1
|
Ren A, Zhang Y, Bian Y, Liu YJ, Zhang YX, Ren CJ, Zhou Y, Zhang T, Feng XS. Pyrazines in food samples: Recent update on occurrence, formation, sampling, pretreatment and analysis methods. Food Chem 2024; 430:137086. [PMID: 37566982 DOI: 10.1016/j.foodchem.2023.137086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Pyrazines are a class of active aromatic substances existing in various foods. The accumulation of pyrazines has an impact on flavor and quality of food products. This review encompasses the formation mechanisms and control strategies of pyrazines via Maillard reaction (MR), including the new reactants and emerging techniques. Pyrazines characteristics are better understood through the developed sample pretreatments and detection methods. Herein, an in-depth review of pretreatments and analysis methods since 2010 is presented to explore the simple, fast, green, and effective strategies. Sample preparation methods include liquid phase extraction, solid phase extraction, supercritical fluid extraction, and microextraction methods such as liquid phase microextraction, and solid phase microextraction, etc. Detections are made by chromatographic methods, and sensors, etc. Advantages and limitations are discussed and compared for providing insights to further studies.
Collapse
Affiliation(s)
- Ai Ren
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Ya-Jie Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yi-Xin Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Chen-Jie Ren
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Ting Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Ryu DH, Cho JY, Yang SH, Kim HY. Effects of Harvest Timing on Phytochemical Composition in Lamiaceae Plants under an Environment-Controlled System. Antioxidants (Basel) 2023; 12:1909. [PMID: 38001762 PMCID: PMC10669742 DOI: 10.3390/antiox12111909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
The Lamiaceae family is widely recognized for its production of essential oils and phenolic compounds that have promising value as pharmaceutical materials. However, the impact of environmental conditions and different harvest stages on the phytochemical composition of Lamiaceae plants remains poorly understood. This study aimed to investigate the effects of harvest time on the phytochemical composition, including rosmarinic acid (RA) and volatile organic compounds (VOCs), of four Lamiaceae plants-Korean mint (AR), lemon balm (MO), opal basil (OBP), and sage (SO)-and was conducted under an environment-controlled system. Although all four plants had RA as the dominant compound, its distribution varied by species. The flowered plants, including AR and OBP, exhibited a rapid increase of RA during the transition from the vegetative stage to the reproductive stage. In contrast, non-flowered groups, including MO and SO, showed a steady increase in the content of total phenolics and RA. The main components of VOCs also differed depending on the plant, with characteristic fragrance compounds identified for each one (AR: estragole; MO: (Z)-neral and geranial; OBP: methyl eugenol, eugenol, and linalool; and SO: (Z)-thujone, camphor, and humulene). The total VOCs content was highest on the 60th day after transplanting regardless of the species, while the trends of total phenolics, RA content, and antioxidant activities were different depending on whether plant species flowered during the cultivation cycle. There was a steady increase in species that had not flowered, and the highest content and activity of the flowering period were confirmed in the flowering plant species.
Collapse
Affiliation(s)
- Da-Hye Ryu
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (D.-H.R.); (J.-Y.C.)
| | - Jwa-Yeong Cho
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (D.-H.R.); (J.-Y.C.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Seung-Hoon Yang
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea;
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (D.-H.R.); (J.-Y.C.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
3
|
Pua A, Goh RMV, Huang Y, Tang VCY, Ee KH, Cornuz M, Liu SQ, Lassabliere B, Yu B. Recent advances in analytical strategies for coffee volatile studies: Opportunities and challenges. Food Chem 2022; 388:132971. [PMID: 35462220 DOI: 10.1016/j.foodchem.2022.132971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/29/2022]
Abstract
Coffee has attracted significant research interest owing to its complex volatile composition and aroma, which imparts a pleasant sensorial experience that remains challenging to analyse and interpret. This review summarises analytical challenges associated with coffee's volatile and matrix complexity, and recent developments in instrumental techniques to resolve them. The benefits of state-of-the-art analytical techniques applied to coffee volatile analysis from experimental design to sample preparation, separation, detection, and data analysis are evaluated. Complementary method selection coupled with progressive experimental design and data analysis are vital to unravel the increasing comprehensiveness of coffee volatile datasets. Considering this, analytical workflows for conventional, targeted, and untargeted coffee volatile analyses are thus proposed considering the trends towards sorptive extraction, multidimensional gas chromatography, and high-resolution mass spectrometry. In conclusion, no single analytical method addresses coffee's complexity in its entirely, and volatile analysis must be tailored to the key objectives and concerns of the analyst.
Collapse
Affiliation(s)
- Aileen Pua
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore; Department of Food Science and Technology, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Sigapore
| | - Rui Min Vivian Goh
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore
| | - Yunle Huang
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore; Department of Food Science and Technology, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Sigapore
| | - Vivien Chia Yen Tang
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore
| | - Kim-Huey Ee
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore
| | - Maurin Cornuz
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore
| | - Shao Quan Liu
- Department of Food Science and Technology, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Sigapore.
| | - Benjamin Lassabliere
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore
| | - Bin Yu
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore.
| |
Collapse
|
4
|
Almeida-Couto JMFDE, Ressutte JB, Cardozo-Filho L, Cabral VF. Current extraction methods and potential use of essential oils for quality and safety assurance of foods. AN ACAD BRAS CIENC 2022; 94:e20191270. [PMID: 35544845 DOI: 10.1590/0001-3765202220191270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/28/2020] [Indexed: 11/21/2022] Open
Abstract
Essential oils (EOs) or vegetable oils have become the focus of several studies because of their interesting bioactive properties. Their application has been successfully explored in active packaging, edible coatings, and as natural flavoring to extend the shelf life of various types of food products. In addition, alternative methods of extraction of EOs (ultrasound-assisted extraction, microwave-assisted extraction, pressurized liquid extraction and supercritical fluid extraction) have been shown to be more attractive than traditional methods since they present better efficiency, shorter extraction times and do not use toxic solvents. This review paper provides a concise and critical view of extraction methods of EOs and their application in food products. The researchers involved in the studies approached in this review were motivated mainly by concern about food quality. Here, we recognize and discuss the major advances and technologies recently used to enable shelf life extension of food products.
Collapse
Affiliation(s)
- Jéssica M F DE Almeida-Couto
- Universidade Estadual de Maringá/UEM, Departamento de Engenharia Química, Av. Colombo nº 5.790, 87020-900 Maringá, PR, Brazil
| | - Jéssica B Ressutte
- Universidade Estadual de Londrina/UEL, Departamento de Ciência e Tecnologia de Alimentos/UEL, Rodovia Celso Garcia Cid, 86057970 Londrina, PR, Brazil
| | - Lúcio Cardozo-Filho
- Universidade Estadual de Maringá/UEM, Departamento de Engenharia Química, Av. Colombo nº 5.790, 87020-900 Maringá, PR, Brazil
| | - Vladimir F Cabral
- Universidade Estadual de Maringá/UEM, Departamento de Engenharia de Alimentos, Av. Colombo nº 5.790, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
5
|
How do green and black coffee brews and bioactive interaction with gut microbiome affect its health outcomes? Mining evidence from mechanistic studies, metagenomics and clinical trials. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
The Analysis of Chlorogenic Acid and Caffeine Content and Its Correlation with Coffee Bean Color under Different Roasting Degree and Sources of Coffee (Coffea arabica Typica). Processes (Basel) 2021. [DOI: 10.3390/pr9112040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Coffee is one of the main economic crops in the world and is now widely grown throughout Taiwan. The process of roasting coffee begins with the heating and smooth expansion of raw beans, which leads to changes in appearance and color while affecting the flavor and taste of coffee. So far, most coffee manufacturers have used visual inspection or colorimeter methods to identify differences in coffee quality. Moreover, there is no literature discussing the correlation of roasted bean color with caffeine and chlorogenic acid content. Therefore, the purpose of this experiment was to analyze the chlorogenic acid and caffeine content and their correlation with bean color under different roasting degrees and from different sources to establish basic data for the rapid identification of coffee quality in the future. In this experiment, the coffee Coffea arabica typica from Dongshan, Gukeng, and Sumatra’s Indonesian rainforest was used, and the beans were roasted into four degrees: raw bean, light, medium, and dark roast, to investigate the appearance of the coffee beans and its correlation with caffeine and chlorogenic acid content. The results showed that with a higher roasting degree, caffeine content increased gradually, except for Indonesian beans, but the chlorogenic acid content in all samples showed a declining trend with the increase in roasting degree. The correlation between the chlorogenic acid content and the color space value of the coffee bean color shows that L*, a*, and h° in both ground and unground coffee are highly correlated. The C* value of the ground and unground coffee showed a correlation coefficient of r = 0.159 ns and 0.299 ns, respectively. The correlation between the caffeine content and the color space value of the unground coffee bean shows that the a*, b*, and C* value is highly correlated with the caffeine content. The color space values of ground coffee beans show no correlation with caffeine.
Collapse
|
7
|
Yeager SE, Batali ME, Guinard JX, Ristenpart WD. Acids in coffee: A review of sensory measurements and meta-analysis of chemical composition. Crit Rev Food Sci Nutr 2021; 63:1010-1036. [PMID: 34553656 DOI: 10.1080/10408398.2021.1957767] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Coffee contains a variety of organic acids (OAs) and chlorogenic acids (CGAs) that contribute to overall sensory properties. Large variations in preparation and measurement methodology across the literature complicate interpretation of general trends. Here, we perform a systematic review and meta-analysis of the published literature to elucidate the concentrations of OAs and CGAs in both Coffea arabica (arabica) and Coffea canephora (robusta), for both green coffee and roasted coffee at multiple roast levels. A total of 129 publications were found to report acid concentration measurements, yielding 8,634 distinct data points. Analysis of the full data set reveals several trends. First, roasted robusta has considerably more acidic compounds than arabica with 2 to 5 times as much total OAs, and much larger amounts of formic and acetic acid. As for CGAs, in both arabica and robusta 5-CQA is the major component, and progressive roasting decreases the concentration of all CGAs. The total amount of CGA present was more dependent on roast level than the type of coffee (arabica vs. robusta). Overall, this meta-analysis suggests that the increases in certain OAs with roast level might play more of a role in the sensory profile of dark roast coffees than previously suspected.
Collapse
Affiliation(s)
- Sara E Yeager
- Department of Food Science & Technology, University of California Davis, Davis, California, USA.,UC Davis Coffee Center, University of California Davis, Davis, California, USA
| | - Mackenzie E Batali
- Department of Food Science & Technology, University of California Davis, Davis, California, USA.,UC Davis Coffee Center, University of California Davis, Davis, California, USA
| | - Jean-Xavier Guinard
- Department of Food Science & Technology, University of California Davis, Davis, California, USA.,UC Davis Coffee Center, University of California Davis, Davis, California, USA
| | - William D Ristenpart
- UC Davis Coffee Center, University of California Davis, Davis, California, USA.,Department of Chemical Engineering, University of California Davis, Davis, California, USA
| |
Collapse
|
8
|
Souza MC, Silva LC, Chaves JO, Salvador MP, Sanches VL, da Cunha DT, Foster Carneiro T, Rostagno MA. Simultaneous extraction and separation of compounds from mate ( Ilex paraguariensis) leaves by pressurized liquid extraction coupled with solid-phase extraction and in-line UV detection. FOOD CHEMISTRY. MOLECULAR SCIENCES 2021; 2:100008. [PMID: 35415638 PMCID: PMC8991615 DOI: 10.1016/j.fochms.2020.100008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/24/2020] [Accepted: 12/19/2020] [Indexed: 11/25/2022]
Abstract
pH and temperature are the main variables affecting recovery and separation. The selection of the adsorbent is critical for the recovery of less polar compounds. Excellent separation of compounds in different fractions was achieved. The use of a UV–Vis detector allowed monitoring the process in real-time. The developed method provided higher recoveries than conventional methods.
The in-line coupling of the pressurized liquid extraction with a solid-phase adsorbent and a UV–Vis detector for the simultaneous extraction and separation of bioactive compounds from yerba mate (PLE-SPE-UV) was carried out in two stages. In the first stage, water was used as a solvent, while in the second stage, ethanol was used. For the optimization of the method, different adsorbents (Sepra C18-E, Isolute C18-EC, and Strata-X C18), temperatures (40–80 °C), solvent flow-rate (1–3 mL/min), and pH (4.0 and 8.0) were evaluated. By using a UV–Vis detector on-line, it is possible to monitor the process in real-time. The developed method allowed obtaining similar or higher recoveries of all the compounds classes than other methods, such as ultrasound-assisted extraction, stirring, maceration, and pressurized liquid extraction alone, in addition to separating them into fractions. The developed method could be used as sample preparation for the analysis of different compounds classes from mate.
Collapse
Affiliation(s)
- Mariana C Souza
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Laise C Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Jaisa O Chaves
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Mayara P Salvador
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Vitor L Sanches
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Diogo T da Cunha
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Tânia Foster Carneiro
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Mauricio A Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| |
Collapse
|
9
|
Kim DS, Lim SB. Subcritical water extraction of rutin from the aerial parts of common buckwheat. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.104561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|