1
|
Sui M, Wang L, Xue R, Xiang J, Wang Y, Yuan Y, Pu Q, Fang X, Liu B, Hu X, Liu X, Huang Y. The aroma formation from fresh tea leaves of Longjing 43 to finished Enshi Yulu tea at an industrial scale. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:244-254. [PMID: 39177297 DOI: 10.1002/jsfa.13823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Enshi Yulu tea (ESYL) is the most representative of steamed green tea in China, but its aroma formation in processing is unclear. Thus, the ESYL volatiles during the whole industrial processing were investigated using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. RESULTS A total of 134 volatiles were identified. Among these, 31 differential volatiles [P < 0.05 and variable importance in projection (VIP) > 1] and 25 key volatiles [relative odor activity value (rOAV) and/or the ratio of each rOAV to the maximum rOAV (ROAV) > 1.0] were screened out, wherein β-ionone and nonanal were the most key odorants. Besides, the sensory evaluation combined with multivariate statistical analysis of volatiles pinpointed spreading, fixation, first drying, and second drying as the key processing steps that have a pronounced influence on the aroma quality of ESYL. Furthermore, the oxidative degradation of unsaturated fatty acids, synthesis of monoterpenes, and degradation of carotenoids were the main metabolic pathway for the formation of key odorants. CONCLUSION The study provides comprehensive insights into the volatile characteristics during the industrial processing of ESYL and promote our understanding of the aroma formation in steamed green teas. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengyuan Sui
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Tea Science Department of College of Horticulture and Forestry Sciences of Huazhong Agricultural University, Wuhan, China
| | - Lili Wang
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Rong Xue
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Tea Science Department of College of Horticulture and Forestry Sciences of Huazhong Agricultural University, Wuhan, China
| | - Jun Xiang
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, China
| | - Yufei Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Tea Science Department of College of Horticulture and Forestry Sciences of Huazhong Agricultural University, Wuhan, China
| | - Yuan Yuan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Tea Science Department of College of Horticulture and Forestry Sciences of Huazhong Agricultural University, Wuhan, China
| | - Qian Pu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Tea Science Department of College of Horticulture and Forestry Sciences of Huazhong Agricultural University, Wuhan, China
| | - Xin Fang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Tea Science Department of College of Horticulture and Forestry Sciences of Huazhong Agricultural University, Wuhan, China
| | - Bin Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Tea Science Department of College of Horticulture and Forestry Sciences of Huazhong Agricultural University, Wuhan, China
| | - Xingming Hu
- Agriculture and Rural Bureau of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Xiaoying Liu
- Enshi City Huazhishan Ecological Agriculture Co., Ltd in Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Youyi Huang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Tea Science Department of College of Horticulture and Forestry Sciences of Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Xu H, Wu M, Wei W, Ren W, Zheng Z. Chrysanthemum morifolium Ramat. as a traditional tea material: Unraveling the influence of kill-green process on drying characteristics, phytochemical compounds, and volatile profile. Food Res Int 2025; 200:115478. [PMID: 39779126 DOI: 10.1016/j.foodres.2024.115478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/28/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
The dried capitulum of chrysanthemums is a traditional material in scented tea, and the kill-green process is a critical step in determining their quality. However, the changes in the physicochemical properties during kill-green and the mechanisms by which these changes affect drying characteristics, metabolic components, and aroma profiles remain unclear. Therefore, this study investigated the changes in water status, polyphenol oxidase and peroxidase activities, and microstructure during high-humidity air impingement kill-green (HHAIK) and steam kill-green (SK), and their effects on drying behavior, color, phytochemicals, and volatile profile of dried chrysanthemums. Results showed that the kill-green process increased the freedom degree of immobile water, reduced the relative content of free water, and induced microstructure alterations, thus enhancing the water diffusion and shortening the subsequent drying time by up to 46.15 %. Compared to SK, HHAIK more rapidly inactivated PPO and POD, causing an improved color profile of dried samples. Dried samples treated with HHAIK for 60 s exhibited higher retention of 9 individual phenolics, total sugar, amino acids, and volatile compounds, thus resulting in higher sensorial acceptance than those treated with SK for 60 s. This study offers theoretical insights and technical support for the future development of high-quality chrysanthemum products.
Collapse
Affiliation(s)
- Huihuang Xu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Min Wu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Wenguang Wei
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Weike Ren
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Zhian Zheng
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| |
Collapse
|
3
|
Gui A, Ye F, Xue J, Wang S, Liu P, Wang X, Teng J, Feng L, Xiang J, Zheng P, Gao S. Analysis of the Changes in Volatile Components During the Processing of Enshi Yulu Tea. Foods 2024; 13:3968. [PMID: 39683040 DOI: 10.3390/foods13233968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/18/2024] Open
Abstract
Volatile constituents are critical to the flavor of tea, but the changes in Enshi Yulu tea during the processing have not been clearly understood. Using headspace solid phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME/GC-MS) techniques, we analyze the aroma components of Enshi Yulu tea and changes in them during the processing stages. In total, 242 volatile compounds were identified. From fresh leaves to the shaping process in tea production, there are significant decreases in overall aroma substances, followed by increases after drying. Linalool is the dominant aroma component in Enshi Yulu tea, with a proportion of 12.35%, followed by compounds such as geraniol (7.41%), 2,6-dimethyl-5-heptene (6.93%), phenylmethanol (5.98%), isobutyl acetate (4.16%), hexan-1-ol (3.95%), 2-phenylacetaldehyde (3.80%), and oct-1-ene-3-ol (3.34%). The number of differential volatile components varied by production stage, with 20 up- and 139 down-regulated after steaming, 24 down-regulated after rolling, 60 up- and 51 down-regulated after shaping, and 68 up- and 13 down-regulated after drying. Most variation in expression occurred because of steaming, and the least during the rolling stage. PLS-DA analysis revealed significant differences in aroma components throughout processing and the identification of 100 compounds with higher relative contents, with five distinct change trends. Phenylmethanol, phenylacetaldehyde, (2E)-non-2-enal, oct-1-ene-3-ol, and cis-3-hexenyl hexanoate could exert a profound influence on the overall aroma quality of Enshi Yulu tea during processing. The results offer a scientific foundation and valuable insights for understanding the volatile composition of Enshi Yulu tea and its changes during the processing.
Collapse
Affiliation(s)
- Anhui Gui
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Fei Ye
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jinjin Xue
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shengpeng Wang
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Panpan Liu
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xueping Wang
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jing Teng
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Lin Feng
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jun Xiang
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445002, China
| | - Pengcheng Zheng
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shiwei Gao
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
4
|
Wang H, Chen L, Xu A, Zhao Y, Wang Y, Liu Z, Xu P. Thermochemical reactions in tea drying shape the flavor of tea: A review. Food Res Int 2024; 197:115188. [PMID: 39593398 DOI: 10.1016/j.foodres.2024.115188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/28/2024]
Abstract
Drying is the final and essential step in tea processing. It contributes a lot to the formation of tea flavor quality by a series of complicated and violent thermochemical reactions, such as degradation reaction, Maillard reaction, redox reaction, isomerization reaction, etc. However, the mechanism of specific thermochemical reaction is unclear. Here, by comprehensively summarizing the thermochemical reactions of the main chemicals, including polyphenols, lipids, amino acids and carbohydrates, etc., during tea drying with particularly focus on their contributions of thermal drying on the flavor including color, aroma, and taste, we found that thermal degradation is the dominant thermochemical reaction, directly affecting the taste and color of tea, and thermal oxidation of lipids and Maillard reaction mainly contribute to form tea aroma. More interesting was that high temperature enhanced nucleophilicity of phenolics, allowing them to easily trap carbonyl substances to form small molecular adducts (i.e. EPSFs) or polymers, which could interfere other thermochemical reactions, and then alter the flavor quality of tea. Over all, this review provides updated scientific evidence for in-depth exploration of thermochemical reactions towards tea precision processing.
Collapse
Affiliation(s)
- Huajie Wang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Lin Chen
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Anan Xu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yueling Zhao
- Department of Tea Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuefei Wang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Zhonghua Liu
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Shen S, Fu J, Fan R, Zhang J, Sun H, Wang Y, Ning J, Yue P, Zhang L, Gao X. Changes in the key odorants of loose-leaf dark tea fermented by Eurotium cristatum during aging for one year: Focus on the stale aroma. Food Res Int 2024; 197:115244. [PMID: 39593326 DOI: 10.1016/j.foodres.2024.115244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/23/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
Aging process has been recognized as one of the means to improve the quality of microbial fermented teas. The evolution of the characteristic stale aroma, a key odorant of microbial fermented tea, throughout the aging process remains unknown. To investigate the changes in key odorants of the fermented tea during aging, the loose-leaf dark tea (LDT) used in this study was prepared by solid-state fermentation using Eurotium cristatum and was aged for 0, 3, 6, 9, 12 months, producing varied aged LDT samples. Quantitative descriptive analysis (QDA) showed that the intensity of stale aroma in the LDT increased gradually during aging for one year. The volatile compounds from different aged samples were extracted using solvent-assisted flavor evaporation (SAFE) combined with liquid-liquid extraction, and ninety-six aroma-active compounds were further identified by gas chromatography-mass spectrometry/olfactometry (GC - MS/O) combined with modified detection frequency (MF) values. Among them, alcohols and esters showed an increasing trend, while nitrogenous compounds showed a decreasing trend during aging. The stale aroma attribute of the LDT were closely associated with several key odorants produced from the biotransformation by Eurotium cristatum, including cedrol, β-ionone, 1-octen-3-one, 1-octen-3-ol, and 4-vinylguaiacol, their aroma contributions were confirmed by further addition tests. These findings provide a theoretical basis for the future optimization of the aging process of fermented tea.
Collapse
Affiliation(s)
- Shanshan Shen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jialin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ranqin Fan
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Haoran Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yu Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Pengxiang Yue
- Fujian Provincial Key Laboratory of Plant Extraction Technology for Beverages, Zhangzhou, 363005, Fujian, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xueling Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
6
|
Hua J, Zhu X, Ouyang W, Yu Y, Chen M, Wang J, Yuan H, Jiang Y. Non-target and target quantitative metabolomics with quantitative aroma evaluation reveal the influence mechanism of withering light quality on tea aroma and volatile metabolites evolution. Food Res Int 2024; 192:114773. [PMID: 39147497 DOI: 10.1016/j.foodres.2024.114773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024]
Abstract
Withering is the first and key process that influences tea quality, with light quality being a key regulatory factor. However, effects of withering light quality (WLQ) on transformation and formation pathways of tea aroma and volatile metabolites (VMs) remain unclear. In the present study, four WLQs were set up to investigate their effects on tea aroma and VMs. The results showed that blue and red light reduced the grassy aroma and improved the floral and fruity aroma of tea. Based on GC-MS/MS, 83 VMs were detected. Through VIP, significant differences, and OAV analysis, 13 key differential VMs were screened to characterize the differential impacts of WLQ on tea aroma. Further analysis of the evolution and metabolic pathways revealed that glycoside metabolism was the key pathway regulating tea aroma through WLQ. Blue light withering significantly enhanced glycosides hydrolysis and amino acids deamination, which was beneficial for the enrichment of floral and fruity VMs, such as geraniol, citral, methyl salicylate, 2-methyl-butanal, and benzeneacetaldehyde, as well as the transformation of grassy VMs, such as octanal, naphthalene, and cis-3-hexenyl isovalerate, resulting in the formation of tea floral and fruity aroma. The results provide theoretical basis and technical support for the targeted processing of high-quality tea.
Collapse
Affiliation(s)
- Jinjie Hua
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Xizhe Zhu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Wen Ouyang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Yaya Yu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Ming Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Jinjin Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Haibo Yuan
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China.
| | - Yongwen Jiang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China.
| |
Collapse
|
7
|
Sun L, Wen S, Zhang S, Li Q, Cao J, Chen R, Chen Z, Zhang Z, Li Z, Li Q, Lai Z, Sun S. Study on flavor quality formation in green and yellow tea processing by means of UPLC-MS approach. Food Chem X 2024; 22:101342. [PMID: 38665631 PMCID: PMC11043817 DOI: 10.1016/j.fochx.2024.101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Yellow tea (YT) has an additional process of yellowing before or after rolling than green tea (GT), making YT sweeter. We analyzed the variations of composition and taste throughout the withering, fixing and rolling steps using UPLC-MS/MS and sensory evaluation, and investigated the influence of various yellowing times on flavor profile of YT. 532 non-volatile metabolites were identified. Withering and fixing were the important processes to form the taste quality of GT. Withering, fixing and yellowing were important processes to form flavor profile of YT. Withering mainly regulated bitterness and astringency, and fixing mainly regulated bitterness, astringency and sweetness of YT and GT. Yellowing mainly regulated sweetness of YT. Trans-4-hydroxy-L-proline and glutathione reduced form as the key characteristic components of YT, increased significantly during yellowing mainly through Arginine and proline metabolism and ABC transporters. The paper offers a systematic insight into intrinsic mechanisms of flavor formation in YT and GT.
Collapse
Affiliation(s)
- Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Shuai Wen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Suwan Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
- College of Food Science/Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, China
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Zhongzheng Chen
- College of Food Science/Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, China
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Zhigang Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Zhaoxiang Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| |
Collapse
|
8
|
Wu L, Wang Y, Yang L, Jian M, Ding Y. Thermal decomposition study of 4-methyloxybenzyl-glycoside by TG/DTA and on-line pyrolysis-photoionization mass spectrometry. Sci Rep 2024; 14:11875. [PMID: 38789565 PMCID: PMC11126732 DOI: 10.1038/s41598-024-62734-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
A flavor precursor of 4-methyloxybenzyl-2, 3, 4, 6-tetra-O-acetyl-β-D-glucopyranoside (MBGL) was synthesized via a modified Koenigs-Knorr reaction. The thermal decomposition behaviour and pyrolysis intermediate products of the glycoside were studied by simultaneous thermogravimetric/differential thermal analysis (TG/DTA) and synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (PIMS). TG/DTA results showed that the largest mass loss rate appeared at a Tp of 246.7 °C. PIMS was used to identify the pyrolysis products of MBGL at 300 °C, 500 °C and 700 °C, respectively. The experimental apparatus had some advantages in real-time analysis and fewer secondary reactions. Some important pyrolysis intermediates, such as the ions of the 4-methyloxybenzyl group at m/z 121 and the glycone moiety at m/z 347, were detected by PIMS. The results indicate that the MBGL was probably showed a different pyrolysis way compared with the other glycosides. This work reports a useful application of synchrotron VUV PIMS in a thermal decomposition study of glycoside flavor precursors.
Collapse
Affiliation(s)
- Lei Wu
- Flavour and Fragrance Department, Sichuan Sanlian New Materials Co. Ltd., Chengdu, 610101, China
| | - Yiming Wang
- Flavour and Fragrance Department, Sichuan Sanlian New Materials Co. Ltd., Chengdu, 610101, China
| | - Liutianyi Yang
- Flavour and Fragrance Department, Sichuan Sanlian New Materials Co. Ltd., Chengdu, 610101, China
| | - Meiling Jian
- Flavour and Fragrance Department, Sichuan Sanlian New Materials Co. Ltd., Chengdu, 610101, China
| | - Yu Ding
- Flavour and Fragrance Department, Sichuan Sanlian New Materials Co. Ltd., Chengdu, 610101, China.
- Harmful Components and Tar Reduction in Cigarette Sichuan Key Laboratory, Chengdu, 610066, China.
| |
Collapse
|
9
|
Zhang M, Zhang L, Zhou C, Xu K, Chen G, Huang L, Lai Z, Guo Y. Metabolite Profiling Reveals the Dynamic Changes in Non-Volatiles and Volatiles during the Enzymatic-Catalyzed Processing of Aijiao Oolong Tea. PLANTS (BASEL, SWITZERLAND) 2024; 13:1249. [PMID: 38732464 PMCID: PMC11085110 DOI: 10.3390/plants13091249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
The enzymatic reaction stage (ECS) of oolong tea processing plays an important role in the formation of the flavor quality of the oolong tea. To investigate the dynamic changes in the volatile and non-volatile components in the leaves of oolong tea during the ECS, metabolomic studies were carried out using the leaf samples collected at different stages of the ECS of Aijiao oolong tea. Out of the identified 306 non-volatile metabolites and 85 volatile metabolites, 159 non-volatile metabolites and 42 volatile metabolites were screened out as key differential metabolites for dynamic changes during the ECS. A multivariate statistical analysis on the key differential metabolites showed that the accumulations of most metabolites exhibited dynamic changes, while some amino acids, nucleosides, and organic acids accumulated significantly after turning-over treatment. The evolution characteristics of 27 key precursors or transformed VOCs during the ECS of Aijiao oolong tea were clarified, and it was found that the synthesis of aroma substances was mainly concentrated in lipids as precursors and glycosides as precursor pathways. The results revealed the dynamic changes in the flavor metabolites in the ECS during the processing of Aijiao oolong tea, which provided valuable information for the formation of the characteristic flavor of Aijiao oolong tea.
Collapse
Affiliation(s)
- Mengcong Zhang
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (L.Z.); (C.Z.); (K.X.); (G.C.); (L.H.); (Z.L.)
| | - Lixuan Zhang
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (L.Z.); (C.Z.); (K.X.); (G.C.); (L.H.); (Z.L.)
| | - Chengzhe Zhou
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (L.Z.); (C.Z.); (K.X.); (G.C.); (L.H.); (Z.L.)
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kai Xu
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (L.Z.); (C.Z.); (K.X.); (G.C.); (L.H.); (Z.L.)
| | - Guangwu Chen
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (L.Z.); (C.Z.); (K.X.); (G.C.); (L.H.); (Z.L.)
| | - Linjie Huang
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (L.Z.); (C.Z.); (K.X.); (G.C.); (L.H.); (Z.L.)
| | - Zhongxiong Lai
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (L.Z.); (C.Z.); (K.X.); (G.C.); (L.H.); (Z.L.)
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (L.Z.); (C.Z.); (K.X.); (G.C.); (L.H.); (Z.L.)
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
10
|
Li Y, Luo Q, Qin M, Xu W, Wang X, Zhou J, He C, Chen Y, Yu Z, Ni D. Study on color, aroma, and taste formation mechanism of large-leaf yellow tea during an innovative manufacturing process. Food Chem 2024; 438:138062. [PMID: 38064793 DOI: 10.1016/j.foodchem.2023.138062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023]
Abstract
This study used samples processed with an innovative manufacturing process to explore the dynamic changes of large-leaf yellow tea (LYT) in color, aroma, and taste substances, and the quality components were most significantly affected in the stages of first pile-yellowing (FP) and over-fired drying (TD). In this process, the moisture and temperature conditions caused chlorophyll degradation, Maillard reactions, caramelization reactions, and isomerization of phenolic substances, forming the quality of LYT. Specifically, chlorophyll degradation favored the formation of color quality; the taste quality was determined by the content of soluble sugars, amino acids, catechins, etc.; the aroma quality was dependent on the content changes of alcohols and aldehydes, as well as the increase of sweet and roasting aroma substances in the third drying stage. Additionally, twelve key aroma components, including linalool, (E)-β-ionone, 2,3-diethyl-5-methyl-pyrazine, etc., were identified as contributors to revealing LYT rice crust-like and sweet aroma formation mechanism.
Collapse
Affiliation(s)
- Yuchuan Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| | - Qianqian Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Muxue Qin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Wenluan Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Xiaoyong Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Jingtao Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Chang He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yuqiong Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| | - Zhi Yu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China.
| |
Collapse
|
11
|
Yan H, Lin Z, Li W, Gao J, Li P, Chen Q, Lv H, Zhang Y, Dai W, Lin Z, Zhu Y. Unraveling the Enantiomeric Distribution of Glycosidically Bound Linalool in Teas ( Camellia sinensis) and Their Acidolysis Characteristics and Pyrolysis Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38607252 DOI: 10.1021/acs.jafc.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Glycosidically bound linalool plays important roles in the formation of excellent tea flavor, while their enantiomeric distribution in teas and the actual transformations with free linalool are still unclear. In this study, a novel chiral ultrahigh performance liquid chromatography-mass spectrometry/mass spectrometry approach to directly analyze linalyl-β-primeveroside and linalyl-β-d-glucopyranoside enantiomers in teas was established and then applied in 30 tea samples. A close transformation relationship existed between the two states of linalool for their consistent dominant configurations (most S-form) and corresponding distribution trend in most teas (r up to 0.81). The acidolysis characterization indicated that free linalool might be slowly released from linalyl-β-primeveroside with stable enantiomeric ratios during long-term withering of white tea in a weakly acidic environment, along with other isomerized products, e.g., geraniol, nerol, α-terpineol, etc. Furthermore, a novel online thermal desorption-gas chromatography-mass spectrometry approach was established to simulate the pyrolysis releasing of linalyl-β-primeveroside during tea processing. Interestingly, free linalool was not the selected pyrolysis product of linalyl-β-primeveroside but rather trans/cis-2,6-dimethyl-2,6-octadiene during the high-fire roasting or baking step of oolong and green teas. The identification of above high-fire chemical marks presented great potential to scientifically evaluate the proper thermal conditions in the practical production of tea.
Collapse
Affiliation(s)
- Han Yan
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiyuan Lin
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weixuan Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jianjian Gao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Pengliang Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qincao Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haipeng Lv
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yue Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Weidong Dai
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhi Lin
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yin Zhu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
12
|
Kham NNN, Phovisay S, Unban K, Kanpiengjai A, Saenjum C, Lumyong S, Shetty K, Khanongnuch C. A Thermotolerant Yeast Cyberlindnera rhodanensis DK Isolated from Laphet-so Capable of Extracellular Thermostable β-Glucosidase Production. J Fungi (Basel) 2024; 10:243. [PMID: 38667914 PMCID: PMC11051217 DOI: 10.3390/jof10040243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/28/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
This study aims to utilize the microbial resources found within Laphet-so, a traditional fermented tea in Myanmar. A total of 18 isolates of thermotolerant yeasts were obtained from eight samples of Laphet-so collected from southern Shan state, Myanmar. All isolates demonstrated the tannin tolerance, and six isolates were resistant to 5% (w/v) tannin concentration. All 18 isolates were capable of carboxy-methyl cellulose (CMC) degrading, but only the isolate DK showed ethanol production at 45 °C noticed by gas formation. This ethanol producing yeast was identified to be Cyberlindnera rhodanensis based on the sequence analysis of the D1/D2 domain on rRNA gene. C. rhodanensis DK produced 1.70 ± 0.01 U of thermostable extracellular β-glucosidase when cultured at 37 °C for 24 h using 0.5% (w/v) CMC as a carbon source. The best two carbon sources for extracellular β-glucosidase production were found to be either xylose or xylan, with β-glucosidase activity of 3.07-3.08 U/mL when the yeast was cultivated in the yeast malt extract (YM) broth containing either 1% (w/v) xylose or xylan as a sole carbon source at 37 °C for 48 h. The optimal medium compositions for enzyme production predicted by Plackett-Burman design and central composite design (CCD) was composed of yeast extract 5.83 g/L, peptone 10.81 g/L and xylose 20.20 g/L, resulting in a production of 7.96 U/mL, while the medium composed (g/L) of yeast extract 5.79, peptone 13.68 and xylan 20.16 gave 9.45 ± 0.03 U/mL for 48 h cultivation at 37 °C. Crude β-glucosidase exhibited a remarkable stability of 100%, 88% and 75% stable for 3 h at 35, 45 and 55 °C, respectively.
Collapse
Affiliation(s)
- Nang Nwet Noon Kham
- Division of Biotechnology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (N.N.N.K.); (S.P.)
| | - Somsay Phovisay
- Division of Biotechnology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (N.N.N.K.); (S.P.)
| | - Kridsada Unban
- Division of Food Science and Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Apinun Kanpiengjai
- Division of Biochemistry and Biochemical Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Chalermpong Saenjum
- Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kalidas Shetty
- Global Institute of Food Security and International Agriculture (GIFSIA), Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA;
| | - Chartchai Khanongnuch
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center for Multidisciplinary Approaches to Miang, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center for Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
13
|
Chen Q, Guan X, Zhang Z, Ma X, Guo T, Song H. In Situ Oral Metabolism Analysis of Astringent Compounds in Tea by Paper Spray Mass Spectrometry, Electrospray Mass Spectrometry, Turbidimetry, and Sensory Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3654-3663. [PMID: 38329502 DOI: 10.1021/acs.jafc.3c09258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The phenolic compounds (PCs) are the primary components responsible for the astringency of tea infusions, and this astringency is intricately linked to the in situ oral metabolism of PCs in saliva. Initially, a total of 54 PCs were identified in tea infusions by electrospray mass spectrometry (ESI-MS). Subsequently, an in vivo metabolism analysis of PCs during varying drinking times and oral locations was conducted by both paper spray mass spectrometry (PS-MS) and sensory evaluation. The metabolism of PCs within oral saliva was a prolonged process, the residual PCs were distributed across diverse oral regions after drinking tea infusion, and the higher residual PC content reflected the stronger astringency intensity. Furthermore, an in vitro metabolism analysis of PCs under varied reaction temperatures and durations was performed by ESI-MS and turbidimetry. As the reaction time extended, more PCs in tea was interacting with saliva. Moreover, the higher temperatures facilitated this interaction between PCs and saliva. Therefore, this investigation establishes a foundation for further elucidating the mechanisms underlying astringency formation.
Collapse
Affiliation(s)
- Qiong Chen
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xin Guan
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Zhibin Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoduo Ma
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Tianyang Guo
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Huanlu Song
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
14
|
Hu Q, Zheng Y, Yang Y, Ni ZX, Chen B, Wu Z, Huang H, Wu Q, Zhou ZW, Gao S, Lai Z, Lin H, Sun Y. Widely targeted metabolomics analysis reveals the formation of nonvolatile flavor qualities during oolong tea manufacturing: a case study of Jinguanyin. Front Nutr 2023; 10:1283960. [PMID: 38152463 PMCID: PMC10751955 DOI: 10.3389/fnut.2023.1283960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023] Open
Abstract
Background The manufacturing processes of oolong tea significantly impact its nonvolatile components, leading to the emergence of distinct flavor attributes. Understanding the dynamic changes in nonvolatile components during the manufacturing stages of the Jinguanyin (JGY) cultivar is crucial for unraveling the potential mechanism behind flavor formation. Methods Comprehensive metabolomics and sensomics analyses were conducted to investigate the dynamic changes in nonvolatile components throughout various phases of oolong tea processing, focusing on the JGY cultivar. Results A total of 1,005 nonvolatile metabolites were detected, with 562 recognized as significant differential metabolites during various phases of oolong tea processing. Notably, the third turning-over, third setting, and high-temperature treatments exhibited the most significant effects on the nonvolatile metabolites of oolong tea. JGY finished tea demonstrated a characteristic flavor profile, marked by mellowness, sweetness in aftertaste, and a significant Yin rhyme. This flavor profile was collectively promoted by the accumulation of amino acids and organic acids, the decrease in flavonols (3-O-glycosides) and sugar substances, the alteration of phenolic acids, and the stabilization of caffeine. Conclusion This study contribute to the understanding of the formation of oolong tea flavor qualities. The dynamic changes observed in various types of nonvolatile compounds during oolong tea processing shed light on the intricate interplay of metabolites and their influence on the final flavor characteristics.
Collapse
Affiliation(s)
- Qingcai Hu
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yucheng Zheng
- College of Tea and Food Science, Wuyi University, Nanping, China
| | - Yun Yang
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zi-Xin Ni
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bin Chen
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zongjie Wu
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huiqing Huang
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingyang Wu
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zi-wei Zhou
- College of Life Science, Ningde Normal University, Ningde, China
| | - Shuilian Gao
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongzheng Lin
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yun Sun
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
15
|
Wen M, Zhu M, Han Z, Ho CT, Granato D, Zhang L. Comprehensive applications of metabolomics on tea science and technology: Opportunities, hurdles, and perspectives. Compr Rev Food Sci Food Saf 2023; 22:4890-4924. [PMID: 37786329 DOI: 10.1111/1541-4337.13246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 10/04/2023]
Abstract
With the development of metabolomics analytical techniques, relevant studies have increased in recent decades. The procedures of metabolomics analysis mainly include sample preparation, data acquisition and pre-processing, multivariate statistical analysis, as well as maker compounds' identification. In the present review, we summarized the published articles of tea metabolomics regarding different analytical tools, such as mass spectrometry, nuclear magnetic resonance, ultraviolet-visible spectrometry, and Fourier transform infrared spectrometry. The metabolite variation of fresh tea leaves with different treatments, such as biotic/abiotic stress, horticultural measures, and nutritional supplies was reviewed. Furthermore, the changes of chemical composition of processed tea samples under different processing technologies were also profiled. Since the identification of critical or marker metabolites is a complicated task, we also discussed the procedure of metabolite identification to clarify the importance of omics data analysis. The present review provides a workflow diagram for tea metabolomics research and also the perspectives of related studies in the future.
Collapse
Affiliation(s)
- Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Mengting Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Zisheng Han
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Daniel Granato
- Department of Biological Sciences, School of Natural Sciences Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
16
|
Jiang N, Hou S, Liu Y, Ren P, Xie N, Yuan Y, Hao Q, Liu M, Zhao Z. Combined LC-MS-based metabolomics and GC-IMS analysis reveal changes in chemical components and aroma components of Jujube leaf tea during processing. FRONTIERS IN PLANT SCIENCE 2023; 14:1179553. [PMID: 37265633 PMCID: PMC10231682 DOI: 10.3389/fpls.2023.1179553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/17/2023] [Indexed: 06/03/2023]
Abstract
Making tea from jujube leaves changed the chemical composition and aroma composition of jujube leaves. Here, Through LC-MS, GC-IMS, and GC-MS technology, we have revealed the effect of jujube leaf processing changes on metabolites. LC-MS identified 468 non-volatile metabolites, while GC-IMS and GC-MS detected 52 and 24 volatile metabolites, respectively. 109 non-volatile metabolites exhibiting more pronounced differences were screened. Most lipids and lipid-like molecules, organic acids, amino acids, and flavonoids increased significantly after processing. GC-IMS and GC-MS analysis revealed that the contents of aldehydes and ketones were significantly increased, while esters and partial alcohols were decreased after processing into jujube leaf tea. The main flavor substances of fresh jujube leaf and jujube leaf tea were eugenol and (E) - 2-Hexenal, respectively. Furthermore, amino acids and lipids were closely linked to the formation of volatile metabolites. Our study provided new insights into the changes in metabolites of jujube leaves processed into jujube leaf tea, and had great potential for industrial application. It laid a foundation for further research on fruit tree leaf tea.
Collapse
Affiliation(s)
- Nan Jiang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, China
| | - Shujuan Hou
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Yuye Liu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Peixing Ren
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Nuoyu Xie
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Ye Yuan
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Qing Hao
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, China
| | - Zhihui Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, China
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| |
Collapse
|
17
|
Gui A, Gao S, Zheng P, Feng Z, Liu P, Ye F, Wang S, Xue J, Xiang J, Ni D, Yin J. Dynamic Changes in Non-Volatile Components during Steamed Green Tea Manufacturing Based on Widely Targeted Metabolomic Analysis. Foods 2023; 12:foods12071551. [PMID: 37048372 PMCID: PMC10094149 DOI: 10.3390/foods12071551] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 04/09/2023] Open
Abstract
Steamed green tea has unique characteristics that differ from other green teas. However, the alteration patterns of non-volatile metabolites during steamed green tea processing are not fully understood. In this study, a widely targeted metabolomic method was employed to explore the changes in non-volatile metabolites during steamed green tea processing. A total of 735 non-volatile compounds were identified, covering 14 subclasses. Of these, 256 compounds showed significant changes in at least one processing step. Most amino acids, main catechins, caffeine, and main sugars were excluded from the analysis. The most significant alterations were observed during steaming, followed by shaping and drying. Steaming resulted in significant increases in the levels of most amino acids and their peptides, most phenolic acids, most organic acids, and most nucleotides and their derivates, as well as some flavonoids. Steaming also resulted in significant decreases in the levels of most lipids and some flavonoids. Shaping and drying caused significant increases in the levels of some flavonoids, phenolic acids, and lipids, and significant decreases in the levels of some amino acids and their peptides, some flavonoids, and some other compounds. Our study provides a comprehensive characterization of the dynamic alterations in non-volatile metabolites during steamed green tea manufacturing.
Collapse
Affiliation(s)
- Anhui Gui
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shiwei Gao
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Pengcheng Zheng
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zhihui Feng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Panpan Liu
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Fei Ye
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shengpeng Wang
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jinjin Xue
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jun Xiang
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445002, China
| | - Dejiang Ni
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Junfeng Yin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
18
|
Zhang K, Zhao J, Cheng L, Zhou H, Dong Y, Ma H, Zhou J, Yu Y, Xu Q. Determination of Tea Aroma Precursor Glycosides: An Efficient Approach via Liquid Chromatography-Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4083-4090. [PMID: 36827965 DOI: 10.1021/acs.jafc.2c08562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Tea aroma components are often stored as glycosidically bound forms in the tea plant (Camellia sinensis). However, the determination of these glycosides in tea samples is far from optimal. In the present study, we developed a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method for simultaneous quantification of eight primary aroma glycosides within 10 min. After systematic optimization of multiple reaction monitoring (MRM) parameters, the proposed method was highly sensitive and accurate. Optimization of the method permitted the efficient extraction of aroma glycosides. The developed method was applied to analyze the contents of aroma glycosides in different organs of tea plants, including the bud, leaves, and stem. Contents of aroma glycosides in the harvested 'Shaancha 1' ranged from 36.1 to 40454.4 μg kg-1. Geranyl glucoside and primeveroside mainly accumulated in young leaves, while other glycosides mainly accumulated in mature leaves. The findings document a rapid, reliable, and efficient analysis method. This method will be helpful in elucidating the biosynthesis and biotransformation mechanism of tea aroma glycosides and in promoting the development of the tea industry using advanced technological control approaches during the cultivation of tea plants and tea manufacture.
Collapse
Affiliation(s)
- Keyi Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Long Cheng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haozhe Zhou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuan Dong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huicong Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingshan Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
19
|
Farag MA, Elmetwally F, Elghanam R, Kamal N, Hellal K, Hamezah HS, Zhao C, Mediani A. Metabolomics in tea products; a compile of applications for enhancing agricultural traits and quality control analysis of Camellia sinensis. Food Chem 2023; 404:134628. [DOI: 10.1016/j.foodchem.2022.134628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
|
20
|
Effect of β-glucosidase on the aroma of liquid-fermented black tea juice as an ingredient for tea-based beverages. Food Chem 2023; 402:134201. [DOI: 10.1016/j.foodchem.2022.134201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022]
|
21
|
Ouyang W, Yu Y, Wang H, Jiang Y, Hua J, Ning J, Yuan H. Analysis of volatile metabolite variations in strip green tea during processing and effect of rubbing degree using untargeted and targeted metabolomics. Food Res Int 2022; 162:112099. [DOI: 10.1016/j.foodres.2022.112099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
22
|
Understanding the promotion of heat treatment on the flavor of Lentinula edodes using metabolomics integrated with transcriptomics. Food Res Int 2022; 162:112051. [DOI: 10.1016/j.foodres.2022.112051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/18/2022]
|
23
|
Gao J, Wang Z, Chen D, Peng J, Xie D, Lin Z, Lin Z, Dai W. Metabolomic characterization of the chemical compositions of Dracocephalum rupestre Hance. Food Res Int 2022; 161:111871. [DOI: 10.1016/j.foodres.2022.111871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/04/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022]
|
24
|
Zhang S, Sun L, Shi Y, Song Y, Wang Y, Fan K, Zong R, Li Y, Wang L, Bi C, Ding Z. The application of enzymatic fermented soybean effectively regulates associated microbial communities in tea soil and positively affects lipid metabolites in tea new shoots. Front Microbiol 2022; 13:992823. [PMID: 36081789 PMCID: PMC9445587 DOI: 10.3389/fmicb.2022.992823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022] Open
Abstract
Compared with traditional organic fertilizer, fermented soybean is a better fertilizer resource in tea plantations. The application of organic fertilizer is a feasible practice to mitigate the soil degradation caused by the overuse of chemical fertilizers, which can effectively regulate soil microbial communities in tea plantations. However, the effects of fermented soybean on soil microbial communities, soil metabolites and metabolites in tea new shoots have not been systematically demonstrated, and their interactions have never been studied. Here, we investigated the responses of the soil microbial community, soil metabolites and metabolites of tea new shoots to urea fertilization (UF), naturally fermented soybean fertilization (NFS) and enzymatic fermented soybean fertilization (EFS), and analyzed the relationships between soil microbes, soil metabolites and metabolites in tea new shoots. The results showed that soil bacterial communities were dominated by Pseudomonas, Romboutsia, Candidatus_Nitrosotalea and Helicobacter, and soil fungal communities were dominated by Peziza, Fusarium, Candida and Cheilymenia at the genus level. In EFS, bacterial genera (Glutamicibacter and Streptomyces) and fungal genera (Candida and Actinomucor) presented high abundances, which were correlated with soil carbohydrate and lipid including D-Mannitol, D-Sorbitol, 9,12-Octadecadienoic acid and (Z)-13-Docosenoic acid. Enzymatic fermented soybean fertilization also affected the lipid metabolites in tea new shoots. Glycerolipids and glycerophospholipids significantly increased in EFS, which positively correlated with some soil microbial communities. Besides, the application of fermented soybean fertilizer could increase the contents of TP, AP and AK, which were also important environmental factors affecting the structure of soil microbial community in tea plantation. It was concluded that fermented soybean fertilization could improve soil nutrition, regulate associated microbial communities, and positively affect lipid metabolites in tea new shoots. This study not only explores the relationships between soil microbes and metabolites in tea plants, but also provides feasible technical guidance to cultivate high-quality tea using soybean as high-grade fertilizer.
Collapse
Affiliation(s)
- Shuning Zhang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Litao Sun
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yujie Shi
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Yujie Song
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Kai Fan
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Rui Zong
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Yusheng Li
- Shandong Agricultural Technology Extension Center, Jinan, China
| | - Linjun Wang
- Weihai Agricultural and Rural Affairs Service Center, Weihai, China
| | - Caihong Bi
- Linyi Agricultural Technology Extension Center, Linyi, China
| | - Zhaotang Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
25
|
Shi Y, Zhu Y, Ma W, Shi J, Peng Q, Lin Z, Lv H. Comprehensive investigation on non-volatile and volatile metabolites in four types of green teas obtained from the same tea cultivar of Longjing 43 (Camellia sinensis var. sinensis) using the widely targeted metabolomics. Food Chem 2022; 394:133501. [PMID: 35728471 DOI: 10.1016/j.foodchem.2022.133501] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/04/2022]
Abstract
In this study, we produced roasted, baked, steamed, and sun-dried green tea products using the same batch of fresh tea leaves (FTL) of Longjing 43 (Camellia sinensis var. sinensis), and explored processing effects on the metabolic profiles of four types of green teas (FGTs) using the widely targeted metabolomics. Results showed that 146 differential metabolites including flavonoids, amino acids, lipids, and phenolic acids were screened among 1034 non-volatiles. In addition, nineteen differential metabolites were screened among 79 volatiles. Most of non-volatiles and volatiles metabolites changed notably in different manufacturing processes, whereas there were no significant differences (p>0.05) in the levels of total catechins between FGTs and FTL. The transformation of metabolites was the dominant trend during green tea processing. The results contribute to a better understanding of how the manufacturing process influences green tea quality, and provide useful information for the enrichment of tea biochemistry theory.
Collapse
Key Words
- Differential metabolite
- Epigallocatechin gallate (PubChem, CID65064)
- Geraniol (PubChem, CID637566)
- Green tea
- Kaempferol (PubChem, CID5280863)
- Linalool (PubChem, CID6549)
- Methyl salicylate (PubChem, CID4133)
- Non-volatile metabolite
- Phenylethyl alcohol (PubChem, CID6054)
- Process technology
- Quercetin (PubChem, CID5280343)
- Theanine (PubChem, CID439378)
- Volatiles
- Widely targeted metabolomics
- l-Phenylalanine (PubChem, CID6140)
- α-Linolenic acid (PubChem, CID860)
Collapse
Affiliation(s)
- Yali Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Wanjun Ma
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiang Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qunhua Peng
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
26
|
Cao Y, Ren M, Yang J, Guo L, Lin Y, Wu H, Wang B, Lv R, Zhang C, Gong X, Wang H. Comparative metabolomics analysis of pericarp from four varieties of Zanthoxylum bungeanum Maxim. Bioengineered 2022; 13:14815-14826. [PMID: 36274249 PMCID: PMC9601549 DOI: 10.1080/21655979.2022.2108632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
A qualitative and quantitative analysis of metabolites was performed by metabolomics comparation on the pericarps of four varieties of Zanthoxylum bungeanum Maxim. The Zanthoxylum bunganum as scion combined with three rootstock varieties of Zanthoxylum piasezkii Maxim (YJ), July Zanthoxylum bunganum Maxim (QJ), and August Zanthoxylum bunganum Maxim (BJ), at the same time Zanthoxylum bungeanum seedlings breeding were compared as control (MJ). A total of 1429 metabolites were identified in Zanthoxylum bungeanum Maxim pericarps based on chromatography and mass spectrometry dual detection platform. While the metabolites between four varieties of Z. bungeanum varied, there was identified 31, 15, 7, 79, 42, 19 down-regulated and 55, 50, 13, 75, 43, 27 up-regulated differential metabolites between MJ and BJ, MJ and QJ, MJ and YJ, QJ and BJ, YJ and BJ, YJ and QJ. Meanwhile, the differential metabolites composition was distinct among various varieties of Z. bungeanum and dominant by phenolic compounds flavonoid and phenolic acids, especially highest in varieties July Zanthoxylum bunganum Maxim. Highlight A comparative metabolomics analyzed in four varieties of Zanthoxylum bungeanum pericarp.Total 1429 metabolites were identified and mainly in flavonoid and phenolic acid.July and August Zanthoxylum bunganum Maxim has highest antioxidant capacity.The rootstock July Zanthoxylum bunganum Maxim was recommended in Loess Plateau.
Collapse
Affiliation(s)
- Yonghong Cao
- Zanthoxylum Bungeanum Research Institute, Longnan Economic Forest Research Institute, Longnan, China
| | - Miao Ren
- Zanthoxylum Bungeanum Research Institute, Longnan Economic Forest Research Institute, Longnan, China
| | - Jianlei Yang
- Zanthoxylum Bungeanum Research Institute, Longnan Economic Forest Research Institute, Longnan, China
| | - Lixin Guo
- Zanthoxylum Bungeanum Research Institute, Longnan Economic Forest Research Institute, Longnan, China
| | - Yun Lin
- Zanthoxylum Bungeanum Research Institute, Longnan Economic Forest Research Institute, Longnan, China
| | - Heng Wu
- Zanthoxylum Bungeanum Research Institute, Longnan Economic Forest Research Institute, Longnan, China
| | - Bo Wang
- Zanthoxylum Bungeanum Research Institute, Longnan Economic Forest Research Institute, Longnan, China
| | - Ruie Lv
- Zanthoxylum Bungeanum Research Institute, Longnan Economic Forest Research Institute, Longnan, China
| | - Chunhui Zhang
- Zanthoxylum Bungeanum Research Institute, Longnan Economic Forest Research Institute, Longnan, China
| | - Xutong Gong
- Zanthoxylum Bungeanum Research Institute, Longnan Economic Forest Research Institute, Longnan, China
| | - Han Wang
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China,CONTACT Han Wang Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu730000, China
| |
Collapse
|
27
|
Zhou H, Liu Y, Yang J, Wang H, Ding Y, Lei P. Comprehensive profiling of volatile components in Taiping Houkui green tea. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Liang S, Gao Y, Fu YQ, Chen JX, Yin JF, Xu YQ. Innovative technologies in tea beverage processing for quality improvement. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Cai H, Zhong Z, Li Z, Zhang X, Fu H, Yang B, Zhang L. Metabolomics in quality formation and characterisation of tea products: a review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongli Cai
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Zhuoheng Zhong
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Zhanming Li
- School of Grain Science and Technology Jiangsu University of Science and Technology Zhenjiang 212004 China
| | - Xiaojing Zhang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Hongwei Fu
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Bingxian Yang
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Lin Zhang
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| |
Collapse
|
30
|
Wang H, Yu Y, Ouyang W, Jiang Y, Wang J, Hua J, Yuan H. Assessment of Variations in Round Green Tea Volatile Metabolites During Manufacturing and Effect of Second-Drying Temperature via Nontargeted Metabolomic Analysis. Front Nutr 2022; 9:877132. [PMID: 35495905 PMCID: PMC9047777 DOI: 10.3389/fnut.2022.877132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/21/2022] [Indexed: 11/28/2022] Open
Abstract
Round green tea (RGT) is widely distributed and presents a high yield in China. The quality of RGT can be determined by its aroma; however, the transformation and formation of volatile metabolites during RGT processing remain unclear. In this study, 173 volatile compounds (nine categories) were identified totally from RGT via gas chromatography-mass spectrometry with infrared-assisted headspace-solid phase microextraction. These substances exhibited different changing trends during various procedures, with the most intense transformation occurring during fixation, followed by pan-frying and second drying; moreover, 51 substances were screened, mainly containing fatty acid-derived volatiles (i.e., (E)-2-hexen-1-ol, Hexanal, pentanal, hexanal) and glycoside-derived volatiles (i.e., linalool, geraniol, benzyl alcohol, benzaldehyde), and their evolution during processing was clarified. Furthermore, the effect of the second-drying temperature on volatile compound metabolism was clarified, and 90°C was the best temperature for RGT aroma. This research lays a foundation for in-depth quality control and the aroma formation mechanism of RGT.
Collapse
Affiliation(s)
- Huajie Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yaya Yu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Wen Ouyang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yongwen Jiang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jinjin Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jinjie Hua
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Jinjie Hua
| | - Haibo Yuan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Haibo Yuan
| |
Collapse
|
31
|
Shao CY, Zhang Y, Lv HP, Zhang ZF, Zeng JM, Peng QH, Zhu Y, Lin Z. Aromatic profiles and enantiomeric distributions of chiral odorants in baked green teas with different picking tenderness. Food Chem 2022; 388:132969. [PMID: 35447588 DOI: 10.1016/j.foodchem.2022.132969] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 11/04/2022]
Abstract
Suitable picking tenderness is an essential prerequisite for manufacturing tea. However, the influence of picking tenderness of fresh tea leaves on the aromatic components is still unclear. In this study, aromatic profiles and chiral odorants in fresh tea leaves and corresponding baked green teas with five levels of tenderness of two representative cultivars were analysed using stir bar sorptive extraction-gas chromatography-mass spectrometry. cis-Linalool oxide (furanoid) and methyl salicylate exhibited significantly increasing trends as samples of all series matured. The content of most chiral odorants was significantly high in the mature samples, and significant content variations of all enantiomers during baked green tea processing could be observed with different trends according to their precursors. In particular, the enantiomeric ratios of most chiral odorants were less influenced by the picking tenderness and processing, while drying (limonene), spreading and fixation (α-terpineol), and spreading (dihydroactinidiolide) influenced the chiral distribution of the aforementioned odorants.
Collapse
Affiliation(s)
- Chen-Yang Shao
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yue Zhang
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Hai-Peng Lv
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhi-Fang Zhang
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jian-Ming Zeng
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qun-Hua Peng
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
32
|
Wu W, Lu M, Peng J, Lv H, Shi J, Zhang S, Liu Z, Duan J, Chen D, Dai W, Lin Z. Nontargeted and targeted metabolomics analysis provides novel insight into nonvolatile metabolites in Jianghua Kucha tea germplasm ( Camellia sinensis var. Assamica cv. Jianghua). Food Chem X 2022; 13:100270. [PMID: 35499018 PMCID: PMC9040034 DOI: 10.1016/j.fochx.2022.100270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/27/2022] [Accepted: 02/22/2022] [Indexed: 01/01/2023] Open
Abstract
Jianghua Kucha (JHKC) is a special tea germplasm with high bitterness growing in China; however, the chemical characteristics of JHKC are not completely understood. In this study, 61 differential metabolites were identified between 11 wild JHKC individuals and 3 control cultivars of Fudingdabai, Yunkang 10, and Zhuyeqi using comprehensive nontargeted and targeted metabolomics approach. The JHKC accessions mainly possessed significantly higher levels of purine alkaloids of theacrine (12.06 ± 5.23 mg/g) and 1,3,7-trimethyluric acid, non-epi-form flavanols (catechin, gallocatechin, catechin gallate, and gallocatechin gallate), and methylated flavanols of epigallocatechin-3-O-(3″-O-methyl)-gallate (4.79 ± 1.45 mg/g) and epicatechin-3-O-(3″-O-methyl)-gallate (1.02 ± 0.34 mg/g), as well as significantly lower levels of flavonol glycosides, which indicated that caffeine metabolism, flavonoid biosynthesis, and flavonol and flavone biosynthesis are mostly differential metabolic pathways. Our study demonstrated that JHKC germplasm is a promising resource for breeding novel tea cultivars with high contents of theacrine, non-epi-form flavanols, and methylated flavanols.
Collapse
Affiliation(s)
- Wenliang Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China.,Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, PR China
| | - Meiling Lu
- Agilent Technologies (China) Limited, 3 Wangjing North Road, Chaoyang District, Beijing 100102, PR China
| | - Jiakun Peng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Jiang Shi
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Shuguang Zhang
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, PR China
| | - Zhen Liu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, PR China
| | - Jihua Duan
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, PR China
| | - Dan Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Weidong Dai
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| |
Collapse
|
33
|
Lin J, Liu F, Zhou X, Tu Z, Chen L, Wang Y, Yang Y, Wu X, Lv H, Zhu H, Ye Y. Effect of red light on the composition of metabolites in tea leaves during the withering process using untargeted metabolomics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1628-1639. [PMID: 34420207 DOI: 10.1002/jsfa.11500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/24/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Red light withering significantly improves the sensory flavor qualities of tea, although changes in metabolites during this process have not been systematically studied until now. The present study comprehensively analyzes metabolites in withered tea leaves at 2-h intervals up to 12 h under red light (630 nm) and dark conditions using ultra performance liquid chromatography-high resolution mass spectrometry (untargeted metabolomics). RESULTS Ninety-four non-volatile compounds are identified and relatively quantified, including amino acids, catechins, dimeric catechins, flavonol glycosides, glycosidically-bound volatiles, phenolic acids and nucleosides. The results show that amino acids, catechins and dimeric catechins are most affected by red light treatment. Ten free amino acids, theaflavins and theasinensin A increase after red light irradiation, whereas epigallocatechin gallate and catechin fall. CONCLUSION The present study provides a comprehensive and systematic profile of the dynamic effects of red light on withering tea and a rationale for its use in tea processing quality control. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiazheng Lin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Fei Liu
- Tea Research Institute of Sichuan Academy of Agricultural Science, Chengdu, China
| | - Xiaofen Zhou
- Tea Technical Service Station of Wuyi County, Wuyi, China
| | - Zheng Tu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Lin Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yuwan Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yunfei Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xun Wu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Haowei Lv
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Hongkai Zhu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yang Ye
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
34
|
|
35
|
Li Y, He C, Yu X, Zhou J, Ntezimana B, Yu Z, Chen Y, Ni D. Study on improving aroma quality of summer-autumn black tea by red-light irradiation during withering. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112597] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
Lin SY, Hsiao YH, Chen PA. Revealing the profound meaning of pan-firing of oolong tea - A decisive point in odor fate. Food Chem 2021; 375:131649. [PMID: 34848093 DOI: 10.1016/j.foodchem.2021.131649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022]
Abstract
The delicate aroma of Bao-chung tea comes from oxidation, followed by fixation in the pan-firing step. Traditionally, the timing of pan-firing has been based on odor perception by tea masters and lacks relevant scientific research. Pan-firing at three different green-note intensities and three stirring sequences was used to explore the relationship between the compositions of volatile organic compounds (VOCs) before pan-firing and in the finished tea. Pan-firing decreased green leaf volatiles and increased the ratio of terpenoid volatiles. The characteristic VOCs of the finished tea were highly related to VOCs before pan-firing (R2 = 0.97). Principal component analysis revealed that the traditional judgment of the pan-firing step is based on nonanal, β-linalool, and cis- and trans-linalool oxides. The timing of pan-firing is crucial for VOCs, and VOC composition before pan-firing can be used to predict desired tea aroma.
Collapse
Affiliation(s)
- Shu-Yen Lin
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Ya-Hsin Hsiao
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Po-An Chen
- Plant Technology Research Center, Agricultural Technology Research Institute, Hsinchu, Taiwan.
| |
Collapse
|
37
|
Black tea aroma formation during the fermentation period. Food Chem 2021; 374:131640. [PMID: 34839968 DOI: 10.1016/j.foodchem.2021.131640] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 01/19/2023]
Abstract
The present study aimed to systematically investigate black tea aroma formation during the fermentation period. In total, 158 volatile compounds were identified. Of these, most amino acid-derived volatiles (AADVs) and carotenoid-derived volatiles (CDVs) showed significant increases, while fatty acid-derived volatiles (FADVs) and volatile terpenoids (VTs) displayed diverse changes during the fermentation period. During this time, fatty acids, amino acids, carotenoids, and glycosidically bound volatiles (GBVs, especially primeverosides) were found to degrade to form aroma components. Further, equivalent quantification of aroma showed that the intensity of green scent was notably decreased, while the intensities of sweet and floral/fruity scents were greatly increased and gradually dominated the aroma of tea leaves. AADVs and CDVs were shown to make greater contributions to the formation of sweet and floral/fruity scents than VTs. Our study provides a detailed characterization of the formation of sweet and floral/fruity aromas in black tea during the fermentation period.
Collapse
|
38
|
Wang YS, Fang MZ, Zheng SD, Cho JG, Yi TH. Identification of Chinese green tea ( Camellia sinensis) marker metabolites using GC/MS and UPLC-QTOF/MS. Food Sci Biotechnol 2021; 30:1293-1301. [PMID: 34721925 DOI: 10.1007/s10068-021-00970-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/18/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022] Open
Abstract
Tea is one of the most widely consumed aromatic beverages in the world because of its taste and flavor, as well as due to many potential health beneficial properties. Metabolomics focuses on an in-depth analysis of all metabolites in living organisms. In this study, 29 primary metabolites and 25 secondary metabolites were identified using GC/MS and UPLC-QTOF/MS, respectively. Further, PCA analysis showed conspicuous discrimination for the ten varieties of green tea with metabolite profiling. Among them, organic acids, amino acids, flavan-3-ols, and flavonol glycosides varied greatly through checking the VIP values of the PLS-DA model. Moreover, the intrinsic and/or extrinsic factors characterizing each type of green tea were also discussed. The chemical component marker derived here should be used as an important detection index, while evaluating the tea quality, as well as while establishing the tea quality standard. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-021-00970-4.
Collapse
Affiliation(s)
- Yu-Shuai Wang
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030 China
| | - Min-Zhe Fang
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 Republic of Korea
| | - Sheng-Dao Zheng
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 Republic of Korea
| | - Jin-Gyeong Cho
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 Republic of Korea
| | - Tae-Hoo Yi
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 Republic of Korea
| |
Collapse
|
39
|
β-Glucosidase activity of Cyberlindnera (Williopsis) saturnus var. mrakii NCYC 2251 and its fermentation effect on green tea aroma compounds. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Ni T, Xu S, Wei Y, Li T, Jin G, Deng WW, Ning J. Understanding the promotion of withering treatment on quality of postharvest tea leaves using UHPLC-orbitrap-MS metabolomics integrated with TMT-Based proteomics. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Li Y, He C, Yu X, Zhou J, Ran W, Chen Y, Ni D. Effects of red-light withering on the taste of black tea as revealed by non-targeted metabolomics and transcriptomics analysis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111620] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Wang H, Hua J, Yu Q, Li J, Wang J, Deng Y, Yuan H, Jiang Y. Widely targeted metabolomic analysis reveals dynamic changes in non-volatile and volatile metabolites during green tea processing. Food Chem 2021; 363:130131. [PMID: 34120048 DOI: 10.1016/j.foodchem.2021.130131] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022]
Abstract
Non-volatile metabolites significantly influence the color, taste, and aromatic qualities of green tea. However, the evolutionary trajectories of non-volatile metabolites, and their transformational relationship with volatile metabolites during processing, remain unclear. In this study, ultra-performance liquid chromatography-tandem mass spectrometry and gas chromatography-tandem mass spectrometry were used to analyze a widely targeted metabolome during green tea processing. In total, 527 non-volatile metabolites, covering 11 subclasses, were identified, along with 184 volatile metabolites, covering 8 subclasses. Significant variations in metabolites were observed during processing, especially in the fixation stage, and the conversion intensity of non-volatile metabolites was consistent with the law of "Fixation > Drying > Rolling." A total of 153 non-volatile metabolites were screened out, and amino acids and esters were found to be closely associated with volatile metabolite formation. The results of the present study provide a theoretical basis that could guide green tea processing based on desired quality and components.
Collapse
Affiliation(s)
- Huajie Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Jinjie Hua
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Qinyan Yu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Jia Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Jinjin Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Yuliang Deng
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Haibo Yuan
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China.
| | - Yongwen Jiang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China.
| |
Collapse
|
43
|
Shi J, Wang J, Lv H, Peng Q, Schreiner M, Baldermann S, Lin Z. Integrated proteomic and metabolomic analyses reveal the importance of aroma precursor accumulation and storage in methyl jasmonate-primed tea leaves. HORTICULTURE RESEARCH 2021; 8:95. [PMID: 33931596 PMCID: PMC8087812 DOI: 10.1038/s41438-021-00528-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 06/01/2023]
Abstract
In response to preharvest priming with exogenous methyl jasmonate (MeJA), tea plants adjust their physiological behavior at the molecular level. The whole-organism reconfiguration of aroma formation from the precursor to storage is poorly understood. In this study, we performed iTRAQ proteomic analysis and identified 337, 246, and 413 differentially expressed proteins in tea leaves primed with MeJA for 12 h, 24 h, and 48 h, respectively. Furthermore, a total of 266 nonvolatile and 100 volatile differential metabolites were identified by utilizing MS-based metabolomics. A novel approach that incorporated the integration of extended self-organizing map-based dimensionality was applied. The vivid time-scale changes tracing physiological responses in MeJA-primed tea leaves are marked in these maps. Jasmonates responded quickly to the activation of the jasmonic acid pathway in tea leaves, while hydroxyl and glycosyl jasmonates were biosynthesized simultaneously on a massive scale to compensate for the exhausted defense. The levels of α-linolenic acid, geranyl diphosphate, farnesyl diphosphate, geranylgeranyl diphosphate, and phenylalanine, which are crucial aroma precursors, were found to be significantly changed in MeJA-primed tea leaves. Green leaf volatiles, volatile terpenoids, and volatile phenylpropanoids/benzenoids were spontaneously biosynthesized from responding precursors and subsequently converted to their corresponding glycosidic forms, which can be stably stored in tea leaves. This study elucidated the physiological response of tea leaves primed with exogenous methyl jasmonate and revealed the molecular basis of source and sink changes on tea aroma biosynthesis and catabolism in response to exogenous stimuli. The results significantly enhance our comprehensive understanding of tea plant responses to exogenous treatment and will lead to the development of promising biotechnologies to improve fresh tea leaf quality.
Collapse
Affiliation(s)
- Jiang Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou, Zhejiang, 310008, PR China
| | - Jiatong Wang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou, Zhejiang, 310008, PR China
- Graduate School of Chinese Academy of Agricultural Sciences, 12 South Street of Zhongguancun, Beijing, 100081, PR China
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou, Zhejiang, 310008, PR China
| | - Qunhua Peng
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou, Zhejiang, 310008, PR China
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Susanne Baldermann
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany.
- University of Bayreuth, Food Metabolome, Faculty of Life Sciences: Food, Nutrition, Kulmbach, Germany.
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou, Zhejiang, 310008, PR China.
| |
Collapse
|
44
|
Sheng X, Lin Y, Cao J, Ning Y, Pang X, Wu J, Kong F. Comparative Evaluation of Key Aroma-Active Compounds in Sweet Osmanthus ( Osmanthus fragrans Lour.) with Different Enzymatic Treatments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:332-344. [PMID: 33370113 DOI: 10.1021/acs.jafc.0c06244] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sweet osmanthus (Osmanthus fragrans Lour.) (OF) is one of the ten most famous flowers in China for its unique and delicate fragrance. A combined solid-phase microextraction and solvent-assisted flavor evaporation method was used to accurately capture the overall aromatic profile and characterize the predominant odorants of fresh osmanthus with the help of gas chromatography (GC)-olfactometry and comprehensive two-dimensional GC-quadrupole time-of-flight mass spectrometry (GC × GC-QTOF-MS). Twenty-six volatiles were identified for the first time in OF. A total of 23 potent odorants, dominated by monoterpene oxides and C6 aliphatic aldehydes, were identified. The efficacy of pectinase, β-glucosidase, and their combination on the aroma enhancement of OF was evaluated by quantitation of the target aroma components using GC-triple quadrupole-MS. The total concentration of key aroma components increased in all three enzyme treatment groups, and the increase was more significant in two β-glucosidase-treated groups. Changes in odor activity values and odor spectrum values of key odorants indicated that the pectinase-treated sample had more prominent floral, green, and potato-like scents. In contrast, the β-glucosidase-treated sample had more dominant floral, woody, almond-like, and fruity notes but less green odor, which was confirmed by sensory evaluation. β-Glucosidase and pectinase complement one another very well, and together, promote a remarkable aroma enhancement in OF.
Collapse
Affiliation(s)
- Xiaojing Sheng
- Tobacco Research Institute, Laboratory of Tobacco and Aromatic Plants Quality and Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yingnan Lin
- Tobacco Research Institute, Laboratory of Tobacco and Aromatic Plants Quality and Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Jianmin Cao
- Tobacco Research Institute, Laboratory of Tobacco and Aromatic Plants Quality and Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yang Ning
- Tobacco Research Institute, Laboratory of Tobacco and Aromatic Plants Quality and Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xueli Pang
- Tobacco Research Institute, Laboratory of Tobacco and Aromatic Plants Quality and Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fanyu Kong
- Tobacco Research Institute, Laboratory of Tobacco and Aromatic Plants Quality and Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
45
|
Peng TQ, Yin XL, Gu HW, Sun W, Ding B, Hu XC, Ma LA, Wei SD, Liu Z, Ye SY. HPLC-DAD fingerprints combined with chemometric techniques for the authentication of plucking seasons of Laoshan green tea. Food Chem 2020; 347:128959. [PMID: 33465688 DOI: 10.1016/j.foodchem.2020.128959] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/23/2020] [Accepted: 12/23/2020] [Indexed: 11/28/2022]
Abstract
Laoshan green teas plucked in summer and autumn were measured by high performance liquid chromatography-diode array detector (HPLC-DAD). After baseline correction, the fingerprints data were resolved by multivariate curve resolution-alternating least squares (MCR-ALS) and a total of 57 components were acquired. Relative concentrations of these components were afterwards applied to distinguish plucking seasons using principal component analysis (PCA), support vector machines (SVM) and partial least squares-discriminant analysis (PLS-DA). For both SVM and PLS-DA models, the total recognition rates of training set, cross-validation and testing set were 100%, 91.3% and 100%, respectively. Besides, three variable selection methods were employed to determine characteristic components for the authentication of summer and autumn teas. Results showed that PLS-DA model based on three characteristic components selected by VIP possesses identical predictive ability as the original model. This study demonstrated that our proposed strategy is competent for the authentication of plucking seasons of Laoshan green tea.
Collapse
Affiliation(s)
- Tian-Qin Peng
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Xiao-Li Yin
- College of Life Sciences, Yangtze University, Jingzhou 434025, China.
| | - Hui-Wen Gu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China
| | - Weiqing Sun
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Baomiao Ding
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Xian-Chun Hu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Li-An Ma
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Shu-Dong Wei
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Zhi Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Shi-Yi Ye
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
46
|
Dai W, Lou N, Xie D, Hu Z, Song H, Lu M, Shang D, Wu W, Peng J, Yin P, Lin Z. N-Ethyl-2-Pyrrolidinone-Substituted Flavan-3-Ols with Anti-inflammatory Activity in Lipopolysaccharide-Stimulated Macrophages Are Storage-Related Marker Compounds for Green Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12164-12172. [PMID: 33074673 DOI: 10.1021/acs.jafc.0c03952] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fresh green tea (GT) is commonly considered to have better sensory flavor and higher commercial value than long-term-stored GT; however, the chemical variations during storage are unclear. In this study, the chemical profiles of stored GT were surveyed among time-series samples from 0 to 19 months using a nontargeted metabolomics method. Seven N-ethyl-2-pyrrolidinone-substituted flavan-3-ols (EPSFs) increased from 0.022 ± 0.019 to 3.212 ± 0.057 mg/g within 19 months (correlation coefficients with storage duration ranging from 0.936 to 0.965), and they were the most significantly increased compounds among the 127 identified compounds. Two representative EPSFs (R-EGCG-cThea and S-EGCG-cThea) possess potential anti-inflammatory properties by suppressing the expression, phosphorylation, and nuclear translocation of nuclear factor kappa-B (NF-κB) p65 in lipopolysaccharide-stimulated macrophages based on western blotting and immunofluorescence results. In conclusion, EPSFs were found to be marker compounds for stored GT and showed potential anti-inflammatory activity by regulating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Weidong Dai
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, People's Republic of China
| | - Ni Lou
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, People's Republic of China
- College of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116044, People's Republic of China
| | - Dongchao Xie
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, People's Republic of China
| | - Zhengyan Hu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, People's Republic of China
| | - Huiyi Song
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, People's Republic of China
- College of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116044, People's Republic of China
| | - Meiling Lu
- Agilent Technologies (China) Limited, Beijing 100102, People's Republic of China
| | - Dong Shang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, People's Republic of China
- College of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116044, People's Republic of China
| | - Wenliang Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, People's Republic of China
| | - Jiakun Peng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, People's Republic of China
| | - Peiyuan Yin
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, People's Republic of China
- College of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116044, People's Republic of China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, People's Republic of China
| |
Collapse
|
47
|
Yu X, Li Y, He C, Zhou J, Chen Y, Yu Z, Wang P, Ni D. Nonvolatile metabolism in postharvest tea (Camellia sinensis L.) leaves: Effects of different withering treatments on nonvolatile metabolites, gene expression levels, and enzyme activity. Food Chem 2020; 327:126992. [DOI: 10.1016/j.foodchem.2020.126992] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/29/2022]
|
48
|
Li J, Hua J, Yuan H, Deng Y, Zhou Q, Yang Y, Dong C, Zeng J, Jiang Y. Investigation on green tea lipids and their metabolic variations during manufacturing by nontargeted lipidomics. Food Chem 2020; 339:128114. [PMID: 33152890 DOI: 10.1016/j.foodchem.2020.128114] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 01/01/2023]
Abstract
Lipids are hydrophobic metabolites implicated in tea flavor quality. Understanding their transformations during tea manufacture is of particular interest. To date, the detailed lipid composition and variations during green tea manufacture are largely unknown. Herein, we performed a comprehensive characterization of the dynamic changes of lipids during green tea manufacture, by applying nontargeted lipidomics using ultrahigh performance liquid chromatography-quadrupole-Orbitrap mass spectrometry (UHPLC-Q-Exactive/MS) combined with chemometric tools. Totally, 283 lipid species were detected, covering 20 subclasses. Significant lipidomic variations were observed during green tea manufacture, especially in the fixation stage, mainly associated with chlorophyll decomposition, phosphatidic acids (PAs) reduction and glycolipids degradation, which potentially contribute to tea color and aroma quality. Specifically, the most prominent decrease of PAs content during green tea manufacture was identified for the first time. This study provides insights into the lipid metabolic fates upon green tea manufacture, and their roles in green tea sensory quality.
Collapse
Affiliation(s)
- Jia Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jinjie Hua
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haibo Yuan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yuliang Deng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qinghua Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yanqin Yang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Chunwang Dong
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jun Zeng
- College of Food and Bioengineering, Jimei University, Xiamen 361021, China.
| | - Yongwen Jiang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
49
|
Guo XY, Lv YQ, Ye Y, Liu ZY, Zheng XQ, Lu JL, Liang YR, Ye JH. Polyphenol oxidase dominates the conversions of flavonol glycosides in tea leaves. Food Chem 2020; 339:128088. [PMID: 32979714 DOI: 10.1016/j.foodchem.2020.128088] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 12/26/2022]
Abstract
Flavonol glycosides are associated with astringency and bitterness of teas. To clarify the dominant enzymatic reaction of flavonol glycosides in tea leaves, the catalytic effects of polyphenol oxidase (PPO), peroxidase (POD) and β-glucosidase were studied, with the maintaining rates of total flavonol glycosides (TFG) being 73.0%, 99.8% and 94.3%. PPO was selected for further investigations, including the effects of pH value (3.5 ~ 6.5), temperature (25 °C ~ 55 °C) and dosage (39 ~ 72 U/mL PPO and 36 U/mL PPO, 3 ~ 36 U/mL POD). The oxidation of flavonol glycosides were intensified at pH 6.5, with 51.8% and 15.4% of TFG maintained after PPO and PPO + POD treatments, suggesting an enhancement from POD. The sensitivity ranking to PPO was: myricetin glycosides > quercetin glycosides > kaempferol glycosides. The inhibitor treatment testified the leading role of PPO in catalyzing flavonol glycosides in tea leaves. Sugar moiety enhanced the docking affinity of flavonol glycosides for PPO. PPO shows the potential of modifying flavonol glycoside composition.
Collapse
Affiliation(s)
- Xiao-Yuan Guo
- Zhejiang University Tea Research Institute, 388 Yuhangtang Road, Hangzhou 310058, China
| | - Yi-Qing Lv
- Zhejiang University Tea Research Institute, 388 Yuhangtang Road, Hangzhou 310058, China
| | - Ying Ye
- Zhejiang University Tea Research Institute, 388 Yuhangtang Road, Hangzhou 310058, China
| | - Ze-Ye Liu
- Zhejiang University Tea Research Institute, 388 Yuhangtang Road, Hangzhou 310058, China
| | - Xin-Qiang Zheng
- Zhejiang University Tea Research Institute, 388 Yuhangtang Road, Hangzhou 310058, China
| | - Jian-Liang Lu
- Zhejiang University Tea Research Institute, 388 Yuhangtang Road, Hangzhou 310058, China
| | - Yue-Rong Liang
- Zhejiang University Tea Research Institute, 388 Yuhangtang Road, Hangzhou 310058, China.
| | - Jian-Hui Ye
- Zhejiang University Tea Research Institute, 388 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
50
|
Xia Y, Yu J, Miao W, Shuang Q. A UPLC-Q-TOF-MS-based metabolomics approach for the evaluation of fermented mare’s milk to koumiss. Food Chem 2020; 320:126619. [DOI: 10.1016/j.foodchem.2020.126619] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/18/2020] [Accepted: 03/15/2020] [Indexed: 12/11/2022]
|