1
|
Luo Z, Zhu Y, Xiang H, Wang Z, Jiang Z, Zhao X, Sun X, Guo Z. Advancements in Inactivation of Soybean Trypsin Inhibitors. Foods 2025; 14:975. [PMID: 40232001 PMCID: PMC11941488 DOI: 10.3390/foods14060975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 04/16/2025] Open
Abstract
Soybean Trypsin Inhibitors (STIs) in soy-based foods have negative effects on soybean protein digestion and pancreatic health of humans. The inactivation of STIs is a critical unit operation aimed at enhancing the nutritional properties of soy-based foods during processing. This paper reviews the structure of STIs and soybean proteins, as well as the mechanisms of digestion. Various technologies (physical, chemical, biological) have been used to inactivate STIs. Their parameter settings, operating procedures, advantages, and disadvantages are also described. Mechanisms of inactivation of STIs (Kunitz trypsin inhibitor (KTI) and Bowman-Birk inhibitor (BBI)) conformations under different treatments are clarified. In addition, emerging technologies, e.g., Ohmic Heating, Electron Beam Irradiation, Dielectric-Barrier Discharge, and probiotics, have demonstrated great potential to inactivate STIs. We advise that multiple emerging technologies should combine with other unit operating systems to maximize inactivation efficiency.
Collapse
Affiliation(s)
- Zhanjun Luo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Z.L.); (Y.Z.); (H.X.); (Z.W.); (Z.J.)
| | - Yujia Zhu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Z.L.); (Y.Z.); (H.X.); (Z.W.); (Z.J.)
| | - Huiyu Xiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Z.L.); (Y.Z.); (H.X.); (Z.W.); (Z.J.)
| | - Ziqian Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Z.L.); (Y.Z.); (H.X.); (Z.W.); (Z.J.)
| | - Zhimo Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Z.L.); (Y.Z.); (H.X.); (Z.W.); (Z.J.)
| | - Xinglong Zhao
- College of Engineering, Northeast Agricultural University, Harbin 150030, China;
- Center for Innovation and Entrepreneurship, Northeast Agricultural University, Harbin 150030, China
| | - Xiaomeng Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Z.L.); (Y.Z.); (H.X.); (Z.W.); (Z.J.)
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Z.L.); (Y.Z.); (H.X.); (Z.W.); (Z.J.)
| |
Collapse
|
2
|
Ashaolu TJ, Greff B, Varga L. The structure-function relationships and techno-functions of β-conglycinin. Food Chem 2025; 462:140950. [PMID: 39213968 DOI: 10.1016/j.foodchem.2024.140950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/26/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
β-conglycinin (β-CG) is a prominent storage protein belonging to the globulin family in soybean (Glycine max) seeds. Along with other soybean proteins, it serves as an important source of essential amino acids and high-quality nutrition. However, the digestibility and nutritional value of β-CG are key factors affecting the nutritional profile of soy-based foods. The heterotrimeric, secondary, and quaternary structures of β-CG, particularly the spatial arrangement of its α, α', and β subunits, influence its functional properties. Considering these aspects, β-CG emerges as a significant protein with diverse applications in the food and health sectors. Therefore, this review explores β-CG's composition, structure, function, health implications, and industrial uses. Salient discussions are presented on its molecular structure, nutrition, digestibility, allergenicity, and techno-functions including emulsification, solubility, gelling, and structure-function complexities. Overall, the multifaceted potential of β-CG in the healthcare sector and the food industry is evident.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Medicine, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Babett Greff
- Department of Food Science, Széchenyi István University, Mosonmagyaróvár 9200, Hungary
| | - László Varga
- Department of Food Science, Széchenyi István University, Mosonmagyaróvár 9200, Hungary
| |
Collapse
|
3
|
Ma W, Yuan W, Yao X, Chen M, Wang W, Jin W, Huang J, Cao Y. Role of sodium pyrophosphate and catechin in the enzymatic hydrolysis of oxidatively damaged myofibrillar protein gels in vitro: Mechanistic insights. Food Chem 2024; 461:140884. [PMID: 39167951 DOI: 10.1016/j.foodchem.2024.140884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
This study investigated the effects of sodium pyrophosphate (SPP) and catechin (C) on the in vitro enzymatic digestion of oxidatively damaged myofibrillar protein (MP) gel. The results indicated that SPP increased the β-sheet content and the gastric digestibility of the MP gel, while C hindered the transition from α-helix to β-sheet structure, leading to decreased digestibility. Notably, neither compound significantly affected intestinal digestibility. Furthermore, SPP and C significantly enhanced the antioxidant activity of MP gel digestion products. Notably, their synergistic hydrolysis products, simulating both gastric and gastrointestinal stages, chelated 91.4 % and 89.1 % of Fe2+ and scavenged 59.4 % and 77.6 % of hydroxyl radicals, respectively. Moreover, the final digestion products of the MP gel treated with SPP and C exhibited the highest content of negatively charged amino acids and absolute Zeta potential values. Overall, this study demonstrated that incorporating SPP and C could positively impact the digestion of oxidatively damaged MP gels.
Collapse
Affiliation(s)
- Wenhui Ma
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; School of Food Science and Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi' an 710021, China
| | - Wei Yuan
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Xianqi Yao
- Linyi Jinluo Win Ray Food Co., Ltd., Linyi 276036, China
| | - Miao Chen
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Wei Wang
- Linyi Jinluo Win Ray Food Co., Ltd., Linyi 276036, China
| | - Weizhong Jin
- Linyi Jinluo Win Ray Food Co., Ltd., Linyi 276036, China
| | - Junrong Huang
- School of Food Science and Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi' an 710021, China.
| | - Yungang Cao
- School of Food Science and Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi' an 710021, China.
| |
Collapse
|
4
|
Liu R, Yang Y, Cui X, Mwabulili F, Xie Y. Effects of Baking and Frying on the Protein Oxidation of Wheat Dough. Foods 2023; 12:4479. [PMID: 38137283 PMCID: PMC10742965 DOI: 10.3390/foods12244479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Protein oxidation caused by food processing is harmful to human health. A large number of studies have focused on the effects of hot processing on protein oxidation of meat products. As an important protein source for human beings, the effects of hot processing on protein oxidation in flour products are also worthy of further study. This study investigated the influences on the protein oxidation of wheat dough under baking (0-30 min, 200 °C or 20 min, 80-230 °C) and frying (0-18 min, 180 °C or 10 min, 140-200 °C). With the increase in baking and frying time and temperature, we found that the color of the dough deepened, the secondary structure of the protein changed from α-helix to β-sheet and β-turn, the content of carbonyl and advanced glycation end products (AGEs) increased, and the content of free sulfhydryl (SH) and free amino groups decreased. Furthermore, baking and frying resulted in a decrease in some special amino acid components in the dough, and an increase in the content of amino acid oxidation products, dityrosine, kynurenine, and N'-formylkynurenine. Moreover, the nutritional value evaluation results showed that excessive baking and frying reduced the free radical scavenging rate and digestibility of the dough. These results suggest that frying and baking can cause protein oxidation in the dough, resulting in the accumulation of protein oxidation products and decreased nutritional value. Therefore, it is necessary to reduce excessive processing or take reasonable intervention measures to reduce the effects of thermal processing on protein oxidation of flour products.
Collapse
Affiliation(s)
- Ru Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (R.L.); (Y.Y.); (X.C.); (F.M.)
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Yuhui Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (R.L.); (Y.Y.); (X.C.); (F.M.)
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaojie Cui
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (R.L.); (Y.Y.); (X.C.); (F.M.)
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Fred Mwabulili
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (R.L.); (Y.Y.); (X.C.); (F.M.)
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Yanli Xie
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (R.L.); (Y.Y.); (X.C.); (F.M.)
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
5
|
Li F, Wu X, Liang Y, Wu W. Potential implications of oxidative modification on dietary protein nutritional value: A review. Compr Rev Food Sci Food Saf 2023; 22:714-751. [PMID: 36527316 DOI: 10.1111/1541-4337.13090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
During food processing and storage, proteins are sensitive to oxidative modification, changing the structural characteristics and functional properties. Recently, the impact of dietary protein oxidation on body health has drawn increasing attention. However, few reviews summarized and highlighted the impact of oxidative modification on the nutritional value of dietary proteins and related mechanisms. Therefore, this review seeks to give an updated discussion of the effects of oxidative modification on the structural characteristics and nutritional value of dietary proteins, and elucidate the interaction with gut microbiota, intestinal tissues, and organs. Additionally, the specific mechanisms related to pathological conditions are also characterized. Dietary protein oxidation during food processing and storage change protein structure, which further influences the in vitro digestion properties of proteins. In vivo research demonstrates that oxidized dietary proteins threaten body health via complicated pathways and affect the intestinal microenvironment via gut microbiota, metabolites, and intestinal morphology. This review highlights the influence of oxidative modification on the nutritional value of dietary proteins based on organs and the intestinal tract, and illustrates the necessity of appropriate experimental design for comprehensively exploring the health consequences of oxidized dietary proteins.
Collapse
Affiliation(s)
- Fang Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| | - Xiaojuan Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| | - Ying Liang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| | - Wei Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| |
Collapse
|
6
|
Sun F, Li B, Guo Y, Wang Y, Cheng T, Yang Q, Liu J, Fan Z, Guo Z, Wang Z. Effects of ultrasonic pretreatment of soybean protein isolate on the binding efficiency, structural changes, and bioavailability of a protein-luteolin nanodelivery system. ULTRASONICS SONOCHEMISTRY 2022; 88:106075. [PMID: 35753139 PMCID: PMC9240864 DOI: 10.1016/j.ultsonch.2022.106075] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 05/09/2023]
Abstract
The combination of protein and flavonoids can ameliorate the problems of poor solubility and stability of flavonoids in utilization. In this study, soybean protein isolate pretreated by ultrasonication was selected as the embedding wall material, which was combined with luteolin to form a soybean protein isolate-luteolin nanodelivery system. The complexation effect and structural changes of soybean protein isolate (SPI) and ultrasonic pretreatment (100 W, 200 W, 300 W, 400 W and 500 W) of soybean protein isolate with luteolin (LUT) were compared, as well as the changes in digestion characteristics and antioxidant activity in vitro. The results showed that proper ultrasonic pretreatment increased the encapsulation efficacy, loading amount and solubility to 89.72%, 2.51 μg/mg and 90.56%. Appropriate ultrasonic pretreatment could make the particle size and the absolute value of ζ-potential of SPI-LUT nanodelivery system decrease and increase respectively. The FTIR and fluorescence results show that appropriate ultrasonic pretreatment could reduce α-helix, β-sheet and random coil, increase β-turn, and enhance fluorescence quenching. The thermodynamic evaluation results indicate that the ΔG < 0, ΔH > 0 and ΔS > 0, so the interaction of LUT with the protein was spontaneous and mostly governed by hydrophobic interactions. The XRD results show that the LUT was amorphous and completely wrapped by SPI. The DSC results showed that ultrasonic pretreatment could improve the thermal stability of SPI-LUT nanodelivery system to 112.66 ± 1.69 °C. Digestion and antioxidant analysis showed that appropriate ultrasonic pretreatment increased the LUT release rate and DPPH clearance rate of SPI-LUT nanodelivery system to 89.40 % and 55.63 % respectively. This study is a preliminary source for the construction of an SPI nanodelivery system with ultrasound pretreatment and the deep processing and utilization of fat-soluble active substances.
Collapse
Affiliation(s)
- Fuwei Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Bailiang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yanan Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yichang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Tianfu Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qingyu Yang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Jun Liu
- Kedong Yuwang Soybean Protein Food Co., Ltd, Qiqihaer, Heilongjiang 161000, China; Shandong Yuwang Industrial Co., Ltd, Dezhou, Shandong 251299, China
| | - Zhijun Fan
- Heilongjiang Beidahuang Green and Healthy Food Co., Ltd, Jiamusi, Heilongjiang 154007, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
7
|
Effects of Peroxyl Radicals on the Structural Characteristics and Fatty Acid Composition of High-Density Lipoprotein from Duck Egg Yolk. Foods 2022; 11:foods11111634. [PMID: 35681384 PMCID: PMC9180385 DOI: 10.3390/foods11111634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, high-density lipoprotein (HDL) from duck egg yolk was subjected to oxidation with a system based on 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH)-derived peroxyl radicals. The effects of peroxyl radicals on the protein carbonyl, free sulfhydryl, secondary/tertiary structure, surface hydrophobicity, solubility, particle size distribution, zeta potential and fatty acid composition of HDL were investigated by using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Fourier-transform infrared spectroscopy (FTIR), circular dichroism (CD), fluorescence spectroscopy, dynamic light scattering and ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). The results indicated that the content of protein carbonyl was significantly increased, that of free sulfhydryl was obviously reduced, and the ordered secondary structure was also decreased with increasing AAPH concentration. In addition, the surface hydrophobicity and solubility of HDL showed apparent increases due to the exposure of hydrophobic groups and aggregation of protein caused by oxidation. The fatty acid composition of HDL exhibited pronounced changes due to the disrupted protein–lipid interaction and lipid oxidation by AAPH-derived peroxyl radicals. These results may help to elucidate the molecular mechanism for the effect of lipid oxidation products on the oxidation of duck yolk proteins.
Collapse
|
8
|
Non-covalent interaction of soy protein isolate and catechin: Mechanism and effects on protein conformation. Food Chem 2022; 384:132507. [PMID: 35217462 DOI: 10.1016/j.foodchem.2022.132507] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/23/2021] [Accepted: 02/16/2022] [Indexed: 01/27/2023]
Abstract
Understanding the molecular mechanism behind protein-polyphenol interactions is critical for the application of protein-polyphenol compounds in foods. The purpose of this research was to investigate the non-covalent interaction mechanism between soy protein isolate (SPI) and catechin and its effect on protein conformation. We observed that particle size, ζ-potential, and polyphenol bound equivalents of SPI increased significantly after non-covalent modification with catechin. These changes caused SPI to aggregate and form a network-like structure. Fourier transform infrared spectroscopy (FTIR) indicated that increased catechin concentrations caused SPI to become looser and more disordered as its α-helix and β-sheet transformed into β-turn and random coil. Furthermore, internal structure of SPI was opened and its hydrophobic groups were exposed to a polar environment, which was demonstrated by decreased surface hydrophobicity. Thermodynamic analysis and molecular docking results showed that the main forces present between SPI and catechin were hydrophobic interactions and hydrogen bonds.
Collapse
|
9
|
Zhang N, Zhang X, Zhang Y, Li Y, Gao Y, Li Q, Yu X. Non-covalent interaction between pea protein isolate and catechin: effects on protein structure and functional properties. Food Funct 2022; 13:12208-12218. [DOI: 10.1039/d2fo01549h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The aim of this study was to investigate the effects of non-covalent interaction between pea protein isolate (PPI) and different concentrations (0.05–0.25%, w/v) of catechin (CT) on the structural and functional characteristics of protein.
Collapse
Affiliation(s)
- Na Zhang
- Shaanxi “Four Subjects and One Union” Engineering Technology School-Enterprise Joint Research Center of Functional Oils, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, P. R. China
| | - Xuping Zhang
- Shaanxi “Four Subjects and One Union” Engineering Technology School-Enterprise Joint Research Center of Functional Oils, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, P. R. China
| | - Yan Zhang
- Shaanxi “Four Subjects and One Union” Engineering Technology School-Enterprise Joint Research Center of Functional Oils, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, P. R. China
| | - Yonglin Li
- Shaanxi “Four Subjects and One Union” Engineering Technology School-Enterprise Joint Research Center of Functional Oils, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, P. R. China
| | - Yuan Gao
- Shaanxi “Four Subjects and One Union” Engineering Technology School-Enterprise Joint Research Center of Functional Oils, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, P. R. China
| | - Qi Li
- Shaanxi “Four Subjects and One Union” Engineering Technology School-Enterprise Joint Research Center of Functional Oils, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, P. R. China
| | - Xiuzhu Yu
- Shaanxi “Four Subjects and One Union” Engineering Technology School-Enterprise Joint Research Center of Functional Oils, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, P. R. China
| |
Collapse
|
10
|
Wang Y, Shi J, Jiang F, Xu YJ, Liu Y. Metabolomics reveals the impact of saturation of dietary lipids on aging and longevity of C. elegans. Mol Omics 2022; 18:430-438. [DOI: 10.1039/d2mo00041e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Saturation differences in dietary lipids modify their digestive and absorption profiles, endpoints that may influence the nutrition and health. This study tests the hypothesis that dietary with elevated unsaturated fats...
Collapse
|
11
|
Yi F, Wu K, Yu G, Su C. Preparation of Pickering emulsion based on soy protein isolate-gallic acid with outstanding antioxidation and antimicrobial. Colloids Surf B Biointerfaces 2021; 206:111954. [PMID: 34229175 DOI: 10.1016/j.colsurfb.2021.111954] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 01/09/2023]
Abstract
This study investigated a novel antioxidant and antimicrobial Pickering emulsion stabilized by soy protein isolate (SPI) and gallic acid (GA) as an excellent protective delivery medium for lipophilic functional food. SPI-GA complex nanoparticles were fabricated by a covalent cross-linking mechanism under alkaline conditions with a small particle size (42.93-24.91 nm) and high zeta potential (26.92-38.58 -mV), which led to improved stability at high GA concentrations. Without the addition of preservatives, it was found that SPI-GA complex nanoparticles have a certain antimicrobial ability. Using these nanoparticles as the only stabilizers, outstanding antioxidant and antimicrobial Pickering emulsions could be easily prepared, and they had a small droplet size (948.09-457.82 nm), great stability and inhibited lipid peroxidation and antibacterial ability. Oxidation and microbial protection proceeded in a GA concentration-dependent manner. This study provides a novel way to prepare functionalized Pickering emulsions as delivery media for functional lipophilic raw materials.
Collapse
Affiliation(s)
- Fengping Yi
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Kaiwen Wu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Genfa Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China.
| | - Chang Su
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China.
| |
Collapse
|
12
|
Sui X, Zhang T, Jiang L. Soy Protein: Molecular Structure Revisited and Recent Advances in Processing Technologies. Annu Rev Food Sci Technol 2021; 12:119-147. [PMID: 33317319 DOI: 10.1146/annurev-food-062220-104405] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rising health concerns and increasing obesity levels in human society have led some consumers to cut back on animal protein consumption and switch to plant-based proteins as an alternative. Soy protein is a versatile protein supplement and contains well-balanced amino acids, making it comparable to animal protein. With sufficient processing and modification, the quality of soy protein can be improved above that of animal-derived proteins, if desired. The modern food industry is undergoing a dynamic change, with advanced processing technologies that can produce a multitude of foods and ingredients with functional properties from soy proteins, providing consumers with a wide variety of foods. This review highlights recent progress in soy protein processing technologies. Using the current literature, the processing-induced structural changes in soy protein are also explored. Furthermore, the molecular structure of soy protein, particularly the crystal structures of β-conglycinin and glycinin, is comprehensively revisited.
Collapse
Affiliation(s)
- Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; ,
| | - Tianyi Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; ,
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; ,
| |
Collapse
|
13
|
Yang R, Zhu L, Meng D, Wang Q, Zhou K, Wang Z, Zhou Z. Proteins from leguminous plants: from structure, property to the function in encapsulation/binding and delivery of bioactive compounds. Crit Rev Food Sci Nutr 2021; 62:5203-5223. [PMID: 33569994 DOI: 10.1080/10408398.2021.1883545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Leguminous proteins are important nutritional components in leguminous plants, and they have different structures and functions depending on their sources. Due to their specific structures and physicochemical properties, leguminous proteins have received much attention in food and nutritional applications, and they can be applied as various carriers for binding/encapsulation and delivery of food bioactive compounds. In this review, we systematically summarize the different structures and functional properties of several leguminous proteins which can be classified as ferritin, trypsin inhibitor, β-conglycinin, glycinin, and various leguminous proteins isolates. Moreover, we review the development of leguminous proteins as carriers of food bioactive compounds, and emphasize the functions of leguminous protein-based binding/encapsulation and delivery in overcoming the low bioavailability, instability and low absorption efficiency of food bioactive compounds. The limitations and challenges of the utilization of leguminous proteins as carriers of food bioactive compounds are also discussed. Possible approaches to resolve the limitations of applying leguminous proteins such as instability of proteins and poor absorption of bioactive compounds are recommended.
Collapse
Affiliation(s)
- Rui Yang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Lei Zhu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Demei Meng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Qiaoe Wang
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, P. R. China
| | - Kai Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Zhiwei Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Zhongkai Zhou
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, P. R. China
| |
Collapse
|
14
|
Dos Santos AN, de L Nascimento TR, Gondim BLC, Velo MMAC, de A Rêgo RI, do C Neto JR, Machado JR, da Silva MV, de Araújo HWC, Fonseca MG, Castellano LRC. Catechins as Model Bioactive Compounds for Biomedical Applications. Curr Pharm Des 2021; 26:4032-4047. [PMID: 32493187 DOI: 10.2174/1381612826666200603124418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/12/2020] [Indexed: 12/28/2022]
Abstract
Research regarding polyphenols has gained prominence over the years because of their potential as pharmacological nutrients. Most polyphenols are flavanols, commonly known as catechins, which are present in high amounts in green tea. Catechins are promising candidates in the field of biomedicine. The health benefits of catechins, notably their antioxidant effects, are related to their chemical structure and the total number of hydroxyl groups. In addition, catechins possess strong activities against several pathogens, including bacteria, viruses, parasites, and fungi. One major limitation of these compounds is low bioavailability. Catechins are poorly absorbed by intestinal barriers. Some protective mechanisms may be required to maintain or even increase the stability and bioavailability of these molecules within living organisms. Moreover, novel delivery systems, such as scaffolds, fibers, sponges, and capsules, have been proposed. This review focuses on the unique structures and bioactive properties of catechins and their role in inflammatory responses as well as provides a perspective on their use in future human health applications.
Collapse
Affiliation(s)
- Adriana N Dos Santos
- Human Immunology Research and Education Group (GEPIH), Technical School of Health, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Tatiana R de L Nascimento
- Human Immunology Research and Education Group (GEPIH), Technical School of Health, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Brenna L C Gondim
- Post-Graduation Program in Dentistry, Department of Dentistry, State University of Paraiba, Campina Grande, PB, Brazil
| | - Marilia M A C Velo
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, SP, Brazil
| | - Renaly I de A Rêgo
- Post-Graduation Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Paraiba, Campina Grande, PB, Brazil
| | - José R do C Neto
- Post-Graduation Program in Tropical Medicine and Public Health, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Juliana R Machado
- Post-Graduation Program in Tropical Medicine and Public Health, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Marcos V da Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Helvia W C de Araújo
- Department of Chemistry, State University of Paraíba, Campina Grande, PB, Brazil
| | - Maria G Fonseca
- Research Center for Fuels and Materials (NPE - LACOM), Department of Chemistry, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Lúcio R C Castellano
- Human Immunology Research and Education Group (GEPIH), Technical School of Health, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| |
Collapse
|
15
|
Chen F, Lin L, Zhao M, Zhu Q. Modification of Cucumaria frondosa hydrolysate through maillard reaction for sea cucumber peptide based-beverage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
Li S, Li Z, Li X, Wang P, Yu X, Fu Q, Gao S. Effect of AAPH oxidation on digestion characteristics of seed watermelon (Citrullus lanatus var) kernels protein isolates. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2020.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Yang B, Zhou Y, Wu M, Li X, Mai K, Ai Q. ω-6 Polyunsaturated fatty acids (linoleic acid) activate both autophagy and antioxidation in a synergistic feedback loop via TOR-dependent and TOR-independent signaling pathways. Cell Death Dis 2020; 11:607. [PMID: 32732901 PMCID: PMC7393504 DOI: 10.1038/s41419-020-02750-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
ω-6 Polyunsaturated fatty acids (PUFAs) are essential fatty acids that participate in macroautophagy (hereafter referred to as autophagy) and the Kelch ECH-associating protein 1 (Keap1)—nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant system in organisms. However, the molecular mechanisms by which ω-6 PUFAs (linoleic acid) regulate autophagy and Keap1–Nrf2 antioxidant system are not completely understood. Therefore, the purposes of this study were to explore the molecular mechanisms by which ω-6 PUFAs (linoleic acid) regulate autophagy and antioxidant system and to investigate the potential relationship between autophagy and antioxidant system through transcriptomic analysis, quantitative real-time polymerase chain reaction (RT-qPCR), western blot analysis, coimmunoprecipitation (Co-IP) and electrophoretic mobility shift assays (EMSAs) in vivo and in vitro. The results of the present study indicated that ω-6 PUFAs in diets induced autophagy but decrease antioxidant ability in vivo. However, the results also provided evidence, for the first time, that ω-6 PUFAs (linoleic acid) induced autophagy and increased antioxidant ability through the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway and the AMPK-target of rapamycin (TOR) signaling pathway in hepatocytes in vitro. Interestingly, the findings revealed a ω-6 PUFA-induced synergistic feedback loop between autophagy and antioxidant system, which are connected with each other through the P62 and Keap1 complex. These results suggested that ω-6 PUFAs (linoleic acid) could be useful for activating a synergistic feedback loop between autophagy and antioxidant system and could greatly aid in the prevention and treatment of multiple pathologies.
Collapse
Affiliation(s)
- Bo Yang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, People's Republic of China
| | - Yan Zhou
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, People's Republic of China
| | - Mengjiao Wu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, People's Republic of China
| | - Xueshan Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, People's Republic of China.
| |
Collapse
|
18
|
Nader J, Afif C, Louka N. Impact of a novel partial defatting technology on oxidative stability and sensory properties of peanut kernels. Food Chem 2020; 334:127581. [PMID: 32717687 DOI: 10.1016/j.foodchem.2020.127581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 07/04/2020] [Accepted: 07/12/2020] [Indexed: 11/25/2022]
Abstract
A novel process, 'mechanical expression preserving shape integrity', was conceived to prepare low-fat peanuts in response to health-conscious consumer demands. The main purpose of this study was to preserve the taste, aroma, and oxidative stability of the defatted product. Results generated from a central composite rotatable design showed that highest consumer sensory scores were reached at low pressures (4-6 MPa). Free fatty acid, peroxide, p-anisidine, and total oxidation values were mostly affected by water content [W] and pressure [P] with high correlation coefficients (82% < R2 < 87%). Overall, lipid oxidation and flavor fade were associated with higher defatting ratios and greater physical damage. The latter plays a major role in increasing the surface area and facilitating the access of oxygen to the remaining oil, thus rendering the defatted product more prone to oxidation. However, oxidation was reduced significantly using a Response Surface Methodology to optimize conditions ([W] 12.2 ± 0.6%d.b., [P] 6 ± 0.3 MPa and time [t] 18.2 ± 0.6 min).
Collapse
Affiliation(s)
- Joelle Nader
- School of Engineering, Lebanese American University, Byblos 48328, Lebanon; Laboratoire d'Intensification des Procédés Agro-Industriels (LIPAI), Unité de Recherche, Technologie et Valorisation Agroalimentaire (TVA), Centre d'Analyses et de Recherche, Faculté des Sciences, Université Saint Joseph, Campus des Sciences et Technologies, Mar Mikhael, Beirut 1104 2020, Lebanon.
| | - Charbel Afif
- Laboratoire d'Intensification des Procédés Agro-Industriels (LIPAI), Unité de Recherche, Technologie et Valorisation Agroalimentaire (TVA), Centre d'Analyses et de Recherche, Faculté des Sciences, Université Saint Joseph, Campus des Sciences et Technologies, Mar Mikhael, Beirut 1104 2020, Lebanon.
| | - Nicolas Louka
- Laboratoire d'Intensification des Procédés Agro-Industriels (LIPAI), Unité de Recherche, Technologie et Valorisation Agroalimentaire (TVA), Centre d'Analyses et de Recherche, Faculté des Sciences, Université Saint Joseph, Campus des Sciences et Technologies, Mar Mikhael, Beirut 1104 2020, Lebanon.
| |
Collapse
|
19
|
Preparation of sea cucumber (Stichopus variegates) peptide fraction with desired organoleptic property and its anti-aging activity in fruit flies and D-galactose-induced aging mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|