qualitative and quantitative capabilities for organic acids. Then the sensor array was used to distinguish coffees with different processing methods or roast degrees and the recognition accuracy achieved 100%. It could also successfully identify 40 coffee samples from 12 geographical origins. Moreover, it demonstrated another satisfactory performance for the classification of pure coffee samples with their binary and ternary mixtures or other beverages. In summary, we present a novel method for detecting and identifying multiple coffees, which has considerable potential in applications such as quality control and identification of fake blended coffees.
Collapse
Affiliation(s)
- Yidan Mo
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China
| | - Jinming Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China
| | - Huangmei Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China
| | - Yu Zhao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China
| | - Kai Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China
| | - Jie Zhang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Lunhua Deng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China.
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China; NYU-ECNU Institute of Physics at NYU Shanghai, No.3663, North Zhongshan Rd., Shanghai 200062, China.
| |
Collapse
|
4
|
Perini da Silva MM, Tarone AG, Giomo GS, Ferrarezzo EM, Guerreiro Filho O, Teramoto JRS. Predicting best planting location and coffee cup quality from chemical parameters: An evaluation of raw Arabica coffee beans from São Paulo over two harvests. Food Res Int 2024; 195:114911. [PMID: 39277217 DOI: 10.1016/j.foodres.2024.114911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/12/2024] [Accepted: 08/10/2024] [Indexed: 09/17/2024]
Abstract
Arabica coffee is one of the most consumed beverages in the world. The chemical components present in raw Arabica coffee beans (RACB) are directly related to the cup quality of the beverage. Environmental and genetic factors influence the content and profile of these components. Then, this work aimed to evaluate different chemical parameters of RACB from 3 varieties planted in 3 different experimental farms located within the "Alta Mogiana" terroir harvested in 2021 and 2022 to identify a better variety for each farm to produce a high cup quality Arabica coffee. The harvest period had a strong influence on most of the studied parameters because atypical weather conditions occurred in the 2021 harvest. The RACB harvested in 2022 yielded better results and supposedly will produce a beverage of high cup quality. Samples harvested in this period presented mainly average moisture levels closer to optimum (11.02 against 8.56 % in 2021); low total titratable acidity (98.00 against 169.75 mL 0.1 M NaOH/100 g in 2021); high amounts of free amino acids (0.96 against 0.93 g GAE/100 g in 2021), low amounts of CGA (4.27 against 4.85 g/100 g in 2021) and caffeine (1.08 against 1.76 g/100 g in 2021) and high amounts of trigonelline (1.12 against 0.96 g/100 g in 2021). The Rome Sudan variety had the best combination of chemical results, mainly when cultivated in Farm 2 in 2022, presenting high amounts of protein content (15.24 %) and free amino acids (0.96 g GAE/100 g), low total titratable acidity (98.3 mL 0.1 M NaOH/100 g), low amounts of CGA (4.55 g/100 g) and caffeine (1.29 g/100 g) and high amounts of trigonelline (1.11 g/100 g). The analysis of chemical compounds could predict the best farm to cultivate each variety studied and was a guide to foresee a higher cup quality of RACB beverages.
Collapse
Affiliation(s)
- Milena Melim Perini da Silva
- Plant Phytochemistry Section, Plant Genetic Resource Research Center, Agronomic Institute - IAC, 13075-630 Campinas, SP, Brazil
| | - Adriana Gadioli Tarone
- Plant Phytochemistry Section, Plant Genetic Resource Research Center, Agronomic Institute - IAC, 13075-630 Campinas, SP, Brazil
| | - Gerson Silva Giomo
- Coffee Center, Agronomic Institute - IAC, 13075-630 Campinas, SP, Brazil
| | | | | | - Juliana Rolim Salomé Teramoto
- Plant Phytochemistry Section, Plant Genetic Resource Research Center, Agronomic Institute - IAC, 13075-630 Campinas, SP, Brazil.
| |
Collapse
|
5
|
Yang H, Ai J, Zhu Y, Shi Q, Yu Q. Rapid classification of coffee origin by combining mass spectrometry analysis of coffee aroma with deep learning. Food Chem 2024; 446:138811. [PMID: 38412809 DOI: 10.1016/j.foodchem.2024.138811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
Mislabeling the geographical origin of coffee is a prevalent form of fraud. In this study, a rapid, nondestructive, and high-throughput method combining mass spectrometry (MS) analysis and intelligence algorithms to classify coffee origin was developed. Specifically, volatile compounds in coffee aroma were detected using self-aspiration corona discharge ionization mass spectrometry (SACDI-MS), and the acquired MS data were processed using a customized deep learning algorithm to perform origin authentication automatically. To facilitate high-throughput analysis, an air curtain sampling device was designed and coupled with SACDI-MS to prevent volatile mixing and signal overlap. An accuracy of 99.78% was achieved in the classification of coffee samples from six origins at a throughput of 1 s per sample. The proposed approach may be effective in preventing coffee fraud owing to its straightforward operation, rapidity, and high accuracy and thus benefit consumers.
Collapse
Affiliation(s)
- Huang Yang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jiawen Ai
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yanping Zhu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qinhao Shi
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Quan Yu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
6
|
Fetsch VT, Kalschne DL, Canan C, Flores ÉLDM, Viegas MC, Peiter GC, Zara RF, Amaral JS, Corso MP. Coffee Extract as a Natural Antioxidant in Fresh Pork Sausage-A Model Approach. Foods 2024; 13:1409. [PMID: 38731780 PMCID: PMC11083965 DOI: 10.3390/foods13091409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Consumers are increasingly looking for healthy foods without the addition of synthetic additives. The aim of this study was to evaluate the efficiency of coffee extracts as a natural antioxidant in fresh pork sausage. Firstly, the conditions for obtaining coffee green extracts were optimized (Central Composite Rotatable Design 23, variables: extraction time, ethanol-water ratio, and sample-solvent ratio) in an ultrasound bath (70 °C). The response variables were the bioactive compounds levels and antioxidant activity. Valid models were obtained (p ≤ 0.05, R2 > 0.751), with higher bioactive content and antioxidant activity in the central point region. Extracts of Robusta and Arabica coffee green (RG and AG) and medium roast (RR and AR) obtained, and central point (10 min, an ethanol concentration of 30%, and a sample-solvent ratio of 10 g/100 mL) and optimized (14.2 min, 34.2%, and 5.8 g/100 mL) parameters were characterized. The RG presented a significantly (p ≤ 0.05) higher content of caffeine (3114.8 ± 50.0 and 3148.1 ± 13.5 mg/100 g) and 5-CQA (6417.1 ± 22.0 and 6706.4 ± 23.5 mg/100 g) in both extraction conditions, respectively. The RG and RR coffee presented the highest antioxidant activity. Two concentrations of RG and RR coffee extracts were tested in fresh pork sausage. The Robusta coffee extract presented the highest antioxidant activity in both roasted and green states. However, when applied to a meat product, the extract prepared with RG coffee showed better results, with efficiency in replacing synthetic antioxidants (content of malonaldehyde/kg of sample below 0.696 ± 0.059 in 20 days of storage), without altering the sensory attributes of the product (average scores above 7.16 ± 1.43 for all attributes evaluated). Therefore, the RG coffee extract was a suitable alternative as a natural antioxidant applied to fresh pork sausage.
Collapse
Affiliation(s)
- Vanessa Tanara Fetsch
- Post-Graduate Program in Food Technology (PPGTA), Academic Department of Food, Federal University of Technology—Paraná, Campus Medianeira (UTFPR-MD), Avenida Brasil 4232, Medianeira 85722-332, Brazil; (V.T.F.); (D.L.K.); (M.P.C.)
| | - Daneysa Lahis Kalschne
- Post-Graduate Program in Food Technology (PPGTA), Academic Department of Food, Federal University of Technology—Paraná, Campus Medianeira (UTFPR-MD), Avenida Brasil 4232, Medianeira 85722-332, Brazil; (V.T.F.); (D.L.K.); (M.P.C.)
| | - Cristiane Canan
- Post-Graduate Program in Food Technology (PPGTA), Academic Department of Food, Federal University of Technology—Paraná, Campus Medianeira (UTFPR-MD), Avenida Brasil 4232, Medianeira 85722-332, Brazil; (V.T.F.); (D.L.K.); (M.P.C.)
| | - Éder Lisandro de Moraes Flores
- Academic Department of Chemistry, Federal University of Technology—Paraná, Campus Medianeira (UTFPR-MD), Avenida Brasil 4232, Medianeira 85722-332, Brazil;
| | - Marcelo Caldeira Viegas
- IGC—Companhia Iguaçu de Café Solúvel S.A., Research and Development, BR-369, Km 88, Cornélio Procópio 86300-000, Brazil;
| | - Gabrielle Caroline Peiter
- Academic Department of Chemistry, Federal University of Technology—Paraná, Campus Toledo (UTFPR-TD) Rua Cristo Rei, 19, Toledo 85902-490, Brazil; (G.C.P.); (R.F.Z.)
| | - Ricardo Fiori Zara
- Academic Department of Chemistry, Federal University of Technology—Paraná, Campus Toledo (UTFPR-TD) Rua Cristo Rei, 19, Toledo 85902-490, Brazil; (G.C.P.); (R.F.Z.)
| | - Joana Soares Amaral
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Sta. Apolónia, 5300-253 Bragança, Portugal;
| | - Marinês Paula Corso
- Post-Graduate Program in Food Technology (PPGTA), Academic Department of Food, Federal University of Technology—Paraná, Campus Medianeira (UTFPR-MD), Avenida Brasil 4232, Medianeira 85722-332, Brazil; (V.T.F.); (D.L.K.); (M.P.C.)
| |
Collapse
|
7
|
Ren T, Lin Y, Su Y, Ye S, Zheng C. Machine Learning-Assisted Portable Microplasma Optical Emission Spectrometer for Food Safety Monitoring. Anal Chem 2024; 96:5170-5177. [PMID: 38512240 DOI: 10.1021/acs.analchem.3c05332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
To meet the needs of food safety for simple, rapid, and low-cost analytical methods, a portable device based on a point discharge microplasma optical emission spectrometer (μPD-OES) was combined with machine learning to enable on-site food freshness evaluation and detection of adulteration. The device was integrated with two modular injection units (i.e., headspace solid-phase microextraction and headspace purge) for the examination of various samples. Aromas from meat and coffee were first introduced to the portable device. The aroma molecules were excited to specific atomic and molecular fragments at excited states by room temperature and atmospheric pressure microplasma due to their different atoms and molecular structures. Subsequently, different aromatic molecules obtained their own specific molecular and atomic emission spectra. With the help of machine learning, the portable device was successfully applied to the assessment of meat freshness with accuracies of 96.0, 98.7, and 94.7% for beef, pork, and chicken meat, respectively, through optical emission patterns of the aroma at different storage times. Furthermore, the developed procedures can identify beef samples containing different amounts of duck meat with an accuracy of 99.5% and classify two coffee species without errors, demonstrating the great potential of their application in the discrimination of food adulteration. The combination of machine learning and μPD-OES provides a simple, portable, and cost-effective strategy for food aroma analysis, potentially addressing field monitoring of food safety.
Collapse
Affiliation(s)
- Tian Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yao Lin
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yubin Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Simin Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
8
|
Marcolino E, Salavarria D, da Silva LGM, Almeida A, Oliveira da Silva FM, Ribeiro C, Dias J. Valorization of baobab seeds ( Adansonia digitata) as a coffee-like beverage: evaluation of roasting time on bioactive compounds. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:727-733. [PMID: 38410276 PMCID: PMC10894176 DOI: 10.1007/s13197-023-05873-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 06/26/2023] [Accepted: 10/13/2023] [Indexed: 02/28/2024]
Abstract
The baobab tree (Adansonia digitata) can be found in sub-Saharan Africa, and its fruit presents high nutritional value. However, baobab seeds are often discarded and their potential remains underutilized. This study aimed to investigate the effect of roasting time (30/55/80/105 min at 200 °C) on the physical-chemical properties of baobab seeds and the bioactive compounds in a coffee-like beverage. The results showed a decrease in moisture, Aw (water activity), and hardness of baobab seeds with increasing roasting time. These changes resulted from moisture loss, caramelization, and Maillard reactions, which also affected appearance when compared with unroasted baobab seeds. The pH of the beverage decreased to a value of around 6.01 after 105 min of roasting. The total phenolic content and antioxidant activity of the beverage increased with roasting time, reaching 851.2 mg GAE/100 g (after 80 min) and 18.9 mmol Fe2+/100 g (after 55 min), respectively. The caffeine content remained stable around 16 mg/100 g from 55 to 105 min, lower than that of unroasted coffee beans and decaffeinated coffee. These findings suggest the potential for valorizing baobab seeds in the development of a new coffee-like beverage with lower caffeine content.
Collapse
Affiliation(s)
- Etivaldo Marcolino
- Instituto Politécnico de Beja, Escola Superior Agrária de Beja, Rua Pedro Soares, 7800-295 Beja, Portugal
| | - Diogo Salavarria
- Instituto Politécnico de Beja, Escola Superior Agrária de Beja, Rua Pedro Soares, 7800-295 Beja, Portugal
| | - Luíz Guilherme Malaquias da Silva
- Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas, Rod. Machado - Paraguaçu, S/N - Santo Antonio, Machado, MG 37750-000 Brazil
| | - Adelaide Almeida
- Instituto Politécnico de Beja, Escola Superior Agrária de Beja, Rua Pedro Soares, 7800-295 Beja, Portugal
- FibEnTech - Materiais de Fibra e Tecnologias Ambientais, R. Marques de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | | | - Carlos Ribeiro
- Instituto Politécnico de Beja, Escola Superior Agrária de Beja, Rua Pedro Soares, 7800-295 Beja, Portugal
| | - João Dias
- Instituto Politécnico de Beja, Escola Superior Agrária de Beja, Rua Pedro Soares, 7800-295 Beja, Portugal
- GeoBioTec - Geobiosciências, Geoengenharia e Geotecnologias, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Monte da Caparica, Portugal
| |
Collapse
|
9
|
Zhu J, Zhou L, Zhao M, Wei F, Fu H, Marchioni E. Revealing the dynamic changes of lipids in coffee beans during roasting based on UHPLC-QE-HR-AM/MS/MS. Food Res Int 2023; 174:113507. [PMID: 37986503 DOI: 10.1016/j.foodres.2023.113507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 11/22/2023]
Abstract
Coffee is popular worldwide and its consumption is increasing in recent years. Although mass spectrometry-based lipidomics approaches have been prevalent, their application in studies related to detailed information and dynamic changes in lipid composition during coffee bean roasting is still limited. The aim of this study was to investigate the dynamic changes in coffee bean lipids during the roasting process. The lipid classes and lipid molecular species in coffee beans were characterized by lipidomic analysis combined with chemometrics. A total of 12 lipid classes and 105 lipid molecular species were identified and quantified. Triacylglycerols (TAG) was the most abundant lipid class in both green beans and roasted beans. The content of phosphatidylethanolamine (PE) and lysophosphatidylethanolamine (LPE) in green beans was obviously higher than that in roasted beans. Other phospholipids, such as phosphatidylinositol (PI), lysophosphatidylinositol (LPI), phosphatidylcholine (PC), lysophophatidylcholine (LPC) and phosphatidic acid (PA), showed a tendency to increase at the beginning of roasting, then decreased gradually. Several differential lipid molecule species, for instance, PE (16:0_18:2), PC (18:2_18:2) were significantly down-regulated, and PI (18:1_18:2) was significantly up-regulated. This study provided a scientific basis for the change of coffee bean lipids during the roasting process.
Collapse
Affiliation(s)
- Jinrui Zhu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China.
| | - Minjie Zhao
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 route du Rhin, 67400 Illkirch, France
| | - Fang Wei
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, Hubei 430062, PR China.
| | - Haiyan Fu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China.
| | - Eric Marchioni
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 route du Rhin, 67400 Illkirch, France
| |
Collapse
|
10
|
Ciaramelli C, Palmioli A, Brioschi M, Viglio S, D’Amato M, Iadarola P, Tosi S, Zucconi L, Airoldi C. Antarctic Soil Metabolomics: A Pilot Study. Int J Mol Sci 2023; 24:12340. [PMID: 37569716 PMCID: PMC10418359 DOI: 10.3390/ijms241512340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
In Antarctica, ice-free areas can be found along the coast, on mountain peaks, and in the McMurdo Dry Valleys, where microorganisms well-adapted to harsh conditions can survive and reproduce. Metabolic analyses can shed light on the survival mechanisms of Antarctic soil communities from both coastal sites, under different plant coverage stages, and inner sites where slow-growing or dormant microorganisms, low water availability, salt accumulation, and a limited number of primary producers make metabolomic profiling difficult. Here, we report, for the first time, an efficient protocol for the extraction and the metabolic profiling of Antarctic soils based on the combination of NMR spectroscopy and mass spectrometry (MS). This approach was set up on samples harvested along different localities of Victoria Land, in continental Antarctica, devoid of or covered by differently developed biological crusts. NMR allowed for the identification of thirty metabolites (mainly sugars, amino acids, and organic acids) and the quantification of just over twenty of them. UPLC-MS analysis identified more than twenty other metabolites, in particular flavonoids, medium- and long-chain fatty acids, benzoic acid derivatives, anthracenes, and quinones. Our results highlighted the complementarity of the two analytical techniques. Moreover, we demonstrated that their combined use represents the "gold standard" for the qualitative and quantitative analysis of little-explored samples, such as those collected from Antarctic soils.
Collapse
Affiliation(s)
- Carlotta Ciaramelli
- Department of Biotechnology and Biosciences, University of Milano—Bicocca, P.zza della Scienza 2, 20126 Milano, Italy; (C.C.); (A.P.); (M.B.)
| | - Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano—Bicocca, P.zza della Scienza 2, 20126 Milano, Italy; (C.C.); (A.P.); (M.B.)
| | - Maura Brioschi
- Department of Biotechnology and Biosciences, University of Milano—Bicocca, P.zza della Scienza 2, 20126 Milano, Italy; (C.C.); (A.P.); (M.B.)
| | - Simona Viglio
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy; (S.V.); (M.D.)
| | - Maura D’Amato
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy; (S.V.); (M.D.)
| | - Paolo Iadarola
- Department of Biology and Biotechnologies “L. Spallanzani”, University of Pavia, Via Adolfo Ferrata 9, 27100 Pavia, Italy;
| | - Solveig Tosi
- Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy;
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy;
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano—Bicocca, P.zza della Scienza 2, 20126 Milano, Italy; (C.C.); (A.P.); (M.B.)
| |
Collapse
|
11
|
Tira R, Viola G, Barracchia CG, Parolini F, Munari F, Capaldi S, Assfalg M, D'Onofrio M. Espresso Coffee Mitigates the Aggregation and Condensation of Alzheimer's Associated Tau Protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37466260 PMCID: PMC10401709 DOI: 10.1021/acs.jafc.3c01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Espresso coffee is among the most consumed beverages in the world. Recent studies report a protective activity of the coffee beverage against neurodegenerative disorders such as Alzheimer's disease. Alzheimer's disease belongs to a group of disorders, called tauopathies, which are characterized by the intraneuronal accumulation of the microtubule-associated protein tau in fibrillar aggregates. In this work, we characterized by NMR the molecular composition of the espresso coffee extract and identified its main components. We then demonstrated with in vitro and in cell experiments that the whole coffee extract, caffeine, and genistein have biological properties in preventing aggregation, condensation, and seeding activity of the repeat region of tau. We also identified a set of coffee compounds capable of binding to preformed tau fibrils. These results add insights into the neuroprotective potential of espresso coffee and suggest candidate molecular scaffolds for designing therapies targeting monomeric or fibrillized forms of tau.
Collapse
Affiliation(s)
- Roberto Tira
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 34134 Verona, Italy
| | - Giovanna Viola
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 34134 Verona, Italy
| | | | - Francesca Parolini
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 34134 Verona, Italy
| | - Francesca Munari
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 34134 Verona, Italy
| | - Stefano Capaldi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 34134 Verona, Italy
| | - Michael Assfalg
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 34134 Verona, Italy
| | - Mariapina D'Onofrio
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 34134 Verona, Italy
| |
Collapse
|
12
|
Yildirim S, Demir E, Gok I, Aboul-Enein HY. Use of electrochemical methods to determine the effect of brewing techniques (Espresso, Turkish and Filter coffee) and roasting levels on the antioxidant capacity of coffee beverage. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1933-1943. [PMID: 37206418 PMCID: PMC10188868 DOI: 10.1007/s13197-022-05460-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/15/2022] [Accepted: 04/03/2022] [Indexed: 05/21/2023]
Abstract
Coffee is a complex mixture of chemicals, which provide biologically active compounds with various health benefits. The some biologically active compounds arising from both its natural structure and formed after processing were determined as an antioxidant capacity of coffee beverages. In this study, we aimed to determine how roasting levels of Arabica coffee seed (light, medium, dark) and three brewing techniques-decoction methods (Turkish coffee), infusion method (filter coffee) and pressure methods (Espresso)-affect total antioxidant capacity in a cup of coffee beverage by electrochemical methods such as square wave stripping voltammetry (SWSV), differential pulse stripping voltammetry (DPSV) and cyclic voltammetry (CV). Antioxidant capacities of the coffee samples in terms of the equivalent amounts were determined according to standard oxidation peaks of rutin and caffeic acid. The highest antioxidant capacity was found in espresso coffee prepared at light roasting coffee seeds as equivalent the routine and caffeic at 9.4 ± 0.2 g/L and 19.7 ± 0.7 g/L, respectively with SWSV on a carbon paste electrode. As a result, SWSV, DPSV and CV voltammetric methods, fast, reliable, fully validated and without any pretreatment are alternative to conventional analytical methods to evaluation antioxidant values in any food samples.
Collapse
Affiliation(s)
- Sevinc Yildirim
- Department of Gastronomy, Faculty of Applied Sciences, İstanbul Okan University, Istanbul, 34959 Turkey
| | - Ersin Demir
- Deparment of Analytical Chemistry, Faculty of Pharmacy, Afyonkarahisar University of Health Sciences, Aftonkarahisar, 03200 Turkey
| | - Ilkay Gok
- Department of Gastronomy, Faculty of Applied Sciences, İstanbul Okan University, Istanbul, 34959 Turkey
| | - Hassan Y Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Center, Cairo, 12622 Egypt
| |
Collapse
|
13
|
Grzelczyk J, Szwajgier D, Baranowska-Wójcik E, Pérez-Sánchez H, Carmena-Bargueño M, Sosnowska B, Budryn G. Effect of Inhibiting Butyrylcholinesterase Activity Using Fractionated Coffee Extracts Digested In Vitro in Gastrointestinal Tract: Docking Simulation and Calorimetric and Studies. Nutrients 2023; 15:nu15102366. [PMID: 37242249 DOI: 10.3390/nu15102366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Butyrylcholinesterase (BChE) is a major enzyme from the alpha-glycoprotein family that catalyzes the hydrolysis of neurotransmitter acetylcholine (ACh), lowering the concentration of ACh in the nervous system, which could cause aggravation of Alzheimer's disease (AD). In select pathological conditions, it is beneficial to reduce the activity of this enzyme. The aim of this study was to evaluate the degree of BChE inhibition by coffee extracts fractionated into mono- and diesters of caffeic acid/caffeine, digested in vitro in the gastrointestinal tract. The bioactive compounds from coffee showed high affinity for BchE, -30.23--15.28 kJ/mol, and was the highest for the caffeine fraction from the green Arabica extract. The isolated fractions were highly effective in inhibiting BChE activity at all in vitro digestion phases. It has been shown that the fractionation of coffee extracts could be potentially used to obtain high prophylactic or even therapeutic effectiveness against AD.
Collapse
Affiliation(s)
- Joanna Grzelczyk
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), Guadalupe, 30107 Murcia, Spain
| | - Miguel Carmena-Bargueño
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), Guadalupe, 30107 Murcia, Spain
| | - Bożena Sosnowska
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Grażyna Budryn
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland
| |
Collapse
|
14
|
da Costa DS, Albuquerque TG, Costa HS, Bragotto APA. Thermal Contaminants in Coffee Induced by Roasting: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5586. [PMID: 37107868 PMCID: PMC10138461 DOI: 10.3390/ijerph20085586] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023]
Abstract
Roasting is responsible for imparting the main characteristics to coffee, but the high temperatures used in the process can lead to the formation of several potentially toxic substances. Among them, polycyclic aromatic hydrocarbons, acrylamide, furan and its derivative compounds, α-dicarbonyls and advanced glycation end products, 4-methylimidazole, and chloropropanols stand out. The objective of this review is to present a current and comprehensive overview of the chemical contaminants formed during coffee roasting, including a discussion of mitigation strategies reported in the literature to decrease the concentration of these toxicants. Although the formation of the contaminants occurs during the roasting step, knowledge of the coffee production chain as a whole is important to understand the main variables that will impact their concentrations in the different coffee products. The precursors and routes of formation are generally different for each contaminant, and the formed concentrations can be quite high for some substances. In addition, the study highlights several mitigation strategies related to decreasing the concentration of precursors, modifying process conditions and eliminating/degrading the formed contaminant. Many of these strategies show promising results, but there are still challenges to be overcome, since little information is available about advantages and disadvantages in relation to aspects such as costs, potential for application on an industrial scale and impacts on sensory properties.
Collapse
Affiliation(s)
- David Silva da Costa
- Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Cidade Universitária, R. Monteiro Lobato 80, Campinas 13083-862, Brazil
| | - Tânia Gonçalves Albuquerque
- Departamento de Alimentação e Nutrição, Instituto Nacional de Saúde Doutor Ricardo Jorge, I.P. Av. Padre Cruz, 1649-016 Lisboa, Portugal
- REQUIMTE-LAQV, Faculdade de Farmácia da Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Helena Soares Costa
- Departamento de Alimentação e Nutrição, Instituto Nacional de Saúde Doutor Ricardo Jorge, I.P. Av. Padre Cruz, 1649-016 Lisboa, Portugal
- REQUIMTE-LAQV, Faculdade de Farmácia da Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Adriana Pavesi Arisseto Bragotto
- Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Cidade Universitária, R. Monteiro Lobato 80, Campinas 13083-862, Brazil
| |
Collapse
|
15
|
Nerurkar PV, Yokoyama J, Ichimura K, Kutscher S, Wong J, Bittenbender HC, Deng Y. Medium Roasting and Brewing Methods Differentially Modulate Global Metabolites, Lipids, Biogenic Amines, Minerals, and Antioxidant Capacity of Hawai'i-Grown Coffee ( Coffea arabica). Metabolites 2023; 13:412. [PMID: 36984852 PMCID: PMC10051321 DOI: 10.3390/metabo13030412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
In the United States, besides the US territory Puerto Rico, Hawai'i is the only state that grows commercial coffee. In Hawai'i, coffee is the second most valuable agricultural commodity. Health benefits associated with moderate coffee consumption, including its antioxidant capacity, have been correlated to its bioactive components. Post-harvest techniques, coffee variety, degree of roasting, and brewing methods significantly impact the metabolites, lipids, minerals, and/or antioxidant capacity of brewed coffees. The goal of our study was to understand the impact of roasting and brewing methods on metabolites, lipids, biogenic amines, minerals, and antioxidant capacity of two Hawai'i-grown coffee (Coffea arabica) varieties, "Kona Typica" and "Yellow Catuai". Our results indicated that both roasting and coffee variety significantly modulated several metabolites, lipids, and biogenic amines of the coffee brews. Furthermore, regardless of coffee variety, the antioxidant capacity of roasted coffee brews was higher in cold brews. Similarly, total minerals were higher in "Kona Typica" cold brews followed by "Yellow Catuai" cold brews. Hawai'i-grown coffees are considered "specialty coffees" since they are grown in unique volcanic soils and tropical microclimates with unique flavors. Our studies indicate that both Hawai'i-grown coffees contain several health-promoting components. However, future studies are warranted to compare Hawai'i-grown coffees with other popular brand coffees and their health benefits in vivo.
Collapse
Affiliation(s)
- Pratibha V. Nerurkar
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawai‘i at Manoa (UHM), Honolulu, HI 96822, USA
| | - Jennifer Yokoyama
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawai‘i at Manoa (UHM), Honolulu, HI 96822, USA
| | - Kramer Ichimura
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawai‘i at Manoa (UHM), Honolulu, HI 96822, USA
| | - Shannon Kutscher
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawai‘i at Manoa (UHM), Honolulu, HI 96822, USA
| | - Jamie Wong
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawai‘i at Manoa (UHM), Honolulu, HI 96822, USA
| | - Harry C. Bittenbender
- Department of Tropical Plant and Soil Sciences (TPSS), CTAHR, UHM, Honolulu, HI 96822, USA
| | - Youping Deng
- Bioinformatics Core, Departmentt of Quantitative Health Sciences, University of Hawai‘i Cancer Center (UHCC), John A. Burns School of Medicine (JABSOM), UHM, Honolulu, HI 96813, USA
| |
Collapse
|
16
|
Ding Q, Xu YM, Lau ATY. The Epigenetic Effects of Coffee. Molecules 2023; 28:molecules28041770. [PMID: 36838754 PMCID: PMC9958838 DOI: 10.3390/molecules28041770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 02/16/2023] Open
Abstract
In this review, we discuss the recent knowledge regarding the epigenetic effects of coffee extract and the three essential active ingredients in coffee (caffeine, chlorogenic acid, and caffeic acid). As a popular beverage, coffee has many active ingredients which have a variety of biological functions such as insulin sensitization, improvement of sugar metabolism, antidiabetic properties, and liver protection. However, recent researches have shown that coffee is not only beneficial for human, but also bad, which may be due to its complex components. Studies suggest that coffee extract and its components can potentially impact gene expression via alteration of DNA methylation, histone modifications, and ncRNA expression; thus, exert long lasting impacts on the epigenome. More importantly, coffee consumption during pregnancy has been linked to multiple negative effects on offspring due to epigenetic modifications; on the other hand, it has also been linked to improvements in many diseases, including cancer. Therefore, understanding more about the epigenetic effects associated with coffee components is crucial to finding ways for improving human health.
Collapse
Affiliation(s)
| | - Yan-Ming Xu
- Correspondence: (Y.-M.X.); (A.T.Y.L.); Tel.: +86-754-8890-0437 (Y.-M.X.); +86-754-8853-0052 (A.T.Y.L.)
| | - Andy T. Y. Lau
- Correspondence: (Y.-M.X.); (A.T.Y.L.); Tel.: +86-754-8890-0437 (Y.-M.X.); +86-754-8853-0052 (A.T.Y.L.)
| |
Collapse
|
17
|
Awwad S, Abu-Zaiton A, Issa R, Said R, Sundookah A, Habash M, Mohammad B, Abu-Samak M. The effect of excessive coffee consumption, in relation to diterpenes levels of medium-roasted coffee, on non-high-density lipoprotein cholesterol level in healthy men. PHARMACIA 2023. [DOI: 10.3897/pharmacia.70.e90495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
This study was designed to determine the levels of coffee oil and diterpenes and evaluate the correlation between the effect of excessive roasted coffee consumption on non-high-density lipoprotein cholesterol (non-HDL) and the roasting degree effect on the levels of coffee oil and diterpenes extracted from Coffea arabica. The coffee oil and diterpenes were extracted using soxhlet and liquid-liquid extraction. Sixty-six healthy normolipidemic male participants were assigned for this study which consisted of two stages. The first stage is the coffee abstaining stage where subjects were requested to abstain from drinking coffee for 2 weeks. The second stage is the coffee drinking stage which consisted of groups (the control group and coffee-drinking group). The levels of TC, TG, LDL-C, HDL-C, and non-HDL were determined in all participants before and after the experiment. The results indicated that the coffee roasting degree demonstrated a significant increase in the levels of coffee oil and diterpenes ranging from 9.31% (green coffee) to 15.64% (dark roast) and from 0.205% (green coffee) to 0.300% (dark roast) for diterpenes. In conclusion, the current study revealed that excessive consumption of medium roasted coffee was associated with elevated non-HDL levels in normotensive nonsmoker healthy men which might be attributed to the positive association between the degree of roasting and diterpenes levels.
Collapse
|
18
|
Tsai PW, Tayo LL, Ting JU, Hsieh CY, Lee CJ, Chen CL, Yang HC, Tsai HY, Hsueh CC, Chen BY. Interactive deciphering electron-shuttling characteristics of Coffea arabica leaves and potential bioenergy-steered anti-SARS-CoV-2 RdRp inhibitor via microbial fuel cells. INDUSTRIAL CROPS AND PRODUCTS 2023; 191:115944. [PMID: 36405420 PMCID: PMC9659477 DOI: 10.1016/j.indcrop.2022.115944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 05/29/2023]
Abstract
Due to the pandemics of COVID-19, herbal medicine has recently been explored for possible antiviral treatment and prevention via novel platform of microbial fuel cells. It was revealed that Coffea arabica leaves was very appropriate for anti-COVID-19 drug development. Antioxidant and anti-inflammatory tests exhibited the most promising activities for C. arabica ethanol extracts and drying approaches were implemented on the leaf samples prior to ethanol extraction. Ethanol extracts of C. arabica leaves were applied to bioenergy evaluation via DC-MFCs, clearly revealing that air-dried leaves (CA-A-EtOH) exhibited the highest bioenergy-stimulating capabilities (ca. 2.72 fold of power amplification to the blank). Furthermore, molecular docking analysis was implemented to decipher the potential of C. arabica leaves metabolites. Chlorogenic acid (-6.5 kcal/mol) owned the highest binding affinity with RdRp of SARS-CoV-2, showing a much lower average RMSF value than an apoprotein. This study suggested C. arabica leaves as an encouraging medicinal herb against SARS-CoV-2.
Collapse
Key Words
- ADMET,, Absorption-distribution-metabolism-excretion-toxicity
- BBB,, Blood-brain barrier
- Biorefinery
- C. arabica,, Coffea arabica
- CA-40-EtOH,, EtOH extract of C. arabica leaves by 40°C oven-dried
- CA-80-EtOH,, EtOH extract of C. arabica leaves by 80°C oven-dried
- CA-A-EtOH,, EtOH extract of C. arabica leaves by air-dried
- CA-AC,, Acetone extract of C. arabica leaves by 40°C oven-dried
- CA-EA,, Ethyl acetate extract of C. arabica leaves by 40°C oven-dried
- CA-F-EtOH,, EtOH extract of C. arabica leaves by freeze-dried
- CA-H2O,, Water extract of C. arabica leaves by 40°C oven-dried
- CA-HX,, Hexane extract of C. arabica leaves by 40°C oven-dried
- COVID-19
- Chlorogenic acid
- Coffea arabica leaves
- DC-MFCs,, Dual Chamber-Microbial Fuel Cells
- DPPH,, 2,2-diphenyl-1-picrylhydrazyl
- FRAP,, Ferric ion reducing antioxidant power
- MFC,, Microbial fuel cell
- Microbial fuel cells
- QSAR,, Quantitative-structure-activity relationship
- RMSF,, Root-mean-square fluctuation
- RdRp
- RdRp,, RNA-dependent RNA polymerase
- SARS-CoV-2,, Severe acute respiratory syndrome coronavirus 2
Collapse
Affiliation(s)
- Po-Wei Tsai
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
| | - Lemmuel L Tayo
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, 1002 Metro Manila, the Philippines
| | - Jasmine U Ting
- Department of Chemistry, College of Science, De La Salle University, Metro Manila 1004, the Philippines
| | - Cheng-Yang Hsieh
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Chia-Jung Lee
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Chih-Ling Chen
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
| | - Hsiao-Chuan Yang
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan
| | - Hsing-Yu Tsai
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan
| | - Chung-Chuan Hsueh
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan
| | - Bor-Yann Chen
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan
| |
Collapse
|
19
|
Physicochemical Analysis of Cold Brew and Hot Brew Peaberry Coffee. Processes (Basel) 2022. [DOI: 10.3390/pr10101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Peaberry coffee is the result of a natural mutation of coffee beans, and they make up only about 5–7% of coffee crops. A typical coffee cherry contains two seeds that are developed against each other, resulting in the distinctive half-rounded shape of coffee beans. However, failing to fertilize both ovules of one of the seeds or failure in endosperm development can cause only one of the seeds to develop, resulting in smaller, denser beans with a more domed shape. Peaberry coffees are said to be sweeter, lighter, and more flavorful since the peaberry beans receive all nutrients from the coffee cherry. Due to its exclusive nature, the chemical characteristic of peaberry coffee is not well understood. This study explores the acidities and antioxidant activity of peaberry coffee sourced from multiple regions. Total antioxidant capacity, total caffeoylquinic acid (CQA), total caffeine concentration, and pH levels were evaluated for peaberry coffee extracts prepared by cold and hot brewing methods. Little correlation between antioxidant activity and the concentrations of caffeine and CQA in peaberry beans was shown. Six methods were performed for the characterization of total antioxidant capacity including cyclic voltammetry, ABTS assay, and FRAP assay. Peaberry bean extract demonstrated higher average total caffeine concentrations compared to traditional coffee bean extracts.
Collapse
|
20
|
Francisco KCA, Lobato A, Tasić N, Cardoso AA, Gonçalves LM. Determination of 5-hydroxymethylfurfural using an electropolymerized molecularly imprinted polymer in combination with Salle. Talanta 2022; 250:123723. [PMID: 35868148 DOI: 10.1016/j.talanta.2022.123723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/08/2022] [Accepted: 07/02/2022] [Indexed: 11/28/2022]
Abstract
Coffee, a beverage with a complex chemical composition, is appreciated for the sensory experience of its taste and aroma. The compound 5-(hydroxymethyl)-2-furfural (HMF) is essential for sensory characterization of the beverage, and is also used in the traceability of its production. In this work, a procedure combining salting-out assisted liquid-liquid extraction (SALLE) and an electropolymerized molecularly imprinted polymer (e-MIP) was developed for the detection and quantification of HMF in coffee samples. The sample preparation step using SALLE employed a combination of acetonitrile and phosphate-buffered saline, in a proportion of 70:30 (ACN:PBS), with addition of 0.02 g of NaCl. The new sensor (e-MIP) was prepared by electropolymerization of p-aminobenzoic acid onto a glassy carbon electrode (GCE) using cyclic voltammetry (CV). Analytical determinations were performed by differential pulse voltammetry (DPV). The linear regression correlation coefficient (r2) for the response was 0.9986. The limits of detection and quantification were 0.372 mg L-1 and 1.240 mg L-1, respectively. The repeatability and reproducibility values obtained were 6 and 10%, respectively. The recoveries for three concentration levels were between 97 and 101%. Analyses of different coffee samples showed that the HMF concentrations varied from 261.0 ± 41.0 to 770.2 ± 55.9 mg kg-1 in powdered coffee samples, and from 1510 ± 50 to 4445 ± 278 mg kg-1 in instant coffee samples. The advantages of this procedure, compared to other methods described in the literature, are its simplicity, easy operation, good selectivity and sensitivity, low cost, and minimal use of organic solvents.
Collapse
Affiliation(s)
- Karen C A Francisco
- Departamento de Química Analítica, Instituto de Química, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil
| | - Alnilan Lobato
- Department of Analytical Chemistry, National Institute of Chemistry, Ljubljana, Slovenia; Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo (USP), SP, Brazil
| | - Nikola Tasić
- Department of Analytical Chemistry, National Institute of Chemistry, Ljubljana, Slovenia; Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo (USP), SP, Brazil; Department of Materials Science, Institute of Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Arnaldo A Cardoso
- Departamento de Química Analítica, Instituto de Química, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil.
| | - Luís M Gonçalves
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo (USP), SP, Brazil.
| |
Collapse
|
21
|
Ciaramelli C, Palmioli A, Angotti I, Colombo L, De Luigi A, Sala G, Salmona M, Airoldi C. NMR-Driven Identification of Cinnamon Bud and Bark Components With Anti-Aβ Activity. Front Chem 2022; 10:896253. [PMID: 35755250 PMCID: PMC9214034 DOI: 10.3389/fchem.2022.896253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/26/2022] [Indexed: 11/15/2022] Open
Abstract
The anti-Alzheimer disease (AD) activity reported for an aqueous cinnamon bark extract prompted us to investigate and compare the anti-amyloidogenic properties of cinnamon extracts obtained from both bark and bud, the latter being a very little explored matrix. We prepared the extracts with different procedures (alcoholic, hydroalcoholic, or aqueous extractions). An efficient protocol for the rapid analysis of NMR spectra of cinnamon bud and bark extracts was set up, enabling the automatic identification and quantification of metabolites. Moreover, we exploited preparative reverse-phase (RP) chromatography to prepare fractions enriched in polyphenols, further characterized by UPLC-HR-MS. Then, we combined NMR-based molecular recognition studies, atomic force microscopy, and in vitro biochemical and cellular assays to investigate the anti-amyloidogenic activity of our extracts. Both bud and bark extracts showed a potent anti-amyloidogenic activity. Flavanols, particularly procyanidins, and cinnamaldehydes, are the chemical components of cinnamon hindering Aβ peptide on-pathway aggregation and toxicity in a human neuroblastoma SH-SY5Y cell line. Together with the previously reported ability to hinder tau aggregation and filament formation, these data indicate cinnamon polyphenols as natural products possessing multitarget anti-AD activity. Since cinnamon is a spice increasingly present in the human diet, our results support its use to prepare nutraceuticals useful in preventing AD through an active contrast to the biochemical processes that underlie the onset of this disease. Moreover, the structures of cinnamon components responsible for cinnamon anti-AD activities represent molecular templates for designing and synthesizing new anti-amyloidogenic drugs.
Collapse
Affiliation(s)
- Carlotta Ciaramelli
- BioOrgNMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy.,Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milano, Italy
| | - Alessandro Palmioli
- BioOrgNMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy.,Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milano, Italy
| | - Irene Angotti
- BioOrgNMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Laura Colombo
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche "Mario Negri"- IRCCS, Milano, Italy
| | - Ada De Luigi
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche "Mario Negri"- IRCCS, Milano, Italy
| | - Gessica Sala
- Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milano, Italy.,School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche "Mario Negri"- IRCCS, Milano, Italy
| | - Cristina Airoldi
- BioOrgNMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy.,Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
22
|
Gonçalinho GHF, Nascimento JRDO, Mioto BM, Amato RV, Moretti MA, Strunz CMC, César LAM, Mansur ADP. Effects of Coffee on Sirtuin-1, Homocysteine, and Cholesterol of Healthy Adults: Does the Coffee Powder Matter? J Clin Med 2022; 11:2985. [PMID: 35683374 PMCID: PMC9181040 DOI: 10.3390/jcm11112985] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Coffee is one of the most popular beverages globally and contains several bioactive compounds that are relevant to human health. Many nutritional strategies modulate sirtuin-1, thereby impacting aging and cardiometabolic health. This study investigated the influence of different blended coffees on serum sirtuin-1, blood lipids, and plasma homocysteine. Methods: An eight-week randomized clinical trial that included 53 healthy adults of both sexes analyzed the effects of daily intake of 450 to 600 mL of pure Arabica or blended (Arabica + Robusta) coffee intake of filtered coffee on blood sirtuin-1, lipids, and homocysteine. Results: Both Arabica and blended coffees similarly increased serum sirtuin-1 concentration, from 0.51 to 0.58 ng/mL (p = 0.004) and from 0.40 to 0.49 ng/mL (p = 0.003), respectively, without changing plasma homocysteine, folic acid, glucose, and CRP. However, the blended coffee intake increased total cholesterol from 4.70 to 5.17 mmol/L (p < 0.001) and LDL-cholesterol from 2.98 to 3.32 mmol/L (p < 0.001), as well as HDL-c from 1.26 to 1.36 mmol/L (p < 0.001). Conclusion: Both coffee powders increased sirtuin-1 expression, but our results suggest that blended coffee had hypercholesterolemic effects which could increase cardiovascular risk. Therefore, preference should be given to Arabica coffee for the best cardiometabolic benefits of coffee.
Collapse
Affiliation(s)
- Gustavo Henrique Ferreira Gonçalinho
- Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-903, SP, Brazil; (G.H.F.G.); (J.R.d.O.N.); (L.A.M.C.)
- Servico de Prevencao e Reabilitacao Cardiovascular, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil
| | - José Rafael de Oliveira Nascimento
- Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-903, SP, Brazil; (G.H.F.G.); (J.R.d.O.N.); (L.A.M.C.)
- Servico de Prevencao e Reabilitacao Cardiovascular, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil
| | - Bruno Mahler Mioto
- Unidade Clinica de Coronariopatias Cronicas, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil; (B.M.M.); (R.V.A.); (M.A.M.)
| | - Reynaldo Vicente Amato
- Unidade Clinica de Coronariopatias Cronicas, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil; (B.M.M.); (R.V.A.); (M.A.M.)
| | - Miguel Antonio Moretti
- Unidade Clinica de Coronariopatias Cronicas, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil; (B.M.M.); (R.V.A.); (M.A.M.)
| | - Célia Maria Cassaro Strunz
- Laboratorio de Analises Clínicas, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil;
| | - Luiz Antonio Machado César
- Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-903, SP, Brazil; (G.H.F.G.); (J.R.d.O.N.); (L.A.M.C.)
- Unidade Clinica de Coronariopatias Cronicas, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil; (B.M.M.); (R.V.A.); (M.A.M.)
| | - Antonio de Padua Mansur
- Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-903, SP, Brazil; (G.H.F.G.); (J.R.d.O.N.); (L.A.M.C.)
- Servico de Prevencao e Reabilitacao Cardiovascular, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil
| |
Collapse
|
23
|
Artusa V, Ciaramelli C, D’Aloia A, Facchini FA, Gotri N, Bruno A, Costa B, Palmioli A, Airoldi C, Peri F. Green and Roasted Coffee Extracts Inhibit Interferon-β Release in LPS-Stimulated Human Macrophages. Front Pharmacol 2022; 13:806010. [PMID: 35600887 PMCID: PMC9117639 DOI: 10.3389/fphar.2022.806010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/31/2022] [Indexed: 11/19/2022] Open
Abstract
The anti-inflammatory activity of coffee extracts is widely recognized and supported by experimental evidence, in both in vitro and in vivo settings, mainly murine models. Here, we investigated the immunomodulatory properties of coffee extracts from green (GCE) and medium-roasted (RCE) Coffea canephora beans in human macrophages. The biological effect of GCE and RCE was characterized in LPS-stimulated THP-1-derived human macrophages (TDM) as a model of inflammation. Results showed decreased amounts of TNF-α, IL-6 and IL-1β and a strong dose-dependent inhibition of interferon-β (IFN-β) release. Molecular mechanism of IFN-β inhibition was further investigated by immunofluorescence confocal microscopy analysis that showed a diminished nuclear translocation of p-IRF-3, the main transcription factor responsible for IFN-β synthesis. The inhibition of IFN-β release by RCE and GCE was also confirmed in human primary CD14+ monocytes-derived macrophages (MDM). The main component of coffee extracts, 5-O-caffeoylquinic acid (5-CQA) also inhibited IFN-β production, through a mechanism occurring downstream to TLR4. Inhibition of IFN-β release by coffee extracts parallels with the activity of their main phytochemical component, 5-CQA, thus suggesting that this compound is the main responsible for the immunomodulatory effect observed. The application of 5-CQA and coffee derived-phytoextracts to target interferonopathies and inflammation-related diseases could open new pharmacological and nutritional perspectives.
Collapse
Affiliation(s)
- Valentina Artusa
- Dipartimento di Biotecnologie e Bioscienze, Università Degli Studi di Milano-Bicocca, Milano, Italy
| | - Carlotta Ciaramelli
- Dipartimento di Biotecnologie e Bioscienze, Università Degli Studi di Milano-Bicocca, Milano, Italy
- Milan Center for Neurosciences, Università Degli Studi di Milano-Bicocca, Milano, Italy
| | - Alessia D’Aloia
- Dipartimento di Biotecnologie e Bioscienze, Università Degli Studi di Milano-Bicocca, Milano, Italy
| | | | - Nicole Gotri
- Dipartimento di Biotecnologie e Bioscienze, Università Degli Studi di Milano-Bicocca, Milano, Italy
| | - Antonino Bruno
- Laboratory of Immunology and General Pathology, Department of Biotechnologies and Life Science, University of Insubria, Varese, Italy
- Laboratory of Innate Immunity, IRCCS MultiMedica, Polo Scientifico e Tecnologico, Milano, Italy
| | - Barbara Costa
- Dipartimento di Biotecnologie e Bioscienze, Università Degli Studi di Milano-Bicocca, Milano, Italy
| | - Alessandro Palmioli
- Dipartimento di Biotecnologie e Bioscienze, Università Degli Studi di Milano-Bicocca, Milano, Italy
- Milan Center for Neurosciences, Università Degli Studi di Milano-Bicocca, Milano, Italy
| | - Cristina Airoldi
- Dipartimento di Biotecnologie e Bioscienze, Università Degli Studi di Milano-Bicocca, Milano, Italy
- Milan Center for Neurosciences, Università Degli Studi di Milano-Bicocca, Milano, Italy
| | - Francesco Peri
- Dipartimento di Biotecnologie e Bioscienze, Università Degli Studi di Milano-Bicocca, Milano, Italy
- *Correspondence: Francesco Peri,
| |
Collapse
|
24
|
Yildirim S, Demir E, Gok I, Tokusoglu O. Use of electrochemical techniques for determining the effect of brewing techniques (Espresso, Turkish and Filter coffee) and roasting levels on total antioxidant capacity of coffee beverage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sevinc Yildirim
- Department of Gastronomy, Faculty of Applied Sciences İstanbul Okan University Istanbul, 34959 Turkey
| | - Ersin Demir
- Department of Analytical Chemistry, Faculty of Pharmacy Afyonkarahisar Health Sciences University Afyonkarahisar, 03200 Turkey
| | - Ilkay Gok
- Department of Gastronomy, Faculty of Applied Sciences İstanbul Okan University Istanbul, 34959 Turkey
| | - Ozlem Tokusoglu
- Department of Food Engineering Celal Bayar University Manisa Turkey
| |
Collapse
|
25
|
Luo S, Zhang Q, Yang F, Lu J, Peng Z, Pu X, Zhang J, Wang L. Analysis of the Formation of Sauce-Flavored Daqu Using Non-targeted Metabolomics. Front Microbiol 2022; 13:857966. [PMID: 35401474 PMCID: PMC8988067 DOI: 10.3389/fmicb.2022.857966] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
Sauce-flavored Daqu exhibits different colors after being stacked and fermented at high temperatures. Heiqu (black Daqu, BQ) with outstanding functions is difficult to obtain because its formation mechanism is unclear. In this study, we compared the metabolites in different types of Daqu using ultra-high-performance liquid chromatography triple quadrupole mass spectrometry to explore the formation process of BQ. We found that 251 differential metabolites were upregulated in BQ. Metabolic pathway analysis showed that "tyrosine metabolism" was enriched, and most metabolites in this pathway were differential metabolites upregulated in BQ. The tyrosine metabolic pathway is related to enzymatic browning and melanin production. In addition, the high-temperature and high-humidity fermentation environment of sauce-flavored Daqu promoted an increase in the melanoidin content via a typical Maillard reaction; thus, the melanoidin content in BQ was much higher than that in Huangqu and Baiqu. By strengthening the Maillard reaction precursor substances, amino acids, and reducing sugars, the content of Daqu melanoidin increased significantly after simulated fermentation. Therefore, the enzymatic browning product melanin and Maillard reaction product melanoidin are responsible for BQ formation. This study revealed the difference between BQ and other types of Daqu and provides theoretical guidance for controlling the formation of BQ and improving the quality of liquor.
Collapse
Affiliation(s)
- Shuai Luo
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | | | - Fan Yang
- Kweichow Moutai Distillery Co., Ltd., Renhuai, China
| | - Jianjun Lu
- Kweichow Moutai Distillery Co., Ltd., Renhuai, China
| | - Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Xiuxin Pu
- Kweichow Moutai Distillery Co., Ltd., Renhuai, China
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Li Wang
- Kweichow Moutai Group, Renhuai, China
| |
Collapse
|
26
|
Zhang L, Cao J, Yang H, Pham P, Khan U, Brown B, Wang Y, Zieneldien T, Cao C. Commercial and Instant Coffees Effectively Lower Aβ1-40 and Aβ1-42 in N2a/APPswe Cells. Front Nutr 2022; 9:850523. [PMID: 35369094 PMCID: PMC8965317 DOI: 10.3389/fnut.2022.850523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Alzheimer's disease (AD) is a multifactorial neurological disease with neurofibrillary tangles and neuritic plaques as histopathological markers. Due to this, although AD is the leading cause of dementia worldwide, clinical AD dementia cannot be certainly diagnosed until neuropathological post-mortem evaluation. Coffee has been reported to have neurologically protective factors, particularly against AD, but coffee brand and type have not been taken into consideration in previous studies. We examined the discrepancies among popular commercial and instant coffees in limiting the development and progression through Aβ1-40 and Aβ1-42 production, and hypothesized that coffee consumption, regardless of brand or type, is beneficial for stalling the progression and development of Aβ-related AD. Methods Coffee samples from four commercial coffee brands and four instant coffees were purchased or prepared following given instructions and filtered for the study. 5, 2.5, and 1.25% concentrations of each coffee were used to treat N2a/APPswe cell lines. MTT assay was used to assess cell viability for coffee concentrations, as well as pure caffeine concentrations. Sandwich ELISA assay was used to determine Aβ concentration for Aβ1-40 and Aβ1-42 peptides of coffee-treated cells. Results Caffeine concentrations were significantly varied among all coffees (DC vs. MDC, PC, SB, NIN, MIN p < 0.05). There was no correlation between caffeine concentration and cell toxicity among brands and types of coffee, with no toxicity at 0.5 mg/ml caffeine and lower. Most coffees were toxic to N2a/APPswe cells at 5% (p < 0.05), but not at 2.5%. Most coffees at a 2.5% concentration reduced Aβ1-40 and Aβ1-42 production, with comparable results between commercial and instant coffees. Conclusion All coffees tested have beneficial health effects for AD through lowering Aβ1-40 and Aβ1-42 production, with Dunkin' Donuts® medium roast coffee demonstrating the most consistent and optimal cell survival rates and Aβ concentration. On the other hand, Starbucks® coffee exhibited the highest cell toxicity rates among the tested coffees.
Collapse
Affiliation(s)
- Lifang Zhang
- Department of Neurological Rehabilitation, The Affiliated Brain Hospital of Guangzhou Medical University, Guanzhou, China
| | - Jessica Cao
- Department of Kinesiology, Wiess School of Natural Sciences, Rice University, Houston, TX, United States
| | - Haiqiang Yang
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Phillip Pham
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Umer Khan
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Breanna Brown
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Yanhong Wang
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Tarek Zieneldien
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Chuanhai Cao
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
- Department of Neurology, College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
27
|
Chlorogenic acid and caffeine contents and anti-inflammatory and antioxidant activities of green beans of conilon and arabica coffees harvested with different degrees of maturation. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Antioxidant properties and bioaccessibility of coffee beans and their coffee silverskin grown in different countries. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01271-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Rodrigues da Silva M, Sanchez Bragagnolo F, Lajarim Carneiro R, de Oliveira Carvalho Pereira I, Aquino Ribeiro JA, Martins Rodrigues C, Jelley RE, Fedrizzi B, Soleo Funari C. Metabolite characterization of fifteen by-products of the coffee production chain: From farm to factory. Food Chem 2022; 369:130753. [PMID: 34488135 DOI: 10.1016/j.foodchem.2021.130753] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/03/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022]
Abstract
Approximately 11.4 million tonnes of solid by-products and an increased amount of waste water will be generated during the 2020/21 coffee harvest. There are currently no truly value-adding uses for these potentially environmentally threatening species. This work presents the most wide-ranging chemical investigation of coffee by-products collected from farms to factories, including eight never previously investigated. Twenty compounds were found for the first time in coffee by-products including the bioactive neomangiferin, kaempferol-3-O-rutinoside, lup-20(29)-en-3-one and 3,4-dimethoxy cinnamic acid. Five by-products generated inside a factory showed caffeine (53.0-17.0 mg.g-1) and/or chlorogenic acid (72.9-10.1 mg.g-1) content comparable to coffee beans, while mature leaf from plant pruning presented not only high contents of both compounds (16.4 and 38.9 mg.g-1, respectively), but also of mangiferin (19.4 mg.g-1) besides a variety of flavonoids. Such by-products are a source of a range of bioactive compounds and could be explored with potential economic and certainly environmental benefits.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rebecca E Jelley
- The University of Auckland, School of Chemical Sciences, Auckland, New Zealand
| | - Bruno Fedrizzi
- The University of Auckland, School of Chemical Sciences, Auckland, New Zealand; Centre for Green Chemical Sciences, School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Cristiano Soleo Funari
- São Paulo State University (UNESP), Faculty of Agricultural Sciences, Botucatu, SP, Brazil.
| |
Collapse
|
30
|
Determination of caffeine in dietary supplements by miniaturized portable liquid chromatography. J Chromatogr A 2021; 1664:462770. [PMID: 34979283 DOI: 10.1016/j.chroma.2021.462770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 02/05/2023]
Abstract
In this study three miniaturized liquid chromatography (LC) instruments have been evaluated and compared for the analysis of caffeine in dietary supplements, namely a benchtop capillary LC (capLC) system, a benchtop nano LC (nanoLC)system and a portable LC system. Commercial products derived from different sources of caffeine have been analyzed. Under optimized conditions, the methods based on benchtop systems were superior in terms of sensitivity. The limits of detection (LODs) found with the capLC and nanoLC systems were 0.01 and 0.003 µg mL-1, respectively, whereas the LOD obtained with the portable LC instrument was of 1 µg mL-1. The portable LC-based method was superior in terms of simplicity and throughput (total analysis time < 15 min). On the basis of the results obtained, a new method for the rapid measurement of caffeine in dietary supplements by portable miniaturized LC is presented. This method provided good linearity within the 1-20 µg mL-1 interval, and it allowed the quantification of caffeine even in products derived from decaffeinated green coffee extracts. The contents of caffeine found with the proposed portable LC method in the real samples analyzed ranged from 1.38 to 7 mg per gram of product, which were values statistically equivalent to those found with the benchtop capLC and nanoLC methods, being the precision, expressed as relative standard deviation (RDS), of 2 -14% (n = 3). The proposed portable LC based method can be used as a simple and rapid alternative to estimate the quality, effectiveness and safety of dietary supplements, regarding their caffeine content.
Collapse
|
31
|
A Decade of Research on Coffee as an Anticarcinogenic Beverage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4420479. [PMID: 34567408 PMCID: PMC8460369 DOI: 10.1155/2021/4420479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 01/08/2023]
Abstract
Coffee consumption has been investigated as a protective factor against cancer. Coffee is a complex beverage that contains more than 1000 described phytochemicals, which are responsible for its pleasant taste, aroma, and health-promoting properties. Many of these compounds have a potential therapeutic effect due to their antioxidant, anti-inflammatory, antifibrotic, and anticancer properties. The roasting process affects the phytochemical content, and undesirable compounds may be formed. In recent years, there have been contradictory publications regarding the effect of coffee drinking and cancer. Therefore, this study is aimed at evaluating the association of coffee consumption with the development of cancer. In PubMed, until July 2021, the terms “Coffee and cancer” resulted in about 2150 publications, and almost 50% of them have been published in the last 10 years. In general, studies published in recent years have shown negative associations between coffee consumption and the risk or development of different types of cancer, including breast, prostate, oral, oral and pharyngeal, melanoma, skin and skin nonmelanoma, kidney, gastric, colorectal, endometrial, liver, leukemic and hepatocellular carcinoma, brain, and thyroid cancer, among others. In contrast, only a few publications demonstrated a double association between coffee consumption and bladder, pancreatic, and lung cancer. In this review, we summarize the in vitro and in vivo studies that accumulate epidemiological evidence showing a consistent inverse association between coffee consumption and cancer.
Collapse
|
32
|
Araujo MEV, Corrêa PC, Barbosa EG, Martins MA. Determination and modeling of physical and aerodynamic properties of coffee beans (
Coffea arabica
) during the drying process. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Paulo Cesar Corrêa
- Department of Agricultural Engineering Federal University of Viçosa Viçosa Brazil
| | | | | |
Collapse
|
33
|
Barrea L, Pugliese G, Frias-Toral E, El Ghoch M, Castellucci B, Chapela SP, Carignano MDLA, Laudisio D, Savastano S, Colao A, Muscogiuri G. Coffee consumption, health benefits and side effects: a narrative review and update for dietitians and nutritionists. Crit Rev Food Sci Nutr 2021; 63:1238-1261. [PMID: 34455881 DOI: 10.1080/10408398.2021.1963207] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Coffee is one of the most popular beverages worldwide; however, its impact on health outcomes and adverse effects is not fully understood. The current review aims to establish an update about the benefits of coffee consumption on health outcomes highlighting its side effects, and finally coming up with an attempt to provide some recommendations on its doses. A literature review using the PubMed/Medline database was carried out and the data were summarized by applying a narrative approach using the available evidence based on the literature. The main findings were the following: first, coffee may contribute to the prevention of inflammatory and oxidative stress-related diseases, such as obesity, metabolic syndrome and type 2 diabetes; second, coffee consumption seems to be associated with a lower incidence of several types of cancer and with a reduction in the risk of all-cause mortality; finally, the consumption of up to 400 mg/day (1-4 cups per day) of caffeine is safe. However, the time gap between coffee consumption and some drugs should be taken into account in order to avoid interaction. However, most of the data were based on cross-sectional or/and observational studies highlighting an association of coffee intake and health outcomes; thus, randomized controlled studies are needed in order to identify a causality link.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Via Porzio, Centro Direzionale, isola F2, 80143 Napoli, Italy
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Gabriella Pugliese
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Católica Santiago de Guayaquil, Guayaquil, Ecuador
| | - Marwan El Ghoch
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, P.O. Box 11-5020 Riad El Solh, Beirut 11072809, Lebanon
| | - Bianca Castellucci
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Sebastián Pablo Chapela
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- Hospital Británico de Buenos Aires, Departamento de Terapia Intensiva, Buenos Aires, Argentina
| | | | - Daniela Laudisio
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Silvia Savastano
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Annamaria Colao
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | - Giovanna Muscogiuri
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| |
Collapse
|
34
|
Mikołajczyk-Stecyna J, Malinowska AM, Mlodzik-Czyzewska M, Chmurzynska A. Coffee and tea choices and intake patterns in 20-to-40 year old adults. Food Qual Prefer 2021. [DOI: 10.1016/j.foodqual.2020.104115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Czarniecka-Skubina E, Pielak M, Sałek P, Korzeniowska-Ginter R, Owczarek T. Consumer Choices and Habits Related to Coffee Consumption by Poles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18083948. [PMID: 33918643 PMCID: PMC8069606 DOI: 10.3390/ijerph18083948] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 11/27/2022]
Abstract
Coffee is one of the most popular drinks consumed in the world, also in Poland. In the literature, much attention is paid to the influence of coffee on human health, especially daily intake of caffeine, and also purchasing consumer behavior. There is a lack of research devoted to consumer choices and habits in relation to coffee consumption and brewing method. Therefore, the aim of this study is to describe the characteristics of coffee consumers and present their segmentation based on consumer choices and habits towards coffee consumption. The study was performed using the computer-assisted web interviewing (CAWI) method on a group of 1500 adults respondents in Poland reporting the consumption of coffee. We collected information about consumer choices and habits related to coffee consumption, including brewing method, place of consuming coffee, and factors determining coffee choices. Using cluster analysis, we identified three main groups of coffee consumers. There are “Neutral coffee drinkers”, “Ad hoc coffee drinkers”, and “Non-specific coffee drinkers”. The respondents in the study are not coffee gourmets; they like and consume coffee, but these are often changing choices. To conclude, it can be stated that the Polish coffee consumer prefers conventional methods of brewing coffee (like a “traditionalist”) but is open to novelties and new sensory experiences. Based on study results it is possible to know the coffee drinking habits in Poland.
Collapse
Affiliation(s)
- Ewa Czarniecka-Skubina
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Str. Nowoursynowska 166, 02-787 Warsaw, Poland; (M.P.); (P.S.)
- Correspondence: ; Tel.: +48-(22)-593-7063
| | - Marlena Pielak
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Str. Nowoursynowska 166, 02-787 Warsaw, Poland; (M.P.); (P.S.)
| | - Piotr Sałek
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Str. Nowoursynowska 166, 02-787 Warsaw, Poland; (M.P.); (P.S.)
| | | | - Tomasz Owczarek
- Department of Management and Economics, Gdynia Maritime University, Str. Morska 81-87, 81-225 Gdynia, Poland;
| |
Collapse
|
36
|
Coffee beyond the cup: analytical techniques used in chemical composition research—a review. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-020-03679-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Bobková A, Jakabová S, Belej Ľ, Jurčaga L, Čapla J, Bobko M, Demianová A. Analysis of caffeine and chlorogenic acids content regarding the preparation method of coffee beverage. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2021. [DOI: 10.1515/ijfe-2020-0143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This research was focused on the evaluation of selected parameters of coffee quality, regarding the beverage preparation method, using high-performance liquid chromatography. Samples of Coffea arabica from South America were analyzed. For the preparation of the final beverage were used filtration and moka methods. All samples roasted at medium dark roasting level Full City ++, contained less than 5% of moisture. The values of pH and dry matter content did not show a significant difference. The lowest content of chlorogenic acid reached value (1.41 g·100 g−1) prepared from filtration and 1.49 g·100 g−1 prepared from moka method. The highest content of chlorogenic acid ranged from 2.94 g. 100 g−1 filtration method and 3.36 g. 100 g−1 moka. Similarly, caffeine content, showed lower values using the filtration method. Values ranged from 1.37 to 1.57% (filtration) and from 1.54 to 1.78% (moka). However, PCA didn’t show a significant difference.
Collapse
Affiliation(s)
- Alica Bobková
- Department of Food Hygiene and Safety , The Faculty of Biotechnology and Food Sciences, The Slovak University of Agriculture in Nitra , Tr. A. Hlinku 2, 94976 Nitra , Slovakia
| | - Silvia Jakabová
- Department of Food Hygiene and Safety , The Faculty of Biotechnology and Food Sciences, The Slovak University of Agriculture in Nitra , Tr. A. Hlinku 2, 94976 Nitra , Slovakia
| | - Ľubomír Belej
- Department of Food Hygiene and Safety , The Faculty of Biotechnology and Food Sciences, The Slovak University of Agriculture in Nitra , Tr. A. Hlinku 2, 94976 Nitra , Slovakia
| | - Lukáš Jurčaga
- Department of Technology and the Quality of Animal Products , The Faculty of Biotechnology and Food Sciences, The Slovak University of Agriculture in Nitra , Tr. A. Hlinku 2, 94976 Nitra , Slovakia
| | - Jozef Čapla
- Department of Food Hygiene and Safety , The Faculty of Biotechnology and Food Sciences, The Slovak University of Agriculture in Nitra , Tr. A. Hlinku 2, 94976 Nitra , Slovakia
| | - Marek Bobko
- Department of Technology and the Quality of Animal Products , The Faculty of Biotechnology and Food Sciences, The Slovak University of Agriculture in Nitra , Tr. A. Hlinku 2, 94976 Nitra , Slovakia
| | - Alžbeta Demianová
- Department of Food Hygiene and Safety , The Faculty of Biotechnology and Food Sciences, The Slovak University of Agriculture in Nitra , Tr. A. Hlinku 2, 94976 Nitra , Slovakia
| |
Collapse
|
38
|
Neuroprotective Effects of Coffee Bioactive Compounds: A Review. Int J Mol Sci 2020; 22:ijms22010107. [PMID: 33374338 PMCID: PMC7795778 DOI: 10.3390/ijms22010107] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Coffee is one of the most widely consumed beverages worldwide. It is usually identified as a stimulant because of a high content of caffeine. However, caffeine is not the only coffee bioactive component. The coffee beverage is in fact a mixture of a number of bioactive compounds such as polyphenols, especially chlorogenic acids (in green beans) and caffeic acid (in roasted coffee beans), alkaloids (caffeine and trigonelline), and the diterpenes (cafestol and kahweol). Extensive research shows that coffee consumption appears to have beneficial effects on human health. Regular coffee intake may protect from many chronic disorders, including cardiovascular disease, type 2 diabetes, obesity, and some types of cancer. Importantly, coffee consumption seems to be also correlated with a decreased risk of developing some neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, and dementia. Regular coffee intake may also reduce the risk of stroke. The mechanism underlying these effects is, however, still poorly understood. This review summarizes the current knowledge on the neuroprotective potential of the main bioactive coffee components, i.e., caffeine, chlorogenic acid, caffeic acid, trigonelline, kahweol, and cafestol. Data from both in vitro and in vivo preclinical experiments, including their potential therapeutic applications, are reviewed and discussed. Epidemiological studies and clinical reports on this matter are also described. Moreover, potential molecular mechanism(s) by which coffee bioactive components may provide neuroprotection are reviewed.
Collapse
|
39
|
Montenegro J, Dos Santos LS, de Souza RGG, Lima LGB, Mattos DS, Viana BPPB, da Fonseca Bastos ACS, Muzzi L, Conte-Júnior CA, Gimba ERP, Freitas-Silva O, Teodoro AJ. Bioactive compounds, antioxidant activity and antiproliferative effects in prostate cancer cells of green and roasted coffee extracts obtained by microwave-assisted extraction (MAE). Food Res Int 2020; 140:110014. [PMID: 33648246 DOI: 10.1016/j.foodres.2020.110014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022]
Abstract
Coffee consumption has been investigated as a protective factor against prostate cancer. Coffee may be related to prostate cancer risk reduction due to its phytochemical compounds, such as caffeine, chlorogenic acids, and trigonelline. The roasting process affects the content of the phytochemicals and undesired compounds can be formed. Microwave-assisted extraction is an alternative to conventional extraction techniques since it preserves more bioactive compounds. Therefore, this study aimed to evaluate the phytochemical composition and the putative preventive effects in prostate cancer development of coffee beans submitted to four different coffee-roasting degrees extracted using microwave-assisted extraction. Coffea arabica green beans (1) were roasted into light (2), medium (3) and dark (4) and these four coffee samples were submitted to microwave-assisted extraction. The antioxidant capacity of these samples was evaluated by five different methods. Caffeine, chlorogenic acid and caffeic acid were measured through HPLC. Samples were tested against PC-3 and DU-145 metastatic prostate cancer cell lines regarding their effects on cell viability, cell cycle progression and apoptotic cell death. We found that green and light roasted coffee extracts had the highest antioxidant activity. Caffeine content was not affected by roasting, chlorogenic acid was degraded due to the temperature, and caffeic acid increased in light roasted and decreased in medium and dark roasted. Green and light roasted coffee extracts promoted higher inhibition of cell viability, caused greater cell cycle arrest in S and G2/M and induced apoptosis more compared to medium and dark roasted coffee extracts and the control samples. Coffee extracts were more effective against DU-145 than in PC-3 cells. Our data provide initial evidence that among the four tested samples, the consumption of green and light coffee extracts contributes to inhibit prostate cancer tumor progression features, potentially preventing aspects related to advanced prostate cancer subtypes.
Collapse
Affiliation(s)
- Júlia Montenegro
- Laboratório de Alimentos Funcionais, Programa de Alimentos e Nutrição, Universidade Federal do Estado do Rio de Janeiro, UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Lauriza Silva Dos Santos
- Laboratório de Alimentos Funcionais, Programa de Alimentos e Nutrição, Universidade Federal do Estado do Rio de Janeiro, UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Gonçalves Gusmão de Souza
- Laboratório de Alimentos Funcionais, Programa de Alimentos e Nutrição, Universidade Federal do Estado do Rio de Janeiro, UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Larissa Gabrielly Barbosa Lima
- Laboratório de Alimentos Funcionais, Programa de Alimentos e Nutrição, Universidade Federal do Estado do Rio de Janeiro, UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Daniella Santos Mattos
- Programa de Oncobiologia Celular e Molecular, Instituto Nacional do Câncer, INCa, Rio de Janeiro, RJ, Brazil
| | | | | | - Leda Muzzi
- Departamento de Tecnologia de Alimentos, Universidade Federal Fluminense, UFF, Niterói, RJ, Brazil
| | - Carlos Adam Conte-Júnior
- Departamento de Tecnologia de Alimentos, Universidade Federal Fluminense, UFF, Niterói, RJ, Brazil
| | - Etel Rodrigues Pereira Gimba
- Programa de Oncobiologia Celular e Molecular, Instituto Nacional do Câncer, INCa, Rio de Janeiro, RJ, Brazil; Universidade Federal Fluminense, Departamento de Ciências da Natureza, Rio das Ostras, RJ, Brazil
| | - Otniel Freitas-Silva
- Laboratório de Alimentos Funcionais, Programa de Alimentos e Nutrição, Universidade Federal do Estado do Rio de Janeiro, UNIRIO, Rio de Janeiro, RJ, Brazil; Empresa Brasileira de Pesquisa Agropecuária, Embrapa Agroindústria de Alimentos, Rio de Janeiro, RJ, Brazil
| | - Anderson Junger Teodoro
- Laboratório de Alimentos Funcionais, Programa de Alimentos e Nutrição, Universidade Federal do Estado do Rio de Janeiro, UNIRIO, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
40
|
Pedan V, Stamm E, Do T, Holinger M, Reich E. HPTLC fingerprint profile analysis of coffee polyphenols during different roast trials. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Salting-out Assisted Liquid–Liquid Extraction for Analysis of Caffeine and Nicotinic Acid in Coffee by HPLC–UV/Vis Detector. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00148-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Effect of roasting degree of coffee beans on sensory evaluation: Research from the perspective of major chemical ingredients. Food Chem 2020; 331:127329. [DOI: 10.1016/j.foodchem.2020.127329] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/24/2020] [Accepted: 06/10/2020] [Indexed: 11/23/2022]
|
43
|
Ciaramelli C, Palmioli A, De Luigi A, Colombo L, Sala G, Salmona M, Airoldi C. NMR-based Lavado cocoa chemical characterization and comparison with fermented cocoa varieties: Insights on cocoa's anti-amyloidogenic activity. Food Chem 2020; 341:128249. [PMID: 33038804 DOI: 10.1016/j.foodchem.2020.128249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/12/2020] [Accepted: 09/26/2020] [Indexed: 01/10/2023]
Abstract
The metabolic profile of Lavado cocoa was characterized for the first time by NMR spectroscopy, then compared with the profiles of fermented and processed varieties, Natural and commercial cocoa. The significant difference in the contents of theobromine and flavanols prompted us to examine the cocoa varieties to seek correlations between these metabolite concentrations and the anti-amyloidogenic activity reported for cocoa in the literature. We combined NMR spectroscopy, preparative reversed-phase (RP) chromatography, atomic force microscopy, in vitro biochemical and cell assays, to investigate and compare the anti-amyloidogenic properties of extracts and fractions enriched in different metabolite classes. Lavado variety was the most active and the catechins and theobromine were the chemical components of cocoa hindering Aβ peptide on-pathway aggregation and toxicity in a human neuroblastoma SH-SY5Y cell line.
Collapse
Affiliation(s)
- Carlotta Ciaramelli
- BioOrgNMR Lab, Department of Biotechnologies and Biosciences, University of Milano-Bicocca, P.zza della Scienza 2, 20126 Milan, Italy; Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, P.zza dell'Ateneo Nuovo 1, 20126 Milano Italy.
| | - Alessandro Palmioli
- BioOrgNMR Lab, Department of Biotechnologies and Biosciences, University of Milano-Bicocca, P.zza della Scienza 2, 20126 Milan, Italy; Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, P.zza dell'Ateneo Nuovo 1, 20126 Milano Italy.
| | - Ada De Luigi
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Via Mario Negri 2, 20156 Milano, Italy.
| | - Laura Colombo
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Via Mario Negri 2, 20156 Milano, Italy.
| | - Gessica Sala
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, P.zza dell'Ateneo Nuovo 1, 20126 Milano Italy.
| | - Mario Salmona
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Via Mario Negri 2, 20156 Milano, Italy.
| | - Cristina Airoldi
- BioOrgNMR Lab, Department of Biotechnologies and Biosciences, University of Milano-Bicocca, P.zza della Scienza 2, 20126 Milan, Italy; Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, P.zza dell'Ateneo Nuovo 1, 20126 Milano Italy.
| |
Collapse
|
44
|
Influence of Altitude on Caffeine, 5-Caffeoylquinic Acid, and Nicotinic Acid Contents of Arabica Coffee Varieties. J CHEM-NY 2020. [DOI: 10.1155/2020/3904761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The influence of altitude on caffeine, 5-caffeoylquinic acid (5-CQA), and nicotinic acid contents of Arabica coffee varieties grown in Southwest Ethiopia was investigated. High-performance liquid chromatography with diode array detector (HPLC-DAD) was used for the determination of the target analytes. Coffee samples were collected from four coffee varieties, named as 74112, 7454, 7440, and 74110, which are cultivated in high, mid, and low altitudes in the study area. The findings of the study showed that the contents of caffeine and 5-CQA in both raw and roasted coffee beans decrease as the growing altitude increases and, thus, for all varieties, their highest concentrations were recorded in lowland coffee beans. Nevertheless, the contents of nicotinic acid increase as the altitude rises and, thus, the highest nicotinic acid content was recorded in highland coffee samples. Besides, after roasting, the contents of caffeine were increased, whereas the contents of 5-CQA were lowered, indicating the possibility of its degradation during the roasting process. Both green and roasted coffee beans also contained relatively higher concentrations of nicotinic acids. Other than the growing altitudes, the contents of caffeine, 5-CQA, and nicotinic acid in coffee beans also vary with coffee varieties. Therefore, coffee varieties that are cultivated at various altitudes may have different biochemical compositions such as caffeine, CGAs, and nicotinic acid that could greatly influence the flavor, aroma, and stimulating attributes of coffee cup quality as well as dietary benefits.
Collapse
|
45
|
Vilas-Boas AA, Oliveira A, Jesus D, Rodrigues C, Figueira C, Gomes A, Pintado M. Chlorogenic acids composition and the impact of in vitro gastrointestinal digestion on espresso coffee from single-dose capsule. Food Res Int 2020; 134:109223. [DOI: 10.1016/j.foodres.2020.109223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/18/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022]
|
46
|
Isac-Torrente L, Fernandez-Gomez B, Miguel M. Coffee capsules: implications in antioxidant activity, bioactive compounds, and aluminum content. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03577-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Panzeri D, Guzzetti L, Sacco G, Tedeschi G, Nonnis S, Airoldi C, Labra M, Fusi P, Forcella M, Regonesi ME. Effectiveness of Vigna unguiculata seed extracts in preventing colorectal cancer. Food Funct 2020; 11:5853-5865. [PMID: 32589172 DOI: 10.1039/d0fo00913j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is one of the most common types of cancer, especially in Western countries, and its incidence rate is increasing every year. In this study, for the first time Vigna unguiculata L. Walp. (cowpea) water boiled seed extracts were found to reduce the viability of different colorectal cancer (CRC) cell lines, such as E705, DiFi and SW480 and the proliferation of Caco-2 line too, without affecting CCD841 healthy cell line. Furthermore, the extracts showed the ability to reduce the level of Epidermal Growth Factor Receptor (EGFR) phosphorylation in E705, DiFi and SW480 cell lines and to lower the EC50 of a CRC common drug, cetuximab, on E705 and DiFi lines from 161.7 ng mL-1 to 0.06 ng mL-1 and from 49.5 ng mL-1 to 0.2 ng mL-1 respectively. The extract was characterized in its protein and metabolite profiles by tandem mass spectrometry and 1H-NMR analyses. A Bowman-Birk protease inhibitor was identified within the protein fraction and was supposed to be the main active component. These findings confirm the importance of a legume-based diet to prevent the outbreak of many CRC and to reduce the amount of drug administered during a therapeutic cycle.
Collapse
Affiliation(s)
- Davide Panzeri
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Saputri M, Lioe HN, Wijaya CH. PEMETAAN KARAKTERISTIK KIMIA BIJI KOPI ARABIKA GAYO DAN ROBUSTA GAYO. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2020. [DOI: 10.6066/jtip.2020.31.1.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
49
|
Palmioli A, Alberici D, Ciaramelli C, Airoldi C. Metabolomic profiling of beers: Combining 1H NMR spectroscopy and chemometric approaches to discriminate craft and industrial products. Food Chem 2020; 327:127025. [PMID: 32447135 DOI: 10.1016/j.foodchem.2020.127025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/10/2020] [Accepted: 05/07/2020] [Indexed: 01/12/2023]
Abstract
The authentication and traceability of craft beers is an important issue for both beer consumers and producers. Reliable analytical methods able to identify and discriminate products are needed to protect the craft brew market against fraud and counterfeit. Here, 1H NMR analysis of 31 beer samples, differing for beer style and brewing method (craft or industrial) was combined with multivariate statistical analysis, following both an untargeted and a targeted approach. NMR-based analysis of beer samples was sped developing a specific protocol enabling the automatic identification and quantification of metabolites in approximately thirty seconds per spectrum. A clear discrimination was achieved by exploiting 1H NMR analysis and multivariate chemometric methods and the targeted approach identified the metabolites responsible for the segregation. Overall, this study reports an analytical approach addressing beer traceability and is the starting point for the development of a standardized protocol for the discrimination of industrial and craft beers.
Collapse
Affiliation(s)
- Alessandro Palmioli
- BioOrgNMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza 2, 20126 Milan, Italy.
| | - Diego Alberici
- BioOrgNMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza 2, 20126 Milan, Italy
| | - Carlotta Ciaramelli
- BioOrgNMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza 2, 20126 Milan, Italy
| | - Cristina Airoldi
- BioOrgNMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza 2, 20126 Milan, Italy.
| |
Collapse
|
50
|
Lyu Y, Gu X, Mao Y. Green Composite of Instant Coffee and Poly(vinyl alcohol): An Excellent Transparent UV-Shielding Material with Superior Thermal-Oxidative Stability. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yadong Lyu
- Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Xiaohong Gu
- Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Yimin Mao
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|