1
|
Wang B, Bian C, Lu X, Ma Y, Li N, Xiong D, Xu X, Yang Z, Zhang H, Guan T. Laccase immobilized on magnetic nanoparticles for the degradation of imidacloprid: Based on multi-spectroscopy and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 333:125888. [PMID: 39978182 DOI: 10.1016/j.saa.2025.125888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
As a typical class of environmental endocrine disruptors, imidacloprid (IMI) poses a potential threat to the sustainable survival and reproduction of living beings and human beings. Consequently, it is crucial to establish an efficient degradation method to remove imidacloprid from the environment. The present study aimed to investigate the immobilized laccase for the detoxification of imidacloprid via multi-spectroscopy and molecular docking. Herein, laccase was immobilized on magnetic nanoparticles (NiFe2O4 NPs) using a novel immobilization technique based on glutaraldehyde cross-linking polymerization. A single factor experiment approach was used to optimize the immobilization conditions, which included temperature, pH, enzyme concentration, and reaction time. Notably, the optimal condition was determined as 50℃, pH 4, laccase concentration of 1.0 mg/mL and 1.5 h. Based on the immobilization conditions, the degradation efficiency of immobilized laccase was 41.92 % after 24 h. Following eight degradations, the immobilized laccase's relative activity stayed at 34.09 % of its initial activity, demonstrating exceptional operational stability and reusability. Moreover, the binding free energy between imidacloprid and laccase was calculated on the basis of molecular docking, as -7.2 kcal/mol. This study provides experimental techniques and theoretical references for the biological digestion of hazardous pesticide residues in the environment. In addition, this study improved the shortcomings of free laccase, provided an environmentally friendly and efficient method for the degradation of imidacloprid.
Collapse
Affiliation(s)
- Bo Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127 China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127 China
| | - Canfeng Bian
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127 China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127 China
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009 China
| | - Yue Ma
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127 China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127 China
| | - Ning Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127 China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127 China
| | - Dan Xiong
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127 China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127 China
| | - Xuechao Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127 China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127 China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127 China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127 China.
| | - Han Zhang
- School of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300 China
| | - Tianzhu Guan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127 China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127 China.
| |
Collapse
|
2
|
Guo T, Luo L, Wang L, Zhang F, Liu Y, Leng J. Smart Polymer Microspheres: Preparation, Microstructures, Stimuli-Responsive Properties, and Applications. ACS NANO 2025. [PMID: 40331430 DOI: 10.1021/acsnano.5c00998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Smart polymer microspheres (SPMs) are a class of stimulus-responsive materials that undergo physical, chemical, or property changes in response to external stimuli, such as temperature, pH, light, and magnetic fields. In recent years, their diverse responsiveness and tunable structures have enabled broad applications in biomedicine, environmental protection, information encryption, and other fields. This study provides a detailed review of recent preparation methods of SPMs, focusing on physical methods such as emulsification-solvent evaporation, microfluidics, and electrostatic spraying as well as chemical approaches such as emulsion and precipitation polymerization. Meanwhile, different types of stimulus-responsive behaviors, such as temperature-, pH-, light-, and magnetic-responsiveness, are thoroughly examined. This study also explores the applications of SPMs in drug delivery, tissue engineering, and environmental monitoring, while discussing future technological challenges and development directions in this field.
Collapse
Affiliation(s)
- Tao Guo
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Lan Luo
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Linlin Wang
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Fenghua Zhang
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Yanju Liu
- Department of Astronautic Science and Mechanics, Harbin Institute of Technology (HIT), No. 92 West Dazhi Street, Harbin 150001, People's Republic of China
| | - Jinsong Leng
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| |
Collapse
|
3
|
Wu F, Li Y, Zhang L, Zhou Y, Xu Y, Cai Y, Ding L, Zhang L, Wang Y, Qian H. Real-Time Isolation and Versatile Detection for Extracellular Vesicles Based on Ordered Porous Layer Interferometry. Anal Chem 2025; 97:5798-5807. [PMID: 40045887 DOI: 10.1021/acs.analchem.4c07108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Extracellular vesicles (EVs) are progressively becoming novel instruments for clinical therapeutics and liquid biopsies. Due to the complexity of biofluids and the physicochemical properties of EVs, the biological activity, velocity, and efficiency of EV isolation are always unsatisfying. Here, we present a real-time isolation approach of EVs derived from cells and urine using ordered porous layer interferometry with a silica colloidal crystal film as the sensing substrate, achieving efficiency greater than 90%. The online concentration detection function is performed during the isolation process on the basis of its real-time monitoring characteristic. Using membrane protein markers of urine EVs as targets, this technique has a high diagnostic value for liquid biopsy of prostate cancer. Furthermore, we compared multiple EV membrane protein expression and binding dissociation kinetic data from cells and urine. In summary, this multifunctional approach provides a novel strategy for the rapid EVs isolation, concentration detection, drug target screening, and liquid biopsy of various body fluids.
Collapse
Affiliation(s)
- Feng Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yaoyang Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Linlin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yuchen Zhou
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yili Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Youpeng Cai
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Lingling Ding
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Leilei Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yanfeng Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Li H, Su Y, Chen Y, Liu E, Ahmad A, Yao S. Deep eutectic solvent and styrene copolymer-shelled magnetic microspheres for the capture of Ovomucoid in foods and their interactions. Food Chem 2025; 468:142527. [PMID: 39706119 DOI: 10.1016/j.foodchem.2024.142527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/17/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Fe3O4 is a cost-effective and strong magnetic core, meanwhile polymerizable deep eutectic solvents (PDESs) are considered to have excellent performance and biocompatibility in separation and material fields. Therefore, the aim was to prepare magnetic microspheres (P(DES-co-St)@Fe3O4) with Fe3O4 as the core and PDESs (choline chloride/acrylic acid, 1:2; choline chloride/itaconic acid, 1:1)-styrene (St) copolymer as the shell for binding of target protein. The resulting microspheres exhibited ideal magnetic responsiveness (14.14 emu·g-1), stability, dispersion and uniformity (average diameter of 1.04 μm). The acidic PDESs endowed the surface structure of magnetic microspheres with numerous carboxyl groups (3.71 mmol·g-1), providing multiple active sites to capture allergenic proteins (ovomucoid, ovotransferrin, ovalbumin) from foods. Under current conditions, the binding capacity of ovomucoid was determined to be 155.3 mg·mL-1. Kinetic and thermodynamic studies, along with fluorescence spectroscopy and molecular simulations, indicated that the magnetic microspheres bind with ovomucoid through a combination of monolayer multiple interactions with selectivity.
Collapse
Affiliation(s)
- Hongyao Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yadi Su
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yu Chen
- South Sichuan Institute of Translational Medicine, College of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Enming Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ali Ahmad
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
5
|
Qu L, Lu Q, Zhang L, Kong F, Zhang Y, Lin Z, Ni X, Zhang X, Zhao Y, Zou B. Research Progress on the Enhancement of Immobilized Enzyme Catalytic Performance and Its Application in the Synthesis of Vitamin E Succinate. Molecules 2025; 30:1241. [PMID: 40142017 PMCID: PMC11944737 DOI: 10.3390/molecules30061241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Vitamin E succinate is a more mature vitamin E derivative, and its chemical stability and many effects have been improved compared with vitamin E, which can not only make up for the shortcomings of vitamin E application but also broaden the application field of vitamin E. At present, in developed countries such as Europe, America, and Japan, vitamin E succinate is widely used in health foods, and due to its good water solubility and stability, the vitamin E added to most nutritional supplements (tablets and hard capsules) is vitamin E succinate. At the same time, vitamin E succinate used in the food and pharmaceutical industries is mainly catalyzed by enzymatic catalysis. In this paper, Candida rugosa lipase (CRL) was studied. Chemical modification and immobilization were used to improve the enzymatic properties of CRL, and immobilized lipase with high stability and high activity was obtained. It was applied to the enzymatic synthesis of vitamin E succinate, and the reaction conditions were optimized to improve the yield and reduce the production cost. The review covered the research progress of the methods for enhancing the catalytic performance of immobilized enzymes and discussed its application in the synthesis of vitamin E succinate, providing new ideas and technical support for the catalytic performance enhancement of immobilized enzymes and its application in the synthesis of vitamin E succinate and promoting the production and application of vitamin E succinate.
Collapse
Affiliation(s)
- Liang Qu
- School of Food and Bioengineering, Wuhu Institute of Technology, Wuhu 241003, China;
| | - Qiongya Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.L.); (L.Z.); (F.K.); (Y.Z.); (Z.L.); (X.N.); (X.Z.); (Y.Z.)
| | - Liming Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.L.); (L.Z.); (F.K.); (Y.Z.); (Z.L.); (X.N.); (X.Z.); (Y.Z.)
| | - Fanzhuo Kong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.L.); (L.Z.); (F.K.); (Y.Z.); (Z.L.); (X.N.); (X.Z.); (Y.Z.)
| | - Yuyang Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.L.); (L.Z.); (F.K.); (Y.Z.); (Z.L.); (X.N.); (X.Z.); (Y.Z.)
| | - Zhiyuan Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.L.); (L.Z.); (F.K.); (Y.Z.); (Z.L.); (X.N.); (X.Z.); (Y.Z.)
| | - Xing Ni
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.L.); (L.Z.); (F.K.); (Y.Z.); (Z.L.); (X.N.); (X.Z.); (Y.Z.)
| | - Xue Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.L.); (L.Z.); (F.K.); (Y.Z.); (Z.L.); (X.N.); (X.Z.); (Y.Z.)
| | - Yani Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.L.); (L.Z.); (F.K.); (Y.Z.); (Z.L.); (X.N.); (X.Z.); (Y.Z.)
| | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.L.); (L.Z.); (F.K.); (Y.Z.); (Z.L.); (X.N.); (X.Z.); (Y.Z.)
| |
Collapse
|
6
|
Wang X, Wu J, Zhou J, Zhang L, Shen Y, Wu J, Hao C. Effective removal of Congo red and hexavalent chromium from aqueous solutions by guar gum/sodium alginate/Mg/Al-layered double hydroxide composite microspheres. Int J Biol Macromol 2025; 293:139385. [PMID: 39743091 DOI: 10.1016/j.ijbiomac.2024.139385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/10/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
In this paper, Mg/Al-layered double hydroxide (Mg/Al-LDH) was modified with the natural polymers sodium alginate and guar gum, and the prepared GG/SA/Mg-Al-LDH composite microsphere adsorbent (G-LDH) showed better adsorption performance for Congo red and hexavalent chromium in aqueous solution than the Mg/Al-LDH. The SEM image of G-LDH shows a distinct micro-spherical morphology, and it can maintain the micro-spherical morphology even after adsorbing Congo Red and hexavalent chromium. G-LDH showed strong adsorption properties for CR (Congo red) and Cr (VI) solutions with initial concentrations of 80 mg L-1 and 100 mg L-1, with adsorption amounts of 361.6 mg g-1 and 461.7 mg g-1. The unique layered structure of Mg/Al-LDH made an indispensable contribution to the efficient adsorption capacity of G-LDH when GG was used to prepare composite microspheres. The adsorption process of G-LDH is consistent with the Langmuir isotherm model and the proposed secondary kinetic model as a heat-absorbing, spontaneous, monolayer, and chemisorption process. G-LDH is an innovative anion adsorbent with excellent adsorption performance at low cost, using natural polymer materials as the backbone and the layered structure of magnesium‑aluminum hydrotalcite as the support.
Collapse
Affiliation(s)
- Xiaohong Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Jiale Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiayi Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lele Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yutang Shen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jingbo Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chen Hao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
7
|
Li J, Li T, Gong M, Wang X, Hua Q, Jiang X, Wang Q, Toreniyazov E, Yu J, Cao X, Adu-Frimpong M, Xu X. Preparation, in vitro and in vivo evaluation of phloretin-loaded TPGS/Pluronic F68 modified mixed micelles with enhanced bioavailability and anti-aging activity. J Drug Target 2025:1-45. [PMID: 39988918 DOI: 10.1080/1061186x.2025.2469753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 02/25/2025]
Abstract
Phloretin exhibits strong antioxidant and anti-aging properties by inhibiting mitochondrial oxidation of glutamate, succinic acid, and ascorbic acid. However, its clinical application is limited by poor aqueous solubility and low oral bioavailability. To enhance its bioavailability and efficacy, we incorporated phloretin into nano-micelles (phloretin-MM) using the thin film dispersion method. Characterization revealed that the optimal formulation had TPGS and Pluronic F68 in a 4:1 ratio as the excipients, which resulted in spherical micelles with an average particle size of 33.28 nm and an encapsulation efficiency of 71.2 ± 0.48%. The in vitro release profile showed that the phloretin-MM showed significantly higher cumulative release rates than free phloretin across various pH conditions, while the pharmaceutical analysis in rats indicated that phloretin-MM significantly improved the oral bioavailability of phloretin (about 5 folds) in circulation. Additionally, through the analysis of the staining of zebrafish under light microscopy and the average gray value, it can be concluded that phloretin has anti-aging drug effect, and phloretin-MM is better than free phloretin. These findings suggest that TPGS/Pluronic F68-modified phloretin-MM could serve as an excellent nano-drug carrier system, potentially enhancing the solubility, bioavailability, and anti-aging effects of phloretin for broader clinical applications.
Collapse
Affiliation(s)
- Jiaying Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, J[1]iangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tingyuan Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, J[1]iangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mingjie Gong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, J[1]iangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaowen Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, J[1]iangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qinyang Hua
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, J[1]iangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xia Jiang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, J[1]iangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, J[1]iangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | | | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, J[1]iangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, J[1]iangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, UK 0215-5321, Ghana
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, J[1]iangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
8
|
Ni X, Feng T, Zhang Y, Lin Z, Kong F, Zhang X, Lu Q, Zhao Y, Zou B. Application Progress of Immobilized Enzymes in the Catalytic Synthesis of 1,3-Dioleoyl-2-palmitoyltriglyceride Structured Lipids. Foods 2025; 14:475. [PMID: 39942068 PMCID: PMC11816798 DOI: 10.3390/foods14030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
In recent years, the preparation of OPO (1,3-dioleoyl-2-palmitoyltriglyceride)-structured lipids through immobilized lipase catalysis has emerged as a research hotspot in the fields of food and biomedical sciences. OPO structured lipids, renowned for their unique molecular structure and biological functions, find wide applications in infant formula milk powder, functional foods, and nutritional supplements. Lipase-catalyzed reactions, known for their efficiency, high selectivity, and mild conditions, are ideal for the synthesis of OPO structured lipids. Immobilized lipases not only address the issues of poor stability and difficult recovery of free enzymes but also enhance catalytic efficiency and reaction controllability. This review summarizes the latest advancements in the synthesis of OPO structured lipids using immobilized lipases, focusing on immobilization methods, enhancements in enzyme activity and stability, the optimization of reaction conditions, and improvements in product purity and yield. Furthermore, it delves into the reaction mechanisms of enzymatic synthesis of OPO structured lipids, process optimization strategies, and the challenges and broad prospects faced during industrial applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (X.N.); (T.F.); (Y.Z.); (Z.L.); (F.K.); (X.Z.); (Q.L.); (Y.Z.)
| |
Collapse
|
9
|
Tacias-Pascacio VG, Castañeda-Valbuena D, Tavano O, Abellanas-Perez P, de Andrades D, Santiz-Gómez JA, Berenguer-Murcia Á, Fernandez-Lafuente R. A review on the immobilization of bromelain. Int J Biol Macromol 2024; 273:133089. [PMID: 38878936 DOI: 10.1016/j.ijbiomac.2024.133089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/21/2024] [Accepted: 06/09/2024] [Indexed: 06/24/2024]
Abstract
This review shows the endeavors performed to prepare immobilized formulations of bromelain extract, usually from pineapple, and their use in diverse applications. This extract has a potent proteolytic component that is based on thiol proteases, which differ depending on the location on the fruit. Stem and fruit are the areas where higher activity is found. The edible origin of this enzyme is one of the features that determines the applications of the immobilized bromelain to a more significant degree. The enzyme has been immobilized on a wide diversity of supports via different strategies (covalent bonds, ion exchange), and also forming ex novo solids (nanoflowers, CLEAs, trapping in alginate beads, etc.). The use of preexisting nanoparticles as immobilization supports is relevant, as this facilitates one of the main applications of the immobilized enzyme, in therapeutic applications (as wound dressing and healing components, antibacterial or anticancer, mucus mobility control, etc.). A curiosity is the immobilization of this enzyme on spores of probiotic microorganisms via adsorption, in order to have a perfect in vivo compatibility. Other outstanding applications of the immobilized enzyme are in the stabilization of wine versus haze during storage, mainly when immobilized on chitosan. Curiously, the immobilized bromelain has been scarcely applied in the production of bioactive peptides.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico.
| | - Daniel Castañeda-Valbuena
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | | | - Diandra de Andrades
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - José Alfredo Santiz-Gómez
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | | |
Collapse
|
10
|
Basu H, Amarnath M, Modak B, Parab H, Basu R, Goyal S, Saha S, Singh S, Patra CN. Development of magnetic La doped Al 2O 3 core-shell nanoparticle loaded hydrogel for selective recovery of fluoride from aquatic medium. CHEMOSPHERE 2024; 353:141504. [PMID: 38403120 DOI: 10.1016/j.chemosphere.2024.141504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
The selective removal of pollutants from water bodies is regarded as a conciliation between the rapid expansion of industrial activities and need of clean water for sustainability. Fluoride is one such geogenic pollutant, and various materials have already been reported. Developing an efficient field employable material is however a challenge. Herein, we report the synthesis and competencies of strategically designed magnetic La-doped Al2O3 core-shell nanoparticle loaded polymeric nanohybrid as a benchmark fluoride sorbent. A facile synthesis strategy involved fabrication of Fe3O4 magnetic core followed by growth of La doped Al2O3 shell using sol-gel method. Doping of La2O3 into Al2O3 structure was optimised (6%), resulting in Fe3O4-Al0.94 La0.06O1.5 core-shell particles which provided exceptional fluoride affinity. The obtained magnetic Fe3O4-Al0.94La0.06O1.5 core-shell nanoparticles were then loaded (22%) into alginate to form cross-linked hydrogel beads (Fe3O4-Al0.94 La0.06 O1.5-Ca-ALG). These prepared hydrogel beads were characterised and utilized for selective recovery of fluoride under different ambient conditions. Driving forces for enhanced fluoride uptake by La doped Al2O3 were investigated and explained with the help of both experimental observation and theoretical simulation. Density functional theory calculations indicated significant expansion in the cell volume of Al2O3 due to La doping which favoured the fluoride sorption. The calculated defect formation energy for the incorporation of F into Al2O3 was found to decrease in the presence of La. XPS analysis suggested direct interaction of fluoride with Al, forming Al-F bond and breaking Al-O bond. Different vital parameters for uptake were optimised. Also, kinetics, isotherm and diffusion models were evaluated. Developed hydrogel beads attained record sorption capacity of 132.3 mgg-1 for fluoride. Overall, excellent stability, no leaching of constituents, effectiveness for selective fluoride recovery from groundwater, brand it a perfect epitome of sustainable water treatment application.
Collapse
Affiliation(s)
- Hirakendu Basu
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| | - M Amarnath
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Brindaban Modak
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India; Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Harshala Parab
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Ranita Basu
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India; Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Sakshi Goyal
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, India
| | - Sudeshna Saha
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Shweta Singh
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Chandra Nath Patra
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
11
|
Porfirio MCP, Santos JB, Alves AN, Santos LS, Bonomo RCF, da Costa Ilhéu Fontan R. Purification of pineapple bromelain by IMAC chromatography using chlorophyll-activated macroporous matrices. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1234:124027. [PMID: 38320436 DOI: 10.1016/j.jchromb.2024.124027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/08/2024] [Accepted: 01/20/2024] [Indexed: 02/08/2024]
Abstract
This study investigated the purification of bromelain obtained from pineapple fruit using a new adsorbent for immobilized metal ion affinity chromatography (IMAC), with chlorophyll obtained from plant leaves as a chelating agent. The purification of bromelain was evaluated in batches from the crude extract of pineapple pulp (EXT), and the extract precipitated with 50 % ammonium sulfate (EXT.PR), the imidazole buffer (200 mM, pH 7.2) being analyzed and sodium acetate buffer, pH 5.0 + 1.0 NaCl as elution solutions. All methods tested could separate forms of bromelain with molecular weights between ±21 to 25 kDa. Although the technique using EXT.PR stood out in terms of purity, presenting a purification factor of around 3.09 ± 0.31 for elution with imidazole and 4.23 ± 0.12 for acetate buffer solution. In contrast, the EXT methods obtained values between 2.44 ± 0.23 and 3.21 ± 0.74 for elution with imidazole and acetate buffer, respectively, for purification from EXT.PR has lower yield values (around 5 %) than EXT (around 15 %). The number of steps tends to reduce yield and increase process costs, so the purification process in a monolithic bed coupled to the chromatographic system using the crude extract was evaluated. The final product obtained had a purification factor of 6, with a specific enzymatic activity of 59.61 ± 0.00 U·mg-1 and a yield of around 39 %, with only one band observed in the SDS-PAGE electrophoresis analysis, indicating that the matrix produced can separate specific proteins from the total fraction in the raw material. The IMAC matrix immobilized with chlorophyll proved promising and viable for application in protease purification processes.
Collapse
Affiliation(s)
- Márjorie Castro Pinto Porfirio
- Process Engineering Laboratory, the State University of Southwest Bahia, BR 415, km 04, s/n, 45700-000 Itapetinga, BA, Brazil
| | - Jonathan Barbosa Santos
- Process Engineering Laboratory, the State University of Southwest Bahia, BR 415, km 04, s/n, 45700-000 Itapetinga, BA, Brazil
| | - Annie Nolasco Alves
- Process Engineering Laboratory, the State University of Southwest Bahia, BR 415, km 04, s/n, 45700-000 Itapetinga, BA, Brazil
| | - Leandro Soares Santos
- Process Engineering Laboratory, the State University of Southwest Bahia, BR 415, km 04, s/n, 45700-000 Itapetinga, BA, Brazil
| | - Renata Cristina Ferreira Bonomo
- Process Engineering Laboratory, the State University of Southwest Bahia, BR 415, km 04, s/n, 45700-000 Itapetinga, BA, Brazil
| | - Rafael da Costa Ilhéu Fontan
- Process Engineering Laboratory, the State University of Southwest Bahia, BR 415, km 04, s/n, 45700-000 Itapetinga, BA, Brazil.
| |
Collapse
|
12
|
Han M, Li X, Wang X, Liu D, Fu S, Xu W, Li W, Zhang H. Preparation of polyhydroxyalkanoate-based magnetic microspheres for carbonyl reductase purification and immobilization. Int J Biol Macromol 2023; 253:126814. [PMID: 37690644 DOI: 10.1016/j.ijbiomac.2023.126814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
A polyhydroxyalkanoate (PHA) magnetic microsphere was designed for one-step purification and immobilization of a novel carbonyl reductase (RLSR5) from recombinant Escherichia coli lysate. The hydrophobic core of this microsphere was composed of a highly biocompatible polymer, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx), in which magnetic Fe3O4 particles were embedded during solvent evaporation. The hydrophilic shell of the fusion protein formed by PHA particle-binding protein (PhaP) and RLSR5 (PR) was expressed in recombinant E. coli. The magnetic core of Fe3O4@PHBHHx directly purified the hydrophilic shell from the E. coli lysate, and the two self-assembled to form Fe3O4@PHBHHx-PR through hydrophobic and hydrophilic interactions, eliminating the separation of the fusion protein. The microstructure, magnetic properties, morphology, size, and dispersion of Fe3O4@PHBHHx-PR were investigated by XRD, VSM, SEM, TEM, elemental mapping and DLS. It was found that Fe3O4@PHBHHx-PR correctly assembled, with a well dispersed spherical structure at the nanoscale and superparamagnetism properties. The amount of RLSR5 immobilized on PHA microspheres reached 121.9 mg/g. The Fe3O4@PHBHHx-PR was employed to synthesize (R)-tolvaptan with 99 % enantiomeric excess and 97 % bioconversion efficiency, and the catalyst maintained 78.6 % activity after 10 recovery cycles. These PHA magnetic microspheres are versatile carriers for enzyme immobilization and demonstrate improved stability and reusability of the free enzyme.
Collapse
Affiliation(s)
- Mengnan Han
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Xiaozheng Li
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Xuming Wang
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Dexu Liu
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Shuangqing Fu
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Wenzhi Xu
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Wei Li
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China.
| | - Honglei Zhang
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China.
| |
Collapse
|
13
|
Dong L, Chen G, Liu G, Huang X, Xu X, Li L, Zhang Y, Wang J, Jin M, Xu D, Abd El-Aty AM. A review on recent advances in the applications of composite Fe 3O 4 magnetic nanoparticles in the food industry. Crit Rev Food Sci Nutr 2022; 64:1110-1138. [PMID: 36004607 DOI: 10.1080/10408398.2022.2113363] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fe3O4 magnetic nanoparticles (MNPs) have attracted tremendous attention due to their superparamagnetic properties, large specific surface area, high biocompatibility, non-toxicity, large-scale production, and recyclability. More importantly, numerous hydroxyl groups (-OH) on the surface of Fe3O4 MNPs can provide coupling sites for various modifiers, forming versatile nanocomposites for applications in the energy, biomedicine, and environmental fields. With the development of science and technology, the potential of nanotechnology in the food industry has also gradually become prominent. However, the application of composite Fe3O4 MNPs in the food industry has not been systematically summarized. Herein, this article reviews composite Fe3O4 MNPs, including their properties, modifications, and physical functions, as well as their applications in the entire food industry from production to processing, storage, and detection. This review lays a solid foundation for promoting food innovation and improving food quality and safety.
Collapse
Affiliation(s)
- Lina Dong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - Ge Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - Xiaodong Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - XiaoMin Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - Lingyun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - Yanguo Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agri-Produc-Product Quality and Safety, Ministry of Agriculture Rural Affairs China, Beijing, PR China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agri-Produc-Product Quality and Safety, Ministry of Agriculture Rural Affairs China, Beijing, PR China
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
14
|
Mehata AK, Muthu MS. Development of Supramolecules in the Field of Nanomedicines. PHARMACEUTICAL APPLICATIONS OF SUPRAMOLECULES 2022:211-239. [DOI: 10.1007/978-3-031-21900-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
15
|
Man H, Nie Y, Shao S, Wang Y, Wang Z, Jiang Y. Fabrication of Fe 3O 4@poly(methyl methacrylate- co-glycidyl methacrylate) microspheres via miniemulsion polymerization using porous microspheres as templates for removal of cationic dyes. NEW J CHEM 2022. [DOI: 10.1039/d2nj01440h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and simple method was proposed to prepare monodisperse magnetic microspheres with controllable particle sizes and different functionalities.
Collapse
Affiliation(s)
- Hong Man
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yingrui Nie
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Shimin Shao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yang Wang
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, P. R. China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yong Jiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
16
|
Wang Y, Wei Y, Xu Q, Shao S, Man H, Nie Y, Wang Z, Jiang Y. Fabrication of Yolk-Shell Fe 3O 4@NiSiO 3/Ni Microspheres for Efficient Purification of Histidine-Rich Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14167-14176. [PMID: 34839664 DOI: 10.1021/acs.langmuir.1c02433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Magnetic materials perform well in the purification of histidine-rich proteins (His-proteins). In this work, a facile fabrication of yolk-shell magnetic Fe3O4@NiSiO3/Ni microspheres for the efficient purification of His-proteins has been reported. Yolk-shell Fe3O4@NiSiO3 microspheres were prepared via hydrothermal reaction. Then Ni nanoparticles (NPs) were loaded on Fe3O4@NiSiO3 microspheres after the adsorption and in situ reduction of nickel acetylacetonate. The yolk-shell Fe3O4@NiSiO3/Ni microspheres had a hierarchical flower-like structure and large cavities. The size of the cavity depended on the reaction time. This indicated that the microspheres had a large specific surface area for loading of more Ni NPs, which was crucial to the high His-protein adsorption capacity of Fe3O4@NiSiO3/Ni microspheres. Fe3O4@NiSiO3/Ni microspheres had a high adsorption capacity for bovine hemoglobin (BHb, 2822 mg/g), which was better than the values of other His-protein adsorbents. Fe3O4@NiSiO3/Ni microspheres still had a high BHb separation efficiency after seven separation cycles, indicating its good reusability and stability. Therefore, the as-prepared bifunctional yolk-shell Fe3O4@NiSiO3/Ni microspheres exhibited great practical application value for His-protein purification.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Yingying Wei
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Qianrui Xu
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Shimin Shao
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Hong Man
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Yingrui Nie
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Yong Jiang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
17
|
Chen P, Yao S, Zheng D, Xu Z, Yu J, Liang T. Fabrication of a novel core-shell-shell temperature-sensitive magnetic composite with excellent performance for papain adsorption. RSC Adv 2021; 11:24843-24851. [PMID: 35481057 PMCID: PMC9036859 DOI: 10.1039/d1ra04128b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/12/2021] [Indexed: 11/30/2022] Open
Abstract
Herein, a novel temperature-sensitive magnetic composite (Fe3O4@SiO2@P(NIPAM-co-VI)/Cu2+) with a uniform core-shell-shell structure was successfully prepared via a layer-by-layer method. The resulting magnetic composite revealed good magnetic properties and remarkable affinity to papain with a maximum adsorption capacity of 199.17 mg g-1. The adsorption equilibrium data fitted the pseudo-second-order kinetic and Freundlich models well, and the major thermodynamics parameters indicated that adsorption was an endothermic and spontaneous process. Fe3O4@SiO2@P(NIPAM-co-VI)/Cu2+ could thermally protect papain, which is attributed to the reversible hydrophilic-hydrophobic transition of the composite at temperatures below and above the lower critical solution temperature. More importantly, the magnetic composite could be recycled at least six times without a remarkable loss in its adsorption capacity, and the process of adsorption and elution had no significant effect on the activity and structure of papain. This work could provide a novel separation method for papain without loss of its activity.
Collapse
Affiliation(s)
- Pengfei Chen
- School of Food and Bioengineering, Xihua University Chengdu 610039 People's Republic of China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University Chengdu 610065 People's Republic of China
| | - Dongmei Zheng
- School of Food and Bioengineering, Xihua University Chengdu 610039 People's Republic of China
| | - Zhiyuan Xu
- School of Food and Bioengineering, Xihua University Chengdu 610039 People's Republic of China
| | - Jinling Yu
- School of Food and Bioengineering, Xihua University Chengdu 610039 People's Republic of China
| | - Tingting Liang
- School of Food and Bioengineering, Xihua University Chengdu 610039 People's Republic of China
| |
Collapse
|
18
|
Epsilon-polylysine based magnetic nanospheres as an efficient and recyclable antibacterial agent for Alicyclobacillus acidoterrestris. Food Chem 2021; 364:130382. [PMID: 34186476 DOI: 10.1016/j.foodchem.2021.130382] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 05/30/2021] [Accepted: 06/12/2021] [Indexed: 11/20/2022]
Abstract
In this work, polyacrylic acid modified ferroferric oxide (Fe3O4-PAA) was synthesized via a one-step hydrothermal method. The magnetic nanospheres modified with carboxyl groups were combined with epsilon-polylysine (EPL) via an EDC/NHS coupling reaction to obtain Fe3O4-PAA-EPL nanospheres. Fe3O4-PAA-EPL was employed as an antibacterial agent against Alicyclobacillus acidoterrestris and characterized by XRD, FTIR, XPS, VSM, SEM and TEM techniques. Experimental results showed the minimum inhibition concentration (MIC) of Fe3O4-PAA-EPL against A. acidoterrestris was 1.25 mg mL-1. Furthermore, A. acidoterrestris treated with Fe3O4-PAA-EPL nanospheres obviously lysed. Morphological analysis of bacteria supported by SEM indicated that the cell membrane of A. acidoterrestris was damaged, revealing that Fe3O4-PAA-EPL is an effective antibacterial agent. Additionally, the nanospheres with excellent magnetism can be simply separated from a reaction system via an external magnet. The construction of magnetic nanospheres with satisfactory antibacterial activity provides an effective and new method to control A. acidoterrestris.
Collapse
|
19
|
Zhou L, Li R, Li X, Zhang Y. One-step selective affinity purification and immobilization of His-tagged enzyme by recyclable magnetic nanoparticles. Eng Life Sci 2021; 21:364-373. [PMID: 34140847 PMCID: PMC8182278 DOI: 10.1002/elsc.202000093] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/21/2021] [Accepted: 03/02/2021] [Indexed: 11/07/2022] Open
Abstract
The NiFe2O4 magnetic nanoparticles (NF-MNPs) were prepared for one-step selective affinity purification and immobilization of His-tagged recombinant glucose dehydrogenase (GluDH). The prepared nanoparticles were characterized by a Fourier-transform infrared spectrophotometer and microscopy. The immobilization and purification of His-tagged GluDH on NF-MNPs were investigated. The optimal immobilization conditions were obtained that mixed cell lysis and carriers in a ratio of 0.13 in pH 8.0 Tris-HCl buffer at 30℃ and incubated for 2 h. The highest activity recovery and protein bindings were 71.39% and 38.50 μg mg-1 support, respectively. The immobilized GluDH exhibited high thermostability, pH-stability and it can retain more than 65% of the initial enzyme after 10 cycles for the conversion of glucose to gluconolactone. Comparing with a commercial Ni-NTA resin, the NF-MNPs displayed a higher specific affinity with His-tagged recombinant GluDH.
Collapse
Affiliation(s)
- Li‐Jian Zhou
- The People's Hospital of DanyangAffiliated Danyang Hospital of Nantong UniversityDanyangJiangsu ProvinceP. R. China
| | - Rui‐Fang Li
- School of PharmacyJiangsu UniversityZhenjiangP. R. China
| | - Xue‐Yong Li
- School of PharmacyJiangsu UniversityZhenjiangP. R. China
| | - Ye‐Wang Zhang
- School of PharmacyJiangsu UniversityZhenjiangP. R. China
| |
Collapse
|
20
|
Wang Y, Wei Y, Gao P, Sun S, Du Q, Wang Z, Jiang Y. Preparation of Fe 3O 4@PMAA@Ni Microspheres towards the Efficient and Selective Enrichment of Histidine-Rich Proteins. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11166-11176. [PMID: 33635047 DOI: 10.1021/acsami.0c19734] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Magnetic material is considered to as a major concern material for the enrichment of histidine-rich proteins (His-proteins) via metal-ion affinity. In this work, magnetic polymer microspheres with core-shell structure (Fe3O4@PMAA@Ni) were successfully prepared via reflux-precipitation polymerization followed by in situ reduction and growth of Ni2+. The obtained Ni nanofoams with flower-like structure and uniform pore size (3.34 nm) provided numerous binding sites for His-proteins. The adsorption performance of Fe3O4@PMAA@Ni microspheres for His-proteins was estimated via selectively separating bovine hemoglobin (BHb) and bovine serum albumin (BSA) from a matrix composed of BHb, BSA, and lysozyme (LYZ). The results indicated that Fe3O4@PMAA@Ni microspheres could efficiently and selectively separate His-proteins from the matrix, with a maximum adsorption capacity of ∼2660 mg/g for BHb. Moreover, Fe3O4@PMAA@Ni microspheres exhibited good stability and recyclability for BHb separation over seven cycles. Therefore, this work reported a novel and facile strategy to prepare core-shell Fe3O4@PMAA@Ni microspheres, which was promising for practical applications of His-protein separation and purification in proteomics.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Yingying Wei
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Pengcheng Gao
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Si Sun
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Qian Du
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Yong Jiang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
21
|
Del Arco J, Alcántara AR, Fernández-Lafuente R, Fernández-Lucas J. Magnetic micro-macro biocatalysts applied to industrial bioprocesses. BIORESOURCE TECHNOLOGY 2021; 322:124547. [PMID: 33352394 DOI: 10.1016/j.biortech.2020.124547] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
The use of magnetic biocatalysts is highly beneficial in bioprocesses technology, as it allows their easy recovering and enhances biocatalyst lifetime. Thus, it simplifies operational processing and increases efficiency, leading to more cost-effective processes. The use of small-size matrices as carriers for enzyme immobilization enables to maximize surface area and catalysts loading, also reducing diffusion limitations. As highly expensive nanoparticles (nm size) usually aggregate, their application at large scale is not recommended. In contrast, the use of magnetic micro-macro (µm-mm size) matrices leads to more homogeneous biocatalysts with null or very low aggregation, which facilitates an easy handling and recovery. The present review aims to highlight recent trends in the application of medium-to-high size magnetic biocatalysts in different areas (biodiesel production, food and pharma industries, protein purification or removal of environmental contaminants). The advantages and disadvantages of these above-mentioned magnetic biocatalysts in bioprocess technology will be also discussed.
Collapse
Affiliation(s)
- Jon Del Arco
- Applied Biotechnology Group, Biomedical Science School, Universidad Europea de Madrid, Urbanización El Bosque, Calle Tajo, s/n, 28670 Villaviciosa de Odón, Spain
| | - Andrés R Alcántara
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n., 28040 Madrid, Spain
| | - Roberto Fernández-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, 28049 Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Biomedical Science School, Universidad Europea de Madrid, Urbanización El Bosque, Calle Tajo, s/n, 28670 Villaviciosa de Odón, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55 - 66, Barranquilla, Colombia.
| |
Collapse
|
22
|
Ouyang J, Pu S, Wang J, Deng Y, Yang C, Naseer S, Li D. Enzymatic hydrolysate of geniposide directly acts as cross-linking agent for enzyme immobilization. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Synthesis and Characterization of a Core-Shell Copolymer with Different Glass Transition Temperatures. FIBERS 2020. [DOI: 10.3390/fib8110071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aim of this study is to synthesize an organic core-shell co-polymer with a different glass transition temperature (Tg) between the core and the shell that can be used for several applications such as the selective debonding of coatings or the release of encapsulated materials. The co-polymer was synthesized using free radical polymerization and was characterized with respect to its morphology, composition and thermal behavior. The obtained results confirmed the successful synthesis of the co-polymer copolymer poly(methyl methacrylate)@poly(methacrylic acid-co-ethylene glycol dimethacrylate), PMMA@P(MAA-co-EGDMA), which can be used along with water-based solvents. Furthermore, the Tg of the polymer’s core PMMA was 104 °C, while the Tg of the shell P(MAA-co-EGDMA) was 228 °C, making it appropriate for a wide variety of applications. It is worth mentioning that by following this specific experimental procedure, methacrylic acid was copolymerized in water, as the shell of the copolymer, without forming a gel-like structure (hydrogel), as happens when a monomer is polymerized in aqueous media, such as in the case of super-absorbent polymers. Moreover, the addition and subsequent polymerization of the monomer methyl methacrylate (MAA) into the mixture of the already polymerized PMMA resulted in a material that was uniform in size, without any agglomerations or sediments.
Collapse
|
24
|
Han J, Cai Y, Wang L, Mao Y, Ni L, Wang Y. A high efficiency method combining metal chelate ionic liquid-based aqueous two-phase flotation with two-step precipitation process for bromelain purification. Food Chem 2020; 309:125749. [DOI: 10.1016/j.foodchem.2019.125749] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 09/27/2019] [Accepted: 10/19/2019] [Indexed: 01/09/2023]
|
25
|
Xing Y, Han J, Wang L, Li C, Wu J, Mao Y, Ni L, Wang Y. The fabrication of dendrimeric phenylboronic acid-functionalized magnetic graphene oxide nanoparticles with excellent adsorption performance for the separation and purification of horseradish peroxidase. NEW J CHEM 2020. [DOI: 10.1039/c9nj06461c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A dendrimeric phenylboronic acid-affinitive magnetic graphene oxide nanoparticle was synthesized and used to separate and purify HRP.
Collapse
Affiliation(s)
- Youyuan Xing
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Juan Han
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Lei Wang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Chunmei Li
- Institute of Green Chemistry and Chemical Technology
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Jiacong Wu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Yanli Mao
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology
- Henan University of Urban Construction
- Pingdingshan 467036
- China
| | - Liang Ni
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Yun Wang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|
26
|
Hu J, Xiao F, Jin G. Zirconium doping level modulation combined with chalconylthiourea organic frameworks induced enhancement of luminescence applied to cell imaging. NEW J CHEM 2020. [DOI: 10.1039/d0nj02327b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Derivatives of a zirconium metal–organic framework as the center polymer material with a chalconylthiourea polymer (CT) were applied to cell imaging.
Collapse
Affiliation(s)
- Jianpeng Hu
- Department of Urology
- Affiliated People's Hospital of Jiangsu University
- Zhenjiang
- P. R. China
| | - Fuyan Xiao
- School of Pharmacy
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Guofan Jin
- School of Pharmacy
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|
27
|
Fan C, Tang H, Wang L, Li Y, Wang X, Wang S, Liang X. The preparation of a core–shell stationary phase by the in situ polymerization of a hydrophilic polymer on the surface of silica and its chromatographic performance. NEW J CHEM 2020. [DOI: 10.1039/d0nj01197e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A method for the in situ polymerization of polymers on a silica surface was developed.
Collapse
Affiliation(s)
- Chao Fan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- China
| | - Hao Tang
- Department of Pharmacy
- Gansu Provincial Hospital
- Lanzhou 730000
- China
| | - Licheng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- China
| | - Yijing Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- China
| | - Xusheng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- China
| | - Shuai Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- China
| | - Xiaojing Liang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- China
| |
Collapse
|
28
|
Huang ZS, Shiu JW, Way TF, Rwei SP. A thermo-responsive random copolymer of poly(NIPAm-co-FMA) for smart textile applications. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
29
|
Liu Y, Shen X. Preparation and characterization of NiFe bimetallic micro-particles and its composite with silica shell. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2019.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Integration of diagnosis and treatment in the detection and kill of S.aureus in the whole blood. Biosens Bioelectron 2019; 142:111507. [DOI: 10.1016/j.bios.2019.111507] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/28/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
|
31
|
Zhao M, Rong J, Han J, Zhou Y, Li C, Wang L, Mao Y, Wang Y. Novel Synthesis Strategy for Biocatalyst: Fast Purification and Immobilization of His- and ELP-Tagged Enzyme from Fermentation Broth. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31878-31888. [PMID: 31433163 DOI: 10.1021/acsami.9b09071] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inspired by natural biomineralization process, inorganic phosphates system has been selected as a candidate for the encapsulation of enzyme; however, during the long-term fabrication process, the loss of enzyme activity is unavoidable, and the biomimetic mineralization mechanism is still poorly understood. Meanwhile, the purification process plays a key role in the preparation of immobilized enzyme with high enzyme loading and activity, while the rapid, low-cost, and eco-friendly purification of biocatalyst from crude fermentation broth remains a critical challenge in biochemical engineering. Here, a binary tag composed of elastin-like polypeptide (ELP) and His-tag was presented for the first time to be fused with β-glucosidase (Glu) to construct a recombinant Glu-linker-ELP-His (GLEH) with the aim of developing a fast synthesis strategy combining purification and immobilization processes for a biocatalyst with better stability and recyclability. The purification fold and activity recovery of GLEH reached 18.1 and 95.2%, respectively, once a single inverse transition cycling was conducted at 25 °C for 10 min. Then, efficient biomineralization of hybrid enzyme-Cu3(PO4)2 nanoflowers was realized in 15 min by the action of His-tag and ultrasonic-assisted reaction method. The activity recovery and relative activity reached the maximum at 90.3 and 111.0%, respectively. We demonstrate that the crystal growth process of a hybrid nanoflower involves obvious nucleation, self-assembly, and the Ostwald ripening process, and the enzyme GLEH acts as a "binder" to assemble Cu3(PO4)2 nanoflakes. The immobilized GLEH nanoflowers show outstanding operation stability and recyclability, and their catalytic efficiency is close to that of free Glu.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yanli Mao
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology , Henan University of Urban Construction , Pingdingshan , Henan Province 467036 , China
| | | |
Collapse
|
32
|
Pang L, Yang PJ, Pang R, Gu WT, Zhou YF, Lv LN, Zhang MJ. Determination of freely dissolved polycyclic aromatic hydrocarbons in human serum using core-shell Fe3O4@polyacrylate magnetic microspheres by exclusive volume effect. J Chromatogr A 2019; 1602:100-106. [DOI: 10.1016/j.chroma.2019.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 12/13/2022]
|
33
|
Luo P, Han J, Li Y, Wang Y, Wang L, Ni L. Preparation of dendritic polymer-based magnetic carrier for application of bromelain separation and purification. J Food Biochem 2019; 43:e12976. [PMID: 31489668 DOI: 10.1111/jfbc.12976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/17/2019] [Accepted: 06/15/2019] [Indexed: 11/27/2022]
Abstract
Bromelain has wide applications in different industries, such as food, textile, and medicine. Traditional approaches for bromelain separation and purification from solution still have many problems, including unsatisfactory binding efficiency, time-consuming operation, and costly equipment. In the present study, a new type of dendritic polymer-based magnetic carrier (GO@Fe3 O4 @PEI-Cu2+ ) was first prepared for bromelain separation and purification in solution. The histidine existing in bromelain could bind to Cu2+ cations adsorbed on the surface of the magnetic carrier, and the magnetic carrier showed excellent performance for bromelain separation and purification in solution, with the adsorption capacity up to 357 mg/g. The magnetic carrier also exhibited excellent property in the aspect of recyclability. It was found that the magnetic carrier also presented desirable performance for the separation and purification of bromelain from the crude extract of pineapple peel, and the bromelain structure remained intact before and after elution process. PRACTICAL APPLICATIONS: Considering many advantages of bromelain in the applications of pharmaceutical and food industries, this study is aimed at presenting a novel magnetic carrier with high stability and fabulous performance for bromelain separation and purification in solution and achieving the practical application that the magnetic carrier can efficiently separate bromelain from the crude extract of pineapple peel.
Collapse
Affiliation(s)
- Peng Luo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Juan Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yuan Li
- Development Strategy Research Office of Policy Research Center, Council of Management Pingdingshan National Hi-tech Industrial Development Zone, Pingdingshan, PR China
| | - Yun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, PR China
| | - Li Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Liang Ni
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|