1
|
Lu C, Wang G, Zhang X, Fang Z, Wang X, Tang F, Ning K, Xu M, Wang J, Jiang H, Tao R, Xu P. Cost-effective, label-free electrochemical aptasensors for rapid detection of concanavalin A with screen printed electrodes. Food Chem 2025; 476:143338. [PMID: 39977999 DOI: 10.1016/j.foodchem.2025.143338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/25/2025] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
Intake of Concanavalin A (Con A), a hazardous lectin protein commonly discovered in legume vegetables, could cause various systemic symptoms including rash, nausea, vomiting, diarrhea, etc. Herein, we present a novel label-free and cost-effective electrochemical Con A aptasensor. [Fe(CN)6]3-/4- ions in testing buffer not only generate redox peaks during electrochemical scan, but also serve as electron acceptor/donor to enhance electron transfer. Anti-Con A aptamer is immobilized on surface of screen printed electrode to capture Con A molecules and form aptamer-protein complex, which hinders electron transfer near electrode surface and causes a decrease in peak current value. The constructed aptasensor displays a low detection limit of 17.88 ng/mL (around 171.92 pM), as well as good specificity against other legume lectins. The practicality of electrochemical sensors was evaluated using real-world samples, demonstrating their ability to rapid detect Con A in crude protein extracts from jack bean seeds. This work provides novel tools for rapid evaluation of Con A content in massive samples, which is required in food safety inspection and safety breeding of legume vegetables.
Collapse
Affiliation(s)
- Chenze Lu
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Gongyan Wang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiaoxiao Zhang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; Department of Pharmacy, Shanxian Central Hospital, Heze, Shandong Province 274300, China
| | - Zhihui Fang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xinyuan Wang
- Hangzhou Institute for Food and Drug Control, Hangzhou, Zhejiang 310022, China
| | - Fan Tang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Kang Ning
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Min Xu
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Jing Wang
- Zhejiang Gongzheng Testing Center Co., Ltd, Hangzhou, Zhejiang 310000, China
| | - Han Jiang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| | - Ran Tao
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Pei Xu
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Li L, Chu Z, Ning K, Zhu M, Lu C, Zhai R, Xu P. An accurate IDMS-based method for absolute quantification of phytohemagglutinin, a major antinutritional component in common bean. J Food Sci 2025; 90:e17590. [PMID: 39702890 DOI: 10.1111/1750-3841.17590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/22/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024]
Abstract
Phytohemagglutinin (PHA), a natural tetramer comprising PHA-E and PHA-L subunits that preferentially bind to red and white blood cells, respectively, constitutes a significant antinutritional and allergenic factor in common bean seeds. The accurate measurement of PHA content is a prerequisite for ensuring food safety inspections and facilitating genetic improvements in common bean cultivars with reduced PHA levels. Currently, mainstream methods for PHA quantification involve hemagglutination assays and immunodetection, but these methods often require fresh animal blood and lack specificity and accuracy. In this study, we present a novel liquid chromatography-mass spectrometry/MS-based method for PHA quantification, leveraging the advantages of isotope dilution mass spectrometry (IDMS). Two signature peptides each for PHA-E and PHA-L, along with a common signature peptide, were identified and employed for quantification, allowing differentiation between PHA-E and PHA-L subunits. The incorporation of amino acid analysis isotope IDMS enabled accurate determination of the synthetic signature peptides' purity during measurement, enhancing metrological accuracy. In addition, the trichloroacetic acid-acetone protocol was established as the optimized method for total protein extraction from dry bean seeds. Quantitative analysis of PHA-E and PHA-L subunits in six common bean varieties using the developed method demonstrated excellent linearity (R2 > 0.999), sensitivity (limit of detection and quantitation as low as 2.32 ng·mg-¹ and 7.73 ng·mg-¹, respectively), recovery (94.18%-104.47%), and precision (relative standard deviation < 3.45%). Collectively, we offer a precise and highly reproducible method that may be used as a standard for the determination of PHA content in common beans and other agricultural products containing PHA.
Collapse
Affiliation(s)
- Lan Li
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang, College of Life Sciences, China Jiliang University, Hangzhou, P.R. China
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, P.R. China
| | - Zhanying Chu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, P.R. China
| | - Kang Ning
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang, College of Life Sciences, China Jiliang University, Hangzhou, P.R. China
| | - Manman Zhu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, P.R. China
| | - Chenze Lu
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang, College of Life Sciences, China Jiliang University, Hangzhou, P.R. China
| | - Rui Zhai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, P.R. China
| | - Pei Xu
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang, College of Life Sciences, China Jiliang University, Hangzhou, P.R. China
| |
Collapse
|
3
|
Zhao J, Liu Y, Xu L, Sun L, Chen G, Wang H, Zhang Z, Lin H, Li Z. Influence of linoleic acid on the immunodetection of shrimp (Litopenaeus vannamei) tropomyosin and the mechanism investigation via multi-spectroscopic and molecular modeling techniques. Food Chem 2024; 434:137339. [PMID: 37699311 DOI: 10.1016/j.foodchem.2023.137339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 06/25/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
The effect of linoleic acid (LA) on the IgG/IgE recognition, in vitro digestibility and immunodetection of shrimp tropomyosin (TM) was investigated. Subsequently, the simultaneous binding of LA-TM was explored using multi-spectroscopic and molecular modeling techniques. Our findings reveled that the addition of LA significantly reduced TM's IgG/IgE immunoreactivity, digestibility, and immunodetection. Further analysis using multi-spectroscopic and molecular modeling techniques indicated that while TM's secondary structure remained largely unchanged, its 3-D structure showed significant alterations such as increased particle size and hydrophobic surface area, and a higher number of buried hydrophobic residues exposed due to the binding of LA to TM. These structural changes rendered it difficult for target antibodies and digestive enzymes to interact with related epitopes and cleavage sites buried inside the molecule. The results obtained in this study provide valuable insights into the molecular mechanism of poor immunodetection caused by food matrix interference.
Collapse
Affiliation(s)
- Jinlong Zhao
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao City, Shandong Province 266003, China; Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, No. 87 Dingjiaqiao Rd., Nanjing, Jiangsu Province, 210009, China
| | - Yuhai Liu
- Dawning International Information Industry Co., Ltd., No.169, Songling Road, Qingdao City, Shandong Province, 266101, PR China
| | - Lili Xu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, No.202 Gongye North Road, Jinan 250100, China
| | - Lirui Sun
- School of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Guanzhi Chen
- Department of Dermatology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Qingdao City, Shandong Province 266003, China
| | - Hao Wang
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao City, Shandong Province 266003, China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao City, Shandong Province 266003, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao City, Shandong Province 266003, China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao City, Shandong Province 266003, China.
| |
Collapse
|
4
|
Gao K, He S, Chen H, Wang J, Li X, Sun H, Zhang Y. Insight of pH-shifting as an effective pretreatment to reduce the antigenicity of lectin from red kidney bean (Phaseolus vulgaris L.) combining with autoclaving treatments: The structure investigation. Food Chem 2024; 434:137429. [PMID: 37716149 DOI: 10.1016/j.foodchem.2023.137429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/19/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Combined effects of pH-shifting and an autoclaving cycle (121 °C, 15 min) on red kidney bean lectin (RKBL) were investigated using intrinsic and extrinsic fluorescence, UV, FTIR, DSC, SEC, dot-blot analysis and in vitro digestibility. Spectroscopic studies suggested that the protein refolding was stable after 3 h incubation with the hydrophobic exposure after pH-shifting, and hydrophobicity was significantly increased with the formation of more looser structure, which would influence the structural stability of known epitopes. In details, the increase of β-turn and reduction of random coil was related with the lower denaturation enthalpy, while the protein aggregation was also observed in acidic treated samples after autoclaving. Lower antigenicity and good digestibility suggested the exposure of enzyme cutting sites, and confirmed the effectivity of pH-shifting prior to the autoclaving. Then the results would be beneficial to the development of hypoallergenic kidney bean foods.
Collapse
Affiliation(s)
- Kuan Gao
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Shudong He
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China.
| | - Haoshuang Chen
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Junhui Wang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Xingjiang Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Hanju Sun
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Yi Zhang
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
5
|
Wang S, Lin S, Liu K, Liu Y, Liu Q, Sun N. Digestion-Resistant Linear Epitopes as Dominant Contributors to Strong Allergenicity of Tropomyosin in Antarctic Krill ( Euphausia superba). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16739-16751. [PMID: 37897700 DOI: 10.1021/acs.jafc.3c04999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Although tropomyosin has been identified as a major allergen in Antarctic krill, the digestive fate of Antarctic krill tropomyosin and its relationship with allergenicity are unknown. In this study, Antarctic krill tropomyosin was administered to BALB/c mice via both gavage and intraperitoneal injection to explore its sensitizing and eliciting capacity, and its digestion products were analyzed for structural changes and digestion-resistant linear epitopes. Mice gavaged with tropomyosin exhibited lower levels of specific IgE and IgG1, mast cell degranulation, vascular permeability, and anaphylaxis symptoms than those in the intraperitoneal injection group. This may be due to the destruction of macromolecular aggregates, loose expansion of the tertiary structure, complete disappearance of α-helix, and significant changes in molecular force upon the digestion of tropomyosin. Nevertheless, the intragastric administration of Antarctic krill tropomyosin still triggered strong allergic reactions, which was attributed to the existence of seven digestion-resistant linear epitopes (Glu26-His44, Thr111-Arg125, Glu157-Glu164, Glu177-Gly186, Val209-Ile225, Arg244-Arg255, and Val261-Ile270).
Collapse
Affiliation(s)
- Shan Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Songyi Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Kexin Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yao Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Qiaozhen Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Na Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
6
|
Zhang Z, Liu C, Wu S, Ma T. The Non-Nutritional Factor Types, Mechanisms of Action and Passivation Methods in Food Processing of Kidney Bean ( Phaseolus vulgaris L.): A Systematic Review. Foods 2023; 12:3697. [PMID: 37835350 PMCID: PMC10572541 DOI: 10.3390/foods12193697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Kidney beans (KBs), as a traditional edible legume, are an important food crop of high nutritional and economic value worldwide. KBs contain a full range of amino acids and a high proportion of essential amino acids, and are rich in carbohydrates as well as vitamins and minerals. However, KBs contain a variety of non-nutritional factors that impede the digestion and absorption of nutrients, disrupt normal metabolism and produce allergic reactions, which severely limit the exploitation of KBs and related products. Suppressing or removing the activity of non-nutritional factors through different processing methods can effectively improve the application value of KBs and expand the market prospect of their products. The aim of this review was to systematically summarize the main types of non-nutritional factors in KBs and their mechanisms of action, and to elucidate the effects of different food processing techniques on non-nutritional factors. The databases utilized for the research included Web of Science, PubMed, ScienceDirect and Scopus. We considered all original indexed studies written in English and published between 2012 and 2023. We also look forward to the future research direction of producing KB products with low non-nutritional factors, which will provide theoretical basis and foundation for the development of safer and healthier KB products.
Collapse
Affiliation(s)
- Zifan Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Chunxiu Liu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Sisi Wu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Tiezheng Ma
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
7
|
Teixeira RF, Balbinot Filho CA, Oliveira DD, Zielinski AAF. Prospects on emerging eco-friendly and innovative technologies to add value to dry bean proteins. Crit Rev Food Sci Nutr 2023; 64:10256-10280. [PMID: 37341113 DOI: 10.1080/10408398.2023.2222179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The world's growing population and evolving food habits have created a need for alternative plant protein sources, with pulses playing a crucial role as healthy staple foods. Dry beans are high-protein pulses rich in essential amino acids like lysine and bioactive peptides. They have gathered attention for their nutritional quality and potential health benefits concerning metabolic syndrome. This review highlights dry bean proteins' nutritional quality, health benefits, and limitations, focusing on recent eco-friendly emerging technologies for their obtaining and functionalization. Antinutritional factors (ANFs) in bean proteins can affect their in vitro protein digestibility (IVPD), and lectins have been identified as potential allergens. Recently, eco-friendly emerging technologies such as ultrasound, microwaves, subcritical fluids, high-hydrostatic pressure, enzyme technology, and dry fractionation methods have been explored for extracting and functionalizing dry bean proteins. These technologies have shown promise in reducing ANFs, improving IVPD, and modifying allergen epitopes. Additionally, they enhance the techno-functional properties of bean proteins, making them more soluble, emulsifying, foaming, and gel-forming, with enhanced water and oil-holding capacities. By utilizing emerging innovative technologies, protein recovery from dry beans and the development of protein isolates can meet the demand for alternative protein sources while being eco-friendly, safe, and efficient.
Collapse
Affiliation(s)
- Renata Fialho Teixeira
- Department of Chemical Engineering and Food Engineering, UFSC, Florianópolis, SC, Brazil
| | | | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering, UFSC, Florianópolis, SC, Brazil
| | | |
Collapse
|
8
|
Zhao J, Zeng J, Liu Y, Lin H, Gao X, Wang H, Zhang Z, Lin H, Li Z. Understanding the Mechanism of Increased IgG/IgE Reactivity but Decreased Immunodetection Recovery in Thermally Induced Shrimp ( Litopenaeus vannamei) Tropomyosin via Multispectroscopic and Molecular Dynamics Simulation Techniques. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3444-3458. [PMID: 36750428 DOI: 10.1021/acs.jafc.2c08221] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Despite the fact that tropomyosin (TM) has highly stable structural characteristics, thermal processing can adversely influence its immunodetection, and the mechanism involved has not been elucidated. Purified TM was heated at various temperatures, and then the IgG/IgE-binding capacity and immunodetection recovery were determined; meanwhile, the structural alterations were analyzed via spectroscopic and molecular dynamics simulation techniques. The obtained results demonstrated that heat-treated TM showed significantly increased IgG/IgE reactivity, confirmed by indirect ELISA and immunoblotting analysis, which might be attributed to the increased structural flexibility, and thus allowed TM to be recognized IgG/IgE easily. However, these structural alterations during thermal processing would contribute to the masking of some epitopes located in TM's surface due to the presence of curled or folded conformation with a considerable reduction of the solvent-accessible surface and radius of gyration, which primarily caused immunodetection recovery reduction in the sandwich ELISA (sELISA) test. The number of antigen binding sites might play a crucial role in a sandwich immunodetection system for sensitive and precise analysis in processed foods.
Collapse
Affiliation(s)
- Jinlong Zhao
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao City 266003, Shandong Province, PR China
| | - Jianhua Zeng
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao City 266003, Shandong Province, PR China
| | - Yuhai Liu
- Dawning International Information Industry Co., Ltd., No.169, Songling Road, Qingdao City 266101, Shandong Province, PR China
| | - Hang Lin
- Department of Allergy, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Qingdao City 266003, Shandong Province, PR China
| | - Xiang Gao
- Department of Allergy, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Qingdao City 266003, Shandong Province, PR China
| | - Hao Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao City 266003, Shandong Province, PR China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao City 266003, Shandong Province, PR China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao City 266003, Shandong Province, PR China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao City 266003, Shandong Province, PR China
| |
Collapse
|
9
|
Astuti RM, Palupi NS, Suhartono MT, Kusumaningtyas E, Lioe HN. Effect of processing treatments on the allergenicity of nuts and legumes: A meta-analysis. J Food Sci 2023; 88:28-56. [PMID: 36444520 DOI: 10.1111/1750-3841.16381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
Abstract
The effective food processing to reduce nuts and legumes allergenicity could not be easily and directly concluded from reading a few published reports. Therefore, we conducted a meta-analysis to investigate this issue. A literature search was conducted in eight electronic databases from January 2000 to June 11, 2021. The primary outcome of interest was the allergenicity of processed nuts or legumes determined by enzyme-linked immunosorbent assay from in vitro studies. Data with the standardized mean difference (SMD) of 95% confidence interval (CI) were pooled using a random-effect model by RevMan 5.4 software. Heterogeneity was assessed using Cochran's Q (PQ ) and I2 tests. The search strategy identified 18,793 articles. However, only 61 studies met the inclusion criteria and were included in this meta-analysis. There were 21 and 15 types of respective single and combined food processing treatments analyzed for their effects on reducing allergenicity. In single processing treatment, the extrusion and fermentation had the largest reduction in allergenicity, considering their SMD value, that is, -20.19 (95% CI: -22.22 to -18.17; the certainty of evidence: moderate) and -20.8 (95% CI: -24.10 to -17.50; the certainty of evidence: moderate), respectively. Whereas in the combination, the treatment of fermentation followed by proteolytic hydrolysis showed the most significant reduction (SMD: -53.34; 95% CI: -70.18 to -36.5) and the evidence quality of this treatment was considered moderate. In conclusion, these three food processing methods showed a desirable impact in reducing nuts or legumes allergenicity. PRACTICAL APPLICATION: Nuts and legumes play an essential role as protein sources in food consumption worldwide, but they usually contain allergens. Our study has investigated the food processing methods that effectively reduce their allergenicity by meta-analysis. The result gives valuable information for further laboratory investigation on allergens and can be used by food industries in providing foods from nuts and legumes with lower allergenicity.
Collapse
Affiliation(s)
- Rizki Maryam Astuti
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia.,Department of Food Science and Technology, Bakrie University, Jakarta Selatan, Indonesia
| | - Nurheni Sri Palupi
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia.,Southeast Asian Food and Agricultural Science and Technology Center, IPB University, Bogor, Indonesia
| | - Maggy Thenawidjaja Suhartono
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia
| | - Eni Kusumaningtyas
- Research Center for Veterinary Science, Research Organization for Health, National Research and Innovation Agency, Bogor, Indonesia
| | - Hanifah Nuryani Lioe
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia
| |
Collapse
|
10
|
Liu K, Lin S, Liu Y, Wang S, Liu Q, Sun K, Sun N. Mechanism of the reduced allergenicity of shrimp (Macrobrachium nipponense) by combined thermal/pressure processing: insight into variations in protein structure, gastrointestinal digestion and immunodominant linear epitopes. Food Chem 2022; 405:134829. [DOI: 10.1016/j.foodchem.2022.134829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/24/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
11
|
Sun Y, Chen H, Chen W, Zhong Q, shen Y, Zhang M. Effect of ultrasound on pH-shift to improve thermal stability of coconut milk by modifying physicochemical properties of coconut milk protein. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Zhao J, Li Y, Li R, Timira V, Dasanayaka BP, Zhang Z, Zhang J, Lin H, Li Z. Evaluation of poly- and monoclonal antibody-based sandwich enzyme-linked immunosorbent assay (ELISA) for their performance to detect crustacean residues in processed foods. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Insight into the mechanism of allergenicity decreasing in recombinant sarcoplasmic calcium-binding protein from shrimp (Litopenaeus vannamei) with thermal processing via spectroscopy and molecular dynamics simulation techniques. Food Res Int 2022; 157:111427. [DOI: 10.1016/j.foodres.2022.111427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022]
|
14
|
Zhao J, Li Y, Xu L, Ji Y, Zeng J, Timira V, Zhang Z, Chen G, Lin H, Li Z. Insight into IgG/IgE binding ability, in vitro digestibility and structural changes of shrimp (Litopenaeus vannamei) soluble extracts with thermal processing. Food Chem 2022; 381:132177. [PMID: 35121318 DOI: 10.1016/j.foodchem.2022.132177] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 12/27/2021] [Accepted: 01/14/2022] [Indexed: 11/20/2022]
Abstract
The effects of six kinds of thermal processing on soluble protein recovery, potential allergenicity, in vitro digestibility and structural characteristics of shrimp soluble proteins were evaluated. Obtained results confirmed soluble protein recovery and IgG/IgE reactivity of shrimp soluble extracts were markedly suppressed by various thermal treatments with enhanced digestibility depended on the extent and type of heating applied, which correlated well with the structural alterations and modification. The maximum reduction of IgG/IgE-binding capacity and digestive stability were observed in the autoclaved shrimps because of unfolding of protein and hydrophobic residues exposed. Notably, tropomyosin (TM) and sarcoplasmic calcium-binding protein (SCP) were still IgG/IgE-reactive in various heat-processed shrimps, even higher IgG reactivity were found in heat-treated shrimps TM according to TM antiserum western-blotting and indirect ELISA results. Shrimp TM and SCP maintains its IgE/IgG-binding capacity after various cooking methods, thus most probably initiating allergic sensitization to both raw and cooked shrimps.
Collapse
Affiliation(s)
- Jinlong Zhao
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Yonghong Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China; HOB Biotech Group Corp., Ltd., No. 218, Xinghu Road, Suzhou City, Jiangsu Province 215000, PR China
| | - Lili Xu
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Yu Ji
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Jianhua Zeng
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Vaileth Timira
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Guanzhi Chen
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao University, No.16, Jiangsu Road, Qingdao City, Shandong Province 266071, PR China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China.
| |
Collapse
|
15
|
Zhao J, Li Y, Xu L, Timira V, Zhang Z, Chen G, Zhang L, Lin H, Li Z. Improved protein extraction from thermally processed shrimp (Litopenaeus vannamei) for reliable immunodetection via a synergistic effect of buffer additives. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112790] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Wang Y, He S, Zhou F, Sun H, Cao X, Ye Y, Li J. Detection of Lectin Protein Allergen of Kidney Beans ( Phaseolus vulgaris L.) and Desensitization Food Processing Technology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14723-14741. [PMID: 34251800 DOI: 10.1021/acs.jafc.1c02801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the increase of food allergy events related to not properly cooked kidney beans (Phaseolus vulgaris L.), more and more researchers are paying attention to the sensitization potential of lectin, one of the major storage and defensive proteins with the specific carbohydrate-binding activity. The immunoglobulin E (IgE), non-IgE, and mixed allergic reactions induced by the lectins were inducted in the current paper, and the detection methods of kidney bean lectin, including the purification strategies, hemagglutination activity, specific polysaccharide or glycoprotein interactions, antibody combinations, mass spectrometry methods, and allergomics strategies, were summarized, while various food processing aspects, such as the physical thermal processing, physical non-thermal processing, chemical modifications, and biological treatments, were reviewed in the potential of sensitization reduction. It might be the first comprehensive review on lectin allergen detection from kidney bean and the desensitization strategy in food processing and will provide a basis for food safety control.
Collapse
Affiliation(s)
- Yongfei Wang
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Shudong He
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Fanlin Zhou
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Hanju Sun
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Xiaodong Cao
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Yongkang Ye
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Jing Li
- College of Biological and Environmental Engineering, Hefei University, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
17
|
Liu Z, Wang Y, Liu Y, Zhang Q, Li W, Dong M, Rui X. The Conformational Structural Change of Soy Glycinin via Lactic Acid Bacteria Fermentation Reduced Immunoglobulin E Reactivity. Foods 2021; 10:foods10122969. [PMID: 34945520 PMCID: PMC8701212 DOI: 10.3390/foods10122969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 02/02/2023] Open
Abstract
This study investigated the fermentation of isolated soy glycinin by using the Lactiplantibacillus plantarum B1-6 strain, its reduction effect on immunoglobulin E (IgE) reactivity, the relationship with protein aggregation/gelation state and conformational changes. Fermentation was performed under different glycinin concentrations (0.1%, 0.5%, 1% and 2%, w/v) and varied fermentation terminal pH levels (FT-pH) (pH 6.0, 4.5, 4.0 and 3.5). L. plantarum B1-6 showed potency in reducing immunoreactivity to 0.10–69.85%, as determined by a sandwich enzyme-linked immunosorbent assay. At a FT-pH of 6.0 and 4.5, extremely low IgE reactivity (0.1–22.32%) was observed. Fermentation resulted in a great increase (2.31–6.8-fold) in particle size and a loss of intensity in A3 and basic subunits. The conformation of glycinin was altered, as demonstrated by improved surface hydrophobicity (1.33–7.39-fold), decreased intrinsic fluorescence intensity and the α-helix structure. Among the four selected concentrations, glycinin at 1% (w/v, G-1) evolved the greatest particles during fermentation and demonstrated the lowest immunoreactivity. Principal component analysis confirmed that particle size, intrinsic fluorescence intensity, α-helix and ionic bond were closely related to immunoreactivity reduction.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xin Rui
- Correspondence: ; Tel.: +86-156-5166-1026
| |
Collapse
|
18
|
Acedo-Espinoza E, Lagarda-Diaz I, Cabrera R, Guzman-Partida AM, Maldonado-Arce A, Ortega-Nieblas MM, Chan-Chan L, Vázquez-Moreno L. Insights into the Structural Features, Conformational Stability and Functional Activity of the Olneya tesota PF2 Lectin. Protein Pept Lett 2021; 28:403-413. [PMID: 32798370 DOI: 10.2174/0929866527666200813204303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The O. tesota lectin PF2 is a tetrameric protein with subunits of 33 kDa that recognizes only complex carbohydrates, resistant to proteolytic enzymes and has insecticidal activity against Phaseolus beans pest. OBJECTIVE To explore PF2 lectin features at different protein structural levels and to evaluate the effect of temperature and pH on its functionality and conformational stability. METHODS PF2 lectin was purified by affinity chromatography. Its primary structure was resolved by mass spectrometry and analyzed by bioinformatic tools, including its tertiary structure homology modeling. The effect of temperature and pH on its conformational traits and stability was addressed by dynamic light scattering, circular dichroism, and intrinsic fluorescence. The hemagglutinating activity was evaluated using a suspension of peripheral blood erythrocytes. RESULTS The proposed PF2 folding comprises a high content of beta sheets. At pH 7 and 25°C, the hydrodynamic diameter (Dh) was found to be 12.3 nm which corresponds to the oligomeric native state of PF2 lectin. Dh increased under the other evaluated pH and temperature conditions, suggesting protein aggregation. At basic pH, PF2 exhibited low conformational stability. The native PF2 (pH 7) retained its full hemagglutinating activity up to 45°C and exhibited one transition state with a melting temperature of 76.8°C. CONCLUSION PF2 showed distinctive characteristics found in legume lectins. The pH influences the functionality and conformational stability of the protein. PF2 lectin displayed a relatively narrow thermostability to the loss of secondary structure and hemagglutinating activity.
Collapse
Affiliation(s)
- Edgar Acedo-Espinoza
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Hermosillo, Sonora 83000, Mexico
| | | | - Rosina Cabrera
- Centro de Investigación y Desarrollo en Agrobiotecnología Alimentaria (Consortium between Centro de Investigación en Alimentación y Desarrollo and Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco), Pachuca Ciudad del Conocimiento y la Cultura, San Agustín Tlaxiaca, Hidalgo 42163, Mexico
| | - Ana M Guzman-Partida
- CONACyT- Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora 83304, Mexico
| | - Amir Maldonado-Arce
- Departamento de Física, Universidad de Sonora, Hermosillo, Sonora 83000, Mexico
| | - María M Ortega-Nieblas
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Hermosillo, Sonora 83000, Mexico
| | | | - Luz Vázquez-Moreno
- CONACyT- Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora 83304, Mexico
| |
Collapse
|
19
|
He S, Zhao J, Zhang Y, Zhu Y, Li X, Cao X, Ye Y, Li J, Sun H. Effects of Low-pH Treatment on the Allergenicity Reduction of Black Turtle Bean ( Phaseolus vulgaris L.) Lectin and Its Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1379-1390. [PMID: 33464885 DOI: 10.1021/acs.jafc.0c06524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A high content of potentially allergenic lectin in Phaseolus vulgaris L. beans is of increasing health concerns; however, understanding of the protein allergenicity mechanism on the molecular basis is scarce. In the present study, low-pH treatments were applied to modify black turtle bean lectin allergen, and a sensitization procedure was performed using the BALB/c mice for the allergenicity evaluation, while the conformational changes were monitored by the spectral analyses and the details were explored by the molecular dynamics simulation. Much milder anaphylactic responses were observed in BALB/c mice experiments. At the molecular level, the protein was unfolded in low acidic environments because of protonation, and α-helix was reduced with the exposure of trypsin cleavage sites, especially the improvement of protease accessibility for Lys121, 134, and 157 in the B cell epitope structural alterations. These results indicate that a low-pH treatment might be an efficient method to improve the safety of legume protein consumption.
Collapse
Affiliation(s)
- Shudong He
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Jinlong Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 255003, Shandong, PR China
| | - Yi Zhang
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3 V9, Canada
| | - Yuchen Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xingjiang Li
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Xiaodong Cao
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Yongkang Ye
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Jing Li
- Department of Biological and Environmental Engineering, Hefei University, Hefei 230009, Anhui PR China
| | - Hanju Sun
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, PR China
| |
Collapse
|
20
|
Barre A, Damme EJV, Simplicien M, Benoist H, Rougé P. Are Dietary Lectins Relevant Allergens in Plant Food Allergy? Foods 2020; 9:foods9121724. [PMID: 33255208 PMCID: PMC7760050 DOI: 10.3390/foods9121724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 01/17/2023] Open
Abstract
Lectins or carbohydrate-binding proteins are widely distributed in seeds and vegetative parts of edible plant species. A few lectins from different fruits and vegetables have been identified as potential food allergens, including wheat agglutinin, hevein (Hev b 6.02) from the rubber tree and chitinases containing a hevein domain from different fruits and vegetables. However, other well-known lectins from legumes have been demonstrated to behave as potential food allergens taking into account their ability to specifically bind IgE from allergic patients, trigger the degranulation of sensitized basophils, and to elicit interleukin secretion in sensitized people. These allergens include members from the different families of higher plant lectins, including legume lectins, type II ribosome-inactivating proteins (RIP-II), wheat germ agglutinin (WGA), jacalin-related lectins, GNA (Galanthus nivalis agglutinin)-like lectins, and Nictaba-related lectins. Most of these potentially active lectin allergens belong to the group of seed storage proteins (legume lectins), pathogenesis-related protein family PR-3 comprising hevein and class I, II, IV, V, VI, and VII chitinases containing a hevein domain, and type II ribosome-inactivating proteins containing a ricin B-chain domain (RIP-II). In the present review, we present an exhaustive survey of both the structural organization and structural features responsible for the allergenic potency of lectins, with special reference to lectins from dietary plant species/tissues consumed in Western countries.
Collapse
Affiliation(s)
- Annick Barre
- UMR 152 PharmaDev, Institut de Recherche et Développement, Université Paul Sabatier, Faculté de Pharmacie, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
| | - Els J.M. Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium;
| | - Mathias Simplicien
- UMR 152 PharmaDev, Institut de Recherche et Développement, Université Paul Sabatier, Faculté de Pharmacie, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
| | - Hervé Benoist
- UMR 152 PharmaDev, Institut de Recherche et Développement, Université Paul Sabatier, Faculté de Pharmacie, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
| | - Pierre Rougé
- UMR 152 PharmaDev, Institut de Recherche et Développement, Université Paul Sabatier, Faculté de Pharmacie, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
- Correspondence: ; Tel.: +33-069-552-0851
| |
Collapse
|
21
|
The structure and properties of MFG-E8 and the In vitro assessment of its toxic effects on myoblast cells. Protein Expr Purif 2020; 178:105720. [PMID: 32771447 DOI: 10.1016/j.pep.2020.105720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/09/2020] [Accepted: 07/28/2020] [Indexed: 01/25/2023]
Abstract
Four high-molecular-weight protein fractions of milk fat globule membrane (MFGM) were isolated from bovine milk. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), MALDI-TOF/TOF™ and Liquid chromatography electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) were used to measure the molecular sizes of the MFGM. Fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD) were performed to determine the conformations of the MFGM. The results showed that the main protein (98.33%) in MFGM protein fraction 2 was Milk fat globule epidermal growth factor-VIII (MFG-E8), with a molecular weight of 47.82 kDa. The secondary structural component measurements showed that the MFG-E8 consisted of 5% helix, 70% sheet and 25% random coil, and the results matched well with the prediction by SSPro 5.1 bioinformatic analysis. The thermograms analysis revealed that Td and△H of MFG-E8 were 60.50°Cand 132.29 kJ/mol. The in vitro digestibility of MFG-E8 showed that it can be enzymatically hydrolyzed in the stomach and relatively stable in the intestinal fluid. The in vitro C2C12 and Caco2 cell activity tests indicated that MFG-E8 promoted the proliferation of C2C12 myoblast cells without cytotoxicity. The biological functional properties of MFG-E8 may be related to the fact that MFG-E8 possesses a high level of β-sheet structure. Our results suggested that MFG-E8 possesses broad prospects not only for use in functional food products but also as a source of natural anti-sarcopenia drugs.
Collapse
|
22
|
Low pH-shifting treatment would improve functional properties of black turtle bean (Phaseolus vulgaris L.) protein isolate with immunoreactivity reduction. Food Chem 2020; 330:127217. [PMID: 32521404 DOI: 10.1016/j.foodchem.2020.127217] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 01/10/2023]
Abstract
Low pH-shifting was firstly applied in the black turtle bean (Phaseolus vulgaris L.) protein isolate treatment by acidic (pH 1.0-3.0) buffer incubation for 8 h, then was adjusted to pH 7.2 and kept 3 h for protein stabilizing. Mild loss of secondary structure was confirmed in the protein isolate after low pH-shifting treatment by CD and FT-IR analyses. Intrinsic fluorescence, UV spectra, surface hydrophobicity, SH content and SDS-PAGE analyses indicated the protein conformation was unfolded with the exposure of much more buried hydrophobic residues, which would result in the enhancement of emulsifying properties, foaming properties and fat holding capacity, and lead to the reduction of solubility and water holding capacity. Furthermore, lower immunoreactivity was observed by the ELISA, and improved digestibility was found in in vitro digestion assay. Our results suggested the low pH-shifting treatments would broaden the application of bean protein isolate with better hydrophobic processing functions and safety.
Collapse
|
23
|
Combined effects of pH and thermal treatments on IgE-binding capacity and conformational structures of lectin from black kidney bean (Phaseolus vulgaris L.). Food Chem 2020; 329:127183. [PMID: 32521427 DOI: 10.1016/j.foodchem.2020.127183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022]
Abstract
Combined effects of pH and thermal treatments on black kidney bean lectin (BKBL) were investigated by response surface methodology (RSM). Low-pH (1.0, 2.0, 3.0) incubation decreased hemagglutination activity (HA) and IgE-binding capacity, but the activities would be restored when the lectin was treated by pH shifting to 7.2. Conformational structure analyses indicated that low-pH induced protein unfolding and pH-shifting treatment resulted in a limited structural rearrangement. Mild heating, such as 60 °C for 3 min, slightly increased the HA and IgE-binding activities of pH shifted BKBL, but no obvious effects in the pH 1.0 incubated BKBL. High-temperature and long-time treatment might induce the protein aggregation, further decreased HA and IgE-binding capacities. RSM results showed both IgE-binding capacity and HA were the lowest under the combination of pH 1.0 incubation with 80 °C heating for 15 min or pH shifting from 1.0 to 7.2 with 100 °C heating for 10 min.
Collapse
|
24
|
Liu L, Zeng J, Sun B, Zhang N, He Y, Shi Y, Zhu X. Ultrasound-Assisted Mild Heating Treatment Improves the Emulsifying Properties of 11S Globulins. Molecules 2020; 25:molecules25040875. [PMID: 32079191 PMCID: PMC7070368 DOI: 10.3390/molecules25040875] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 11/16/2022] Open
Abstract
Ultrasonic technology is often used to modify proteins. Here, we investigated the effects of ultrasound alone or in combination with other heating methods on emulsifying properties and structure of glycinin (11S globulin). Structural alterations were assessed with Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), intrinsic fluorescence spectroscopy, ultraviolet (UV) absorption spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. The size distribution and zeta-potential of 11S globulin were evaluated with a particle size analyzer. An SDS-PAGE analysis showed no remarkable changes in the primary structure of 11S globulin. Ultrasound treatment disrupted the 11S globulin aggregates into small particles with uniform size, narrowed their distribution and increased their surface charge density. Fluorescent spectroscopy and second-derivative UV spectroscopy revealed that ultrasound coupled with heating induced partial unfolding of 11S globulin, increasing its flexibility and hydrophobicity. FTIR further showed that the random coil and α-helix contents were higher while β-turn and β-sheet contents were lower in ultrasound combined with heating group compared to the control group. Consequently, the oil-water interface entirely distributed protein and reduced the surface tension. Moreover, ultrasound combined with heating at 60 °C increased the emulsifying activity index and emulsifying stability index of 11S globulins by 6.49-folds and 2.90-folds, respectively. These findings suggest that ultrasound combined with mild heating modifies the emulsification properties of 11S globulin.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanguo Shi
- Correspondence: (Y.S.); (X.Z.); Tel.: +86-136-0368-1425 (Y.S.); +86-138-4510-7825 (X.Z.)
| | - Xiuqing Zhu
- Correspondence: (Y.S.); (X.Z.); Tel.: +86-136-0368-1425 (Y.S.); +86-138-4510-7825 (X.Z.)
| |
Collapse
|
25
|
Sun X, Ye Y, He S, Wu Z, Yue J, Sun H, Cao X. A novel oriented antibody immobilization based voltammetric immunosensor for allergenic activity detection of lectin in kidney bean by using AuNPs-PEI-MWCNTs modified electrode. Biosens Bioelectron 2019; 143:111607. [PMID: 31445384 DOI: 10.1016/j.bios.2019.111607] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/05/2019] [Accepted: 08/16/2019] [Indexed: 02/01/2023]
Abstract
As a well-known allergenic indicator in kidney beans, lectins have always been the serious threats for human health. Herein, we introduced a new label-free voltammetric immunosensor for the direct determination of kidney bean lectin (KBL) with potential allergenic activity. Gold nanoparticles-polyethyleneimine-multiwalled carbon nanotubes nanocomposite was one-pot synthesized and modified onto the glass carbon electrode to enhance catalytic currents of oxygen reduction reaction. The KBL polyclonal antibody, acquired from rabbit immunization, was orientedly immobilized on the electrode modified with recombinant staphylococcal protein A via fragment crystallizable (Fc) region of antibody. Under the optimized condition, the immunosensor displayed a good linear response (R2 = 0.978) to KBL with a range from 0.05 to 100 μg/mL and a detection limit of 0.023 μg/mL. Simultaneously, the immunosensor exhibited well selectivity, interference-resistant ability, stability (4 °C) and reproducibility. Compared with the conventional enzyme-linked immunosorbent assay (ELISA) method, the immunosensor was successfully applied to quantify allergenic activity of lectin in raw and cooked (boiled for 30 min) kidney bean milk samples. This new approach provides new perspectives both for rapid quantification of lectin in kidney beans-derived foodstuffs and as a real-time monitoring tool for the allergenic potential during the whole production and consumption process.
Collapse
Affiliation(s)
- Xianbao Sun
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Yongkang Ye
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230009, PR China; Anhui Province Key Laboratory of Functional Compound Seasoning, Anhui Qiangwang Seasoning Food Co., Ltd, Jieshou, Anhui, 236500, PR China
| | - Shudong He
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230009, PR China; Anhui Province Key Laboratory of Functional Compound Seasoning, Anhui Qiangwang Seasoning Food Co., Ltd, Jieshou, Anhui, 236500, PR China.
| | - Zeyu Wu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Junyang Yue
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Hanju Sun
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230009, PR China; Anhui Province Key Laboratory of Functional Compound Seasoning, Anhui Qiangwang Seasoning Food Co., Ltd, Jieshou, Anhui, 236500, PR China
| | - Xiaodong Cao
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230009, PR China; Anhui Province Key Laboratory of Functional Compound Seasoning, Anhui Qiangwang Seasoning Food Co., Ltd, Jieshou, Anhui, 236500, PR China.
| |
Collapse
|