1
|
Espriu-Corella SM, Serrano-Sandoval SN, Antunes-Ricardo M. Impact of chickpea biofortification on the bioaccessibility of micronutrients and their relationship to obesity-linked biological activities. Food Chem 2025; 463:141342. [PMID: 39306993 DOI: 10.1016/j.foodchem.2024.141342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/25/2024] [Accepted: 09/15/2024] [Indexed: 11/14/2024]
Abstract
Micronutrient deficiencies are a critical factor in the development of obesity. This work aimed to determine the Se and Zn bioaccessibility on biofortified chickpea flour and evaluate their impact on the antioxidant and anti-inflammatory activities. The greatest increase (235 %) in isoflavones was observed in the ZnSO4-treatment compared to the control. Malonylated-formononetin-glucoside was the major isoflavone (43 %-50 %) found in the treatments. Na2SeO3-treated seeds showed the highest Se accumulation, while the greatest Zn accumulation was found in ZnSO4-treated seeds. Se bioaccesibility followed the order: Germinated Control>ZnSO4 > ZnSeO3 > ZnSO₄ + Na2SeO3 > Na2SeO3, while in the seeds biofortified with Zn salts showed the order: Germinated Control>ZnSeO3 > ZnSO₄ + Na2SeO3 > Na2SeO3 > ZnSO4. All treatments showed antioxidant activity. Na2SeO3-treatment (15.625 μg/mL) showed a significant reduction of 52 % in NO production compared to the Germinated Control. These findings demonstrated the biological value of food biofortification in providing minerals in the diet to combat the oxidative stress characteristic of obesity.
Collapse
Affiliation(s)
- Susana María Espriu-Corella
- Tecnológico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P, 64849 Monterrey, N. L., Mexico; Tecnológico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P, 64849 Monterrey, N. L., Mexico.
| | - Sayra Nayely Serrano-Sandoval
- Tecnológico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P, 64849 Monterrey, N. L., Mexico; Tecnológico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P, 64849 Monterrey, N. L., Mexico.
| | - Marilena Antunes-Ricardo
- Tecnológico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P, 64849 Monterrey, N. L., Mexico; Tecnológico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P, 64849 Monterrey, N. L., Mexico.
| |
Collapse
|
2
|
Abdalla MA, Sumon MM, Mühling KH. Improvement of cereal- and legume-derived protein quality with selenium and sulfur for plant food production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39668620 DOI: 10.1002/jsfa.14061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/10/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024]
Abstract
Selenium (Se) is essential for human and animal health and nutritional status. As humans cannot produce Se, it must be obtained from the diet. Adequate Se supplementation improves innate immunity, increases antioxidant capacity and helps prevent various disorders. Sulfur (S) is an indispensable nutrient that affects plant growth, performance and yield. Cereals and legumes are global staple foods, and their proteins are considered sustainable plant-based meat alternatives, which are increasingly popular. Owing to their physicochemical similarities, the crosstalk between Se and S influences cereal and grain-legume derived proteins. Modifications induced by Se and S might improve the protein quality of harvested cereal and legume grains. This timely review not only identifies the knowledge gaps in this research area focusing on Se and S enrichment in cereals and legumes but also emphasizes the potential of this unexplored area for new applications. S enrichment resulted in better quality properties in the bread of wheat flour and stimulated the expression of S-rich globulins and albumins in legumes. Se supplementation enhanced the emulsifying capacity of legumes (e.g. chickpeas). The improvement of protein fractions in cereal and legume grains has the potential to revolutionize protein processing to offer new alternatives to produce an array of S- and Se-enriched cereal and legume products. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Muna Ali Abdalla
- Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, Germany
| | | | | |
Collapse
|
3
|
Wang X, Fan B, Li Y, Fei C, Xiong Y, Li L, Liu Y, Tong L, Huang Y, Wang F. Effect of Germination on the Digestion of Legume Proteins. Foods 2024; 13:2655. [PMID: 39272421 PMCID: PMC11394037 DOI: 10.3390/foods13172655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/04/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
As one of the main sources of plant protein, it is important to improve the protein digestibility of legumes. Faced with population growth and increasing environmental pressures, it is essential to find a green approach. Germination meets this requirement, and in the process of natural growth, some enzymes are activated to make dynamic changes in the protein itself; at the same time, other substances (especially anti-nutrient factors) can also be degraded by enzymes or their properties (water solubility, etc.), thereby reducing the binding with protein, and finally improving the protein digestibility of beans under the combined influence of these factors The whole process is low-carbon, environmentally friendly and safe. Therefore, this paper summarizes this process to provide a reference for the subsequent development of soybean functional food, especially the germination of soybean functional food.
Collapse
Affiliation(s)
- Xinrui Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266000, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yang Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266000, China
| | - Chengxin Fei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yangyang Xiong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Lin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yanfang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Litao Tong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yatao Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| |
Collapse
|
4
|
Shi X, Zhao H, Zhang H, Li Q, Lou F. Highly selective fluorescence detection of L-selenium-methylselenocysteine in selenium-enriched Cardamine violifolia. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4373-4380. [PMID: 38895898 DOI: 10.1039/d4ay00320a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A feasible and practicable "off-on" type of fluorescence strategy for highly selective screening of L-selenium-methylselenocysteine (L-SeMC) in selenium-enriched Cardamine violifolia was developed using g-C3N4-MnO2 nanocomposites as fluorescent probes. The g-C3N4 nanosheets can emit blue fluorescence at 320 nm excitation wavelength with a fluorescence quantum yield of 28%. When MnO2 was deposited onto g-C3N4 nanosheets, the fluorescence of the g-C3N4 nanosheets was quenched due to fluorescence resonance energy transfer (FRET). After the addition of L-SeMC, MnO2 was reduced to Mn2+, which eliminated FRET and fluorescence was restored. Based on this, a quantitative method for the determination of L-SeMC was established. The fluorescence intensity of g-C3N4-MnO2 nanocomposites showed a good linear relationship with the concentration of L-SeMC in the range of 0-45 μg mL-1, the limit of detection (LOD, 3σ/K) was 8.25 ng mL-1 and the correlation coefficient was 0.9904. Common selenium compounds such as SeO2, Na2SeO3, SeMet and SeCys caused weak fluorescence intensity, which means that the developed method is highly selective to detect L-SeMC in a series of selenium compounds. Meanwhile, the technique was evaluated by spiking L-SeMC standards in C. violifolia extraction solutions and with 9 C. violifolia extraction specimens, receiving excellent accordance with results from the commercially available atomic fluorescence spectroscopy method.
Collapse
Affiliation(s)
- Xiaoran Shi
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, China.
| | - Hui Zhao
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, China.
| | - Han Zhang
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, China.
| | - Qunfang Li
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, China.
| | - Fangming Lou
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, China.
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
5
|
Liu Y, Guo X, Liu T, Fan X, Yu X, Zhang J. Study on the structural characteristics and emulsifying properties of chickpea protein isolate-citrus pectin conjugates prepared by Maillard reaction. Int J Biol Macromol 2024; 264:130606. [PMID: 38447830 DOI: 10.1016/j.ijbiomac.2024.130606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Chickpea protein isolate (CPI) typically exhibits limited emulsifying properties under various food processing conditions, including pH variations, different salt concentrations, and elevated temperatures, which limits its applications in the food industry. In this study, CPI-citrus pectin (CP) conjugates were prepared through the Maillard reaction to investigate the influence of various CP concentrations on the structural and emulsifying properties of CPI. With the CPI/CP ratio of 1:2, the degree of graft reached 35.54 %, indicating the successful covalent binding between CPI and CP. FT-IR and intrinsic fluorescence spectroscopy analyses revealed alterations in the secondary and tertiary structures of CPI after glycosylation modification. The solubility of CPI increased from 81.39 % to 89.59 % after glycosylation. Moreover, freshly prepared CPI emulsions showed an increase in interfacial protein adsorption (70.33 % to 92.71 %), a reduction in particle size (5.33 μm to 1.49 μm), and a decrease in zeta-potential (-34.9 mV to -52.5 mV). Simultaneously, the long-term stability of the emulsions was assessed by employing a LUMiSizer stability analyzer. Furthermore, emulsions prepared with CPI:CP 1:2 exhibited excellent stability under various environmental stressors. In conclusion, the results of this study demonstrate that the glycosylation is a valuable approach to improve the emulsifying properties of CPI.
Collapse
Affiliation(s)
- Yibo Liu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaobing Guo
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Ting Liu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xuemei Fan
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiyu Yu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
6
|
Yu H, Kong Q, Wang M, Han Z, Xu J. Improved viability of probiotics by encapsulation in chickpea protein matrix during simulated gastrointestinal digestion by succinylated modification. Int J Biol Macromol 2024; 260:129614. [PMID: 38246468 DOI: 10.1016/j.ijbiomac.2024.129614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
The potential application of succinylated chickpea protein (SCP) as a wall material for spray-dried microencapsulated probiotics was investigated. The results showed that succinylation increased the surface charge of chickpea proteins (CP) and reduced the particle size of the proteins. Meanwhile, succinylated modification decreased the solubility of protein under acidic conditions and increased the solubility in alkaline conditions. The effects of spray drying and in vitro gastrointestinal digestion on probiotics were investigated by microencapsulating chickpea protein with different degrees of N-succinylation. The results showed that all microcapsules had similar morphology, particle size and low water content. The microcapsules prepared by succinylated chickpea protein showed better stability and viability during spray drying and gastrointestinal digestion. The protective effect of probiotics was better as the degree of N-succinylation increased. In particular, the SCP-3-P sample (10 % succinic anhydride modified CP and maltodextrin) lost only 0.29 Log CFU/g throughout gastrointestinal digestion. The superior protective effect provided by succinylated CP in simulated gastric fluid (SGF) was mainly attributed to the reaction of succinic anhydride with protein to cause protein aggregation under gastric acidic conditions, reducing the infiltration of gastric acid and pepsin and maintaining the structural integrity of the microcapsules. Therefore, these findings provide a new strategy for probiotic intestinal delivery and application of chickpea protein.
Collapse
Affiliation(s)
- Hui Yu
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266500, China
| | - Qing Kong
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266500, China.
| | - Mengru Wang
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266500, China
| | - Zhuoyu Han
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266500, China
| | - Jia Xu
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266500, China
| |
Collapse
|
7
|
Andressa I, Kelly Silva do Nascimento G, Monteiro Dos Santos T, Rodrigues RDS, de Oliveira Teotônio D, Paucar-Menacho LM, Machado Benassi V, Schmiele M. Technological and health properties and main challenges in the production of vegetable beverages and dairy analogs. Food Funct 2024; 15:460-480. [PMID: 38170850 DOI: 10.1039/d3fo04199a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Lactose intolerance affects about 68-70% of the world population and bovine whey protein is associated with allergic reactions, especially in children. Furthermore, many people do not consume dairy-based foods due to the presence of cholesterol and ethical, philosophical and environmental factors, lifestyle choices, and social and religious beliefs. In this context, the market for beverages based on pulses, oilseeds, cereals, pseudocereals and seeds and products that mimic dairy foods showed a significant increase over the years. However, there are still many sensory, nutritional, and technological limitations regarding producing and consuming these products. Thus, to overcome these negative aspects, relatively simple technologies such as germination and fermentation, the addition of ingredients/nutrients and emerging technologies such as ultra-high pressure, pulsed electric field, microwave and ultrasound can be used to improve the product quality. Moreover, consuming plant-based beverages is linked to health benefits, including antioxidant properties and support in the prevention and treatment of disorders and common diseases like hypertension, diabetes, anxiety, and depression. Thus, vegetable-based beverages and their derivatives are viable alternatives and low-cost for replacing dairy foods in most cases.
Collapse
Affiliation(s)
- Irene Andressa
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Glauce Kelly Silva do Nascimento
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Tatiane Monteiro Dos Santos
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Rosane da Silva Rodrigues
- Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Campus Capão do Leão, PO Box 354, Zip Code: 96.160-000, Pelotas, RS, Brazil
| | - Daniela de Oliveira Teotônio
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Luz María Paucar-Menacho
- Departamento Académico de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Nuevo Chimbote 02712, Perú
| | - Vivian Machado Benassi
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Marcio Schmiele
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| |
Collapse
|
8
|
Wang J, Zhou X, Ju S, Cai R, Roopesh MS, Pan D, Du L. Influence of atmospheric pressure plasma jet on the structural, functional and digestive properties of chickpea protein isolate. Food Res Int 2023; 174:113565. [PMID: 37986520 DOI: 10.1016/j.foodres.2023.113565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
Chickpea protein (CPI) is a promising dietary protein and potential substitute for soy protein in food product development due to its high protein content and low allergenicity. However, CPI possesses denser tertiary and quaternary structures and contains certain amount of anti-nutritional factors, both of which constrain its functional properties and digestibility. The objective of this study was to assess the effectiveness of atmospheric pressure plasma jets (APPJ) as a non-thermal method for enhancing the functional characteristics and digestibility of CPI. In this study, the reactive oxygen and nitrogen species generated by the APPJ treatment led to protein oxidation and increased carbonyl and di-tyrosine contents. At the same time, the secondary, tertiary and microstructural structures of CPI were changed. The solubility, water holding capacity, fat absorption capacity, emulsifying capacity and foaming capacity of CPI were significantly improved after 30 s APPJ treatment, and a higher storage modulus in rheology was observed. Additionally, it was observed that the in vitro protein digestibility (IVPD) of APPJ-treated CPI increased significantly from 44.85 ± 0.6 % to 50.2 ± 0.59 % following in vitro simulated gastric and intestinal digestion, marking a noteworthy improvement of 11.93 %. These findings indicate that APPJ processing can enhance the functional and digestive properties of CPI through structural modification and expand its potential applications within the food industry.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xinyi Zhou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Shilong Ju
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Ruiyi Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - M S Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton AB T6G 2P5, Canada
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Lihui Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China.
| |
Collapse
|
9
|
Ma Y, Zhang J, He J, Xu Y, Guo X. Effects of high-pressure homogenization on the physicochemical, foaming, and emulsifying properties of chickpea protein. Food Res Int 2023; 170:112986. [PMID: 37316018 DOI: 10.1016/j.foodres.2023.112986] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
In order to expand the utilization of chickpeas in various food products, this study investigated the effects of different homogenization pressures (0-150 MPa) and cycles (1-3) on the physicochemical, and functional properties of chickpea protein. After high-pressure homogenization (HPH) treatment, hydrophobic groups and sulfhydryl groups of chickpea protein was exposed which increased its surface hydrophobicity and decreased its total sulfhydryl content. SDS-PAGE analysis showed that the molecular weight of modified chickpea protein remained unchanged. The particle size and turbidity of chickpea protein significantly decreased with an increase in homogenization pressure and cycles. Furthermore, the solubility, foaming, and emulsifying properties of chickpea protein were all enhanced by HPH treatment. In addition, the emulsions prepared by modified chickpea protein showed better stability capacity due to its smaller particle size and higher zeta potential. Therefore, HPH might be an effective technique to improve the functional properties of chickpea protein.
Collapse
Affiliation(s)
- Yigang Ma
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Jinmeng He
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yingjie Xu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xiaobing Guo
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
10
|
Kieliszek M, Serrano Sandoval SN. The importance of selenium in food enrichment processes. A comprehensive review. J Trace Elem Med Biol 2023; 79:127260. [PMID: 37421809 DOI: 10.1016/j.jtemb.2023.127260] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Selenium is an essential element that determines the proper life functions of human and animal organisms. The content of selenium in food varies depending on the region and soil conditions. Therefore, the main source is a properly selected diet. However, in many countries, there are shortages of this element in the soil and local food. Too low an amount of this element in food can lead to many adverse changes in the body. The consequence of this may also be the occurrence of numerous potentially life-threatening diseases. Therefore, it is very important to properly introduce methods that condition the supplementation of the appropriate chemical form of this element, especially in areas with deficient selenium content. This review aims to summarize the published literature on the characterization of different types of selenium-enriched foods. At the same time, legal regulations and prospects for the future related to the production of food enriched with this element are presented. It should be noted that there are limitations and concerns with the production of such food due to the narrow safety range between the necessary and the toxic dose of this element. Therefore, selenium has been treated with special care for a very long time. For this reason, the presented mechanisms of production processes related to increasing the scale of selenium supplementation should be constantly monitored. Appropriate monitoring and development of the technological process for the production of selenium-enriched food is very important. Such food should ensure consumer safety and repeatability of the obtained product. Understanding the mechanisms and possibilities of selenium accumulation by plants and animals is one of the most important directions in the development of modern bromatology and the science of supplementation. This is particularly important in the case of rational nutrition and supplementing the human diet with an essential element such as selenium. Food technology is facing these challenges today.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland.
| | - Sayra N Serrano Sandoval
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, NL, Mexico; Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, NL, Mexico
| |
Collapse
|
11
|
Serrano-Sandoval SN, Jiménez-Rodríguez A, Hernández-Pérez J, Chavez-Santoscoy RA, Guardado-Félix D, Antunes-Ricardo M. Selenized Chickpea Sprouts Hydrolysates as a Potential Anti-Aging Ingredient. Molecules 2023; 28:molecules28083402. [PMID: 37110634 PMCID: PMC10145560 DOI: 10.3390/molecules28083402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Skin aging represents a health and aesthetic problem that could result in infections and skin diseases. Bioactive peptides can potentially be used in skin aging regulation. Chickpea (Cicer arietinum L.) selenoproteins were obtained from germination with 2 mg Na2SeO3/100 g of seeds for 2 days. Alcalase, pepsin, and trypsin were used as hydrolyzers, and a membrane < 10 kDa was used to fractionate the hydrolysate. Se content, antioxidant capacity, elastase and collagen inhibition, functional stability, and preventative capacity were analyzed. Significant increases in Se content were found in germinated chickpea flour and protein related to the control. An increase of 38% in protein was observed in the selenized flour related to the control. A band (600-550 cm-1) observed in the selenized hydrolysates suggested the insertion of Se into the protein. Hydrolysates from pepsin and trypsin had the highest antioxidant potential. Se enhanced the stability of total protein and protein hydrolysates through time and increased their antioxidant capacity. Hydrolysates > 10 kDa had higher elastase and collagenase inhibition than the total protein and hydrolysates < 10 kDa. Protein hydrolysates < 10 kDa 6 h before UVA radiation had the highest inhibition of collagen degradation. Selenized protein hydrolysates showed promising antioxidant effects that could be related to skin anti-aging effects.
Collapse
Affiliation(s)
- Sayra N Serrano-Sandoval
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico
- The Institute for Obesity Research, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico
| | - Antonio Jiménez-Rodríguez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico
| | - Jesús Hernández-Pérez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico
| | | | - Daniela Guardado-Félix
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, FCQB-UAS, AP 1354, Culiacan 80000, SIN, Mexico
| | - Marilena Antunes-Ricardo
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico
- The Institute for Obesity Research, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico
| |
Collapse
|
12
|
Dávila-Vega JP, Gastelum-Hernández AC, Serrano-Sandoval SN, Serna-Saldívar SO, Guitiérrez-Uribe JA, Milán-Carrillo J, Martínez-Cuesta MC, Guardado-Félix D. Metabolism and Anticancer Mechanisms of Selocompounds: Comprehensive Review. Biol Trace Elem Res 2022:10.1007/s12011-022-03467-1. [PMID: 36342630 DOI: 10.1007/s12011-022-03467-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Selenium (Se) is an essential micronutrient with several functions in cellular and molecular anticancer processes. There is evidence that Se depending on its chemical form and the dosage use could act as a modulator in some anticancer mechanisms. However, the metabolism of organic and inorganic forms of dietary selenium converges on the main pathways. Different selenocompounds have been reported to have crucial roles as chemopreventive agents, such as antioxidant activity, activation of apoptotic pathways, selective cytotoxicity, antiangiogenic effect, and cell cycle modulation. Nowadays, great interest has arisen to find therapies that could enhance the antitumor effects of different Se sources. Herein, different studies are reported related to the effects of combinatorial therapies, where Se is used in combination with proteins, polysaccharides, chemotherapeutic agents or as nanoparticles. Another important factor is the presence of single nucleotide polymorphisms in genes related to Se metabolism or selenoprotein synthesis which could prevent cancer. These studies and mechanisms show promising results in cancer therapies. This review aims to compile studies that have demonstrated the anticancer effects of Se at molecular levels and its potential to be used as chemopreventive and in cancer treatment.
Collapse
Affiliation(s)
- Juan Pablo Dávila-Vega
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | - Ana Carolina Gastelum-Hernández
- Facultad de Ciencias Químico Biológicas, Programa Regional de Posgrado en Biotecnología, Universidad Autónoma de Sinaloa, FCQB-UAS, AP 1354, CP 80000, Culiacán, Sinaloa, Mexico
| | - Sayra N Serrano-Sandoval
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | - Sergio O Serna-Saldívar
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
| | - Janet A Guitiérrez-Uribe
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
- Escuela de Ingeniería Y Ciencias, Tecnologico de Monterrey, Reserva Territorial Atlixcáyotl, Campus Puebla, Vía Atlixcáyotl 5718, C.P. 72453, Puebla, Pue, México
| | - Jorge Milán-Carrillo
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | - M Carmen Martínez-Cuesta
- Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de La Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Daniela Guardado-Félix
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México.
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico.
| |
Collapse
|
13
|
Hernández-Grijalva MI, Serrano-Sandoval SN, Gutiérrez-Uribe JA, Serna-Saldivar SO, Milán-Carrillo J, Antunes-Ricardo M, Villela-Castrejón J, Guardado-Félix D. Application of protein fractions from selenized sprouted chickpeas as emulsifying agents and evaluation of their antioxidant properties. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Aderinola TA, Duodu KG. Production, health-promoting properties and characterization of bioactive peptides from cereal and legume grains. Biofactors 2022; 48:972-992. [PMID: 36161374 PMCID: PMC9828255 DOI: 10.1002/biof.1889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/07/2022] [Indexed: 01/12/2023]
Abstract
The search for bioactive components for the development of functional foods and nutraceuticals has received tremendous attention. This is due to the increasing awareness of their therapeutic potentials, such as antioxidant, anti-inflammatory, antihypertensive, anti-cancer properties, etc. Food proteins, well known for their nutritional importance and their roles in growth and development, are also sources of peptide sequences with bioactive properties and physiological implications. Cereal and legume grains are important staples that are processed and consumed in various forms worldwide. However, they have received little attention compared to other foods. This review therefore is geared towards surveying the literature for an appraisal of research conducted on bioactive peptides in cereal and legume grains in order to identify what the knowledge gaps are. Studies on bioactive peptides from cereal and legume grains are still quite limited when compared to other food items and most of the research already carried out have been done without identifying the sequence of the bioactive peptides. However, the reports on the antioxidative, anticancer/inflammatory, antihypertensive, antidiabetic properties show there is much prospect of obtaining potent bioactive peptides from cereal and legume grains which could be utilized in the development of functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Taiwo Ayodele Aderinola
- Department of Food Science and Technology, School of Agriculture and Agricultural TechnologyThe Federal University of TechnologyAkureNigeria
- Department of Consumer and Food Sciences, Faculty of Natural and Agricultural SciencesUniversity of PretoriaHatfieldSouth Africa
| | - Kwaku Gyebi Duodu
- Department of Consumer and Food Sciences, Faculty of Natural and Agricultural SciencesUniversity of PretoriaHatfieldSouth Africa
| |
Collapse
|
15
|
Cipriano PE, da Silva RF, Martins FAD, de Lima AB, de Oliveira C, Faquin V, Guilherme LRG. Selenate Fertilization Of Sorghum Via Foliar Application And Its Effect On Nutrient Content And Antioxidant Metabolism. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
16
|
Nutritional quality of protein flours of fava bean (Vicia faba L.) and in vitro digestibility and bioaccesibility. Food Chem X 2022; 14:100303. [PMID: 35450143 PMCID: PMC9018142 DOI: 10.1016/j.fochx.2022.100303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
|
17
|
Guardado-Félix D, Pérez-Carrillo E, Heredia-Olea E, Serna-Saldivar SO. Comparison of Regular and Selenium-Enriched Tortillas Produced from Sprouted Corn Kernels. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:226-232. [PMID: 35501586 DOI: 10.1007/s11130-022-00961-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Corn kernels were soaked with different selenium (Se) solutions (0, 12 or 24 mg Na2SeO3/L), sprouted for different times and then lime-cooked for the pilot plant production of tortillas. The dough and tortillas were quantified in terms of total Se, starch and protein content. Also, in vitro digestibility, texture, color, and sensory properties were evaluated. Results indicated that lime-cooking times were significantly reduced from 39.15 to 14.34, 8.42 and 2.80 min when whole corn was compared with kernels germinated for 1, 2 or 3 days. The Se content of regular tortillas (0.08 µg/g dw) increased about eight-fold in tortillas (0.651-0.625 µg/g dw) produced of corn germinated for two day and treated with 24 mg of Na2SeO3/L. The highest α-amylase activity and lower starch viscosity values were observed in 3-day germinated supplemented with the highest Se. Se-enriched tortillas produced from 2-day sprouted kernels treated with 12 mg Na2SeO3 showed the highest levels of general acceptability, texture and flavor.
Collapse
Affiliation(s)
- Daniela Guardado-Félix
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, FCQB-UAS, AP 1354, CP 80000, Culiacán, Sinaloa, México
| | - Esther Pérez-Carrillo
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
| | - Erick Heredia-Olea
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
| | - Sergio O Serna-Saldivar
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México.
| |
Collapse
|
18
|
Wen C, He X, Zhang J, Liu G, Xu X. A review on selenium-enriched proteins: preparation, purification, identification, bioavailability, bioactivities and application. Food Funct 2022; 13:5498-5514. [PMID: 35476089 DOI: 10.1039/d1fo03386g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selenium (Se) deficiency can cause many diseases and thereby affect human health. Traditional inorganic Se supplements have disadvantages of toxicity and low bioavailability. Se-Enriched proteins exhibit good bio-accessibility and high biological activities. This review provides a comprehensive overview of the preparation, purification, identification, bioavailability, bioactivities and application of Se-enriched proteins. The method of extracting Se-enriched proteins from animals, microorganisms and plants mainly includes solvent extraction (water, salt, ethanol and alkali solution extraction) and novel extraction technologies (ultrasound-assisted and pulsed electric field assisted extraction). Se-Enriched proteins and their hydrolysates exhibit good bioactivities, mainly including antioxidant activity, immune regulation, neuroprotective activity, and inhibition of hyperglycemic activity, among others. Future research should focus on the relationship between Se-enriched protein metabolism and the selenium regulatory protein metabolic pathway by using multi-omics technology. In addition, it is necessary to comprehensively study the structure-activity relationship of Se-enriched proteins/hydrolysates from different sources, to further clarify their bioactive mechanism and to verify their health benefits in vivo.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Xudong He
- Yangzhou Center for Food and Drug Control, Yangzhou 225127, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China. .,Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
19
|
Effect of sprouting on the proteome of chickpea flour and on its digestibility by ex vivo gastro-duodenal digestion complemented with jejunal brush border membrane enzymes. Food Res Int 2022; 154:111012. [DOI: 10.1016/j.foodres.2022.111012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 12/31/2022]
|
20
|
Kang S, Zhang J, Guo X, Lei Y, Yang M. Effects of Ultrasonic Treatment on the Structure, Functional Properties of Chickpea Protein Isolate and Its Digestibility In Vitro. Foods 2022; 11:foods11060880. [PMID: 35327302 PMCID: PMC8954619 DOI: 10.3390/foods11060880] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/06/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023] Open
Abstract
This study evaluated the effects of different levels of ultrasonic power (200, 400, 600 W) and treatment time (0, 10, 15 and 30 min) on the structure, emulsification characteristics, and in vitro digestibility of chickpea protein isolate (CPI). The changes in surface hydrophobicity of CPI indicated that ultrasound treatment exposed more hydrophobic amino acid residues. The analysis of sulfhydryl content and zeta potential showed that ultrasound caused the disulfide bond of CPI to be opened, releasing more negatively charged groups, and the solution was more stable. In addition, Fourier Transform Infrared Spectroscopy (FT-IR) and intrinsic fluorescence spectroscopy showed that ultrasound changes the secondary and tertiary structure of CPI, which is due to molecular expansion and stretching, exposing internal hydrophobic groups. The emulsification and foaming stability of CPI were significantly improved after ultrasonic treatment. Ultrasonic treatment had a minor effect on the solubility, foaming capacity and in vitro digestibility of CPI. All the results revealed that the ultrasound was a promising way to improve the functional properties of CPI.
Collapse
|
21
|
Serrano-Sandoval SN, Guardado-Félix D, De la Rosa-Millán J, Heredia-Olea E, Gutiérrez-Uribe JA. Germinated chickpea-maize extrudates with high protein content and reduced starch digestibility. J Food Sci 2022; 87:1895-1905. [PMID: 35289402 DOI: 10.1111/1750-3841.16100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022]
Abstract
The objective of this study was to produce maize extrudates supplemented with germinated chickpea flour to increase the contents of resistant starch (RS) and protein. Six extrudates were formulated using maize grits (ME), germinated chickpea flour (GCE) and different blends of maize and 10%, 20%, 30%, or 40% of germinated chickpea flour (MGCE-10, MGCE-20, MGCE-30, or MGCE-40). Increase of RS was observed in the defatted samples due to germinated chickpea flour addition. In the nondefatted samples, the highest content of RS was observed in GCE followed by ME and the different MGCE. Interaction between fat, starch, and protein by improved intramolecular association was assessed by Fourier transform- infrared spectroscopy (FTIR). Amylose-lipid complexes in nondefatted samples increased the content of RS in comparison to defatted samples. The highest expansion index was obtained in MGCE-30 and MGCE-40. ME had the highest hardness and crispiness. Germinated chickpea flour increased the water absorption index (WAI), but reduced water solubility index (WSI) when it was combined with maize grits to produce extrudates. The in vitro protein digestibility (IVPD) was higher in the GCE and MGCE with more than 20% of germinated chickpea flour compared to ME. MGCE-20 and MGCE-30 showed the highest acceptability of the supplemented extrudates with 50% more protein than ME, a similar IVPD to that of GCE, and good functional characteristics. PRACTICAL APPLICATION: Combining maize and germinated chickpea flour is a good strategy to have a controlled digestibility of starch and increase the plant based protein content in healthier snacks.
Collapse
Affiliation(s)
- Sayra N Serrano-Sandoval
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, Mexico
| | - Daniela Guardado-Félix
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, Mexico.,Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Julián De la Rosa-Millán
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Bio-Foods Research Lab, Querétaro, Mexico
| | - Erick Heredia-Olea
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, Mexico
| | - Janet A Gutiérrez-Uribe
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Mexico.,Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Puebla, Puebla, Mexico
| |
Collapse
|
22
|
Effects of combined treatment with ultrasound and pH shifting on foaming properties of chickpea protein isolate. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107351] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Serrano-Sandoval SN, Guardado-Félix D, Gutiérrez-Uribe JA. Deglycosylation of isoflavones in selenized germinated chickpea flours due to convection drying. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Current perspectives in cell-based approaches towards the definition of the antioxidant activity in food. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Lazo-Vélez MA, Garzon R, Guardado-Félix D, Serna-Saldivar SO, Rosell CM. Selenized chickpea sourdoughs for the enrichment of breads. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Silva VM, Nardeli AJ, Mendes NAC, Alcock TD, Rocha MDM, Putti FF, Wilson L, Young SD, Broadley MR, White PJ, Reis ARD. Application of sodium selenate to cowpea (Vigna unguiculata L.) increases shoot and grain Se partitioning with strong genotypic interactions. J Trace Elem Med Biol 2021; 67:126781. [PMID: 34015659 DOI: 10.1016/j.jtemb.2021.126781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022]
Abstract
BACKGORUND Cowpea is a crop widely used in developing countries due its rusticity. Besides its rich genotypic variability, most breeding programs do not explore its potential to improve elements uptake. Selenium (Se) is a scarce element in most soils, resulting in its deficiency being common in human diets. This study aimed to evaluate the interaction between biofortification with Se and genotypic variation in cowpea, on the concentrations of Se in roots, leaves + stem and grains. METHODS Twenty-nine cowpea genotypes were grown in a greenhouse in the absence (control) and presence of Se (12.5 μg Se kg-1 soil) as sodium selenate, in fully randomized scheme. The plants were cultivated until grains harvest. The following variables were determined: roots dry weight (g), leaves + stems dry weight (g), grains dry weight (g), Se concentration (mg kg-1) in roots, leaves + stems and grains, and Se partitioning to shoots and grains. RESULTS Selenium application increased the Se concentration in roots, leaves + stems and grains in all genotypes. At least twofold variation in grain Se concentration was observed among genotypes. Selenium application did not impair biomass accumulation, including grain dry weight. Genotype "BRS Guariba" had the largest Se concentration in grains and leaves + stems. Genotype MNC04-795 F-158 had the largest partitioning of Se to shoots and grain, due to elevated dry weights of leaves + stems and grain, and high Se concentrations in these tissues. CONCLUSION This information might be valuable in future breeding programs to select for genotypes with better abilities to accumulate Se in grain to reduce widespread human Se undernutrition.
Collapse
Affiliation(s)
- Vinícius Martins Silva
- São Paulo State University (UNESP), Department of Crop Production, FCAV, Postal CEP 14884-900, Jaboticabal, SP, Brazil
| | - Ana Júlia Nardeli
- São Paulo State University (UNESP), Department of Crop Production, FCAV, Postal CEP 14884-900, Jaboticabal, SP, Brazil
| | - Nandhara Angelica Carvalho Mendes
- São Paulo State University (UNESP), Department of Biosystems Engineering, Rua Domingos da Costa Lopes 780, CEP17602-496, Tupã, SP, Brazil
| | - Thomas D Alcock
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | | | - Fernando Ferrari Putti
- São Paulo State University (UNESP), Department of Biosystems Engineering, Rua Domingos da Costa Lopes 780, CEP17602-496, Tupã, SP, Brazil
| | - Lolita Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Scott D Young
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Martin R Broadley
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Philip J White
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Distinguished Scientist Fellowship Program, King Saud University, Riyadh, 11451, Saudi Arabia
| | - André Rodrigues Dos Reis
- São Paulo State University (UNESP), Department of Biosystems Engineering, Rua Domingos da Costa Lopes 780, CEP17602-496, Tupã, SP, Brazil.
| |
Collapse
|
27
|
Liu Q, Wang Q, He P, Zhang Y, Pan L, Chen Y, Wu H, Zhang M. Heat-induced gel properties and gastrointestinal digestive properties of egg white produced by hens fed with selenium-enriched yeast. Food Chem 2021; 366:130712. [PMID: 34343953 DOI: 10.1016/j.foodchem.2021.130712] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/03/2021] [Accepted: 07/25/2021] [Indexed: 02/08/2023]
Abstract
The aim of this study was to investigate the effect of selenium enrichment on the gel properties and gastrointestinal digestive properties of egg white. Results of texture profile analysis, scanning electron microscopy and differential scanning calorimetry showed that the heat-induced gel of selenium-enriched egg white (EW-2) exhibited higher gel strength, smoother microstructure, and higher thermal denaturation temperature than ordinary egg white (EW-1), which might be due to the change of ovomucin and ovotransferrin content. The gastrointestinal digestive products of the EW-2 protein contained a higher proportion of small peptides and more free amino acids than those of EW-1. Results of oxygen radical absorbance capacity and cellular antioxidant activity assays indicated that digestive products of the EW-2 protein exhibited stronger antioxidant activity than those of the EW-1 protein. In summary, Se enrichment improved heat-induced gel properties of egg white, and promoted the gastrointestinal digestion of egg white protein.
Collapse
Affiliation(s)
- Qi Liu
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Qian Wang
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Ping He
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yi Zhang
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Leiman Pan
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yong Chen
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China; College of Chemical and Biological, Guangxi Normal University for Nationalities, Chongzuo, Guangxi 532200, China
| | - Hui Wu
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China.
| | - Mengmeng Zhang
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
28
|
Herrera A C, Gonzalez de Mejia E. Feasibility of commercial breadmaking using chickpea as an ingredient: Functional properties and potential health benefits. J Food Sci 2021; 86:2208-2224. [PMID: 34028013 DOI: 10.1111/1750-3841.15759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 01/16/2023]
Abstract
The use of pulses, such as chickpea, has become more relevant in baking as they exhibit potential health benefits such as reduction of obesity, type 2 diabetes, and prevention of colon cancer. It is also a good source of highly bioavailable protein at a low cost. This allows companies to develop new innovative products that meet the demand for nutritional value-added baked goods. Further understanding of the baking properties and rheology of chickpea flours will allow the baking industry to overcome processing and quality challenges related to the effects caused by the addition of non-gluten-forming ingredients. Therefore, the objective of this review was to summarize the rheological properties of baking formulations using chickpea as an ingredient in order to produce quality products while preserving the nutritional aspects of this legume. It also covers health benefits linked to chickpea-specific compounds.
Collapse
Affiliation(s)
- Catherin Herrera A
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
29
|
Boukid F. Chickpea (
Cicer arietinum
L.) protein as a prospective plant‐based ingredient: a review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15046] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Fatma Boukid
- Food Safety and Functionality Programme, Food Industry Area Institute of Agriculture and Food Research and Technology (IRTA) Finca Camps i Armet s/n Monells, Catalonia 17121 Spain
| |
Collapse
|
30
|
Mesquita MC, Leandro EDS, de Alencar ER, Botelho RBA. Fermentation of chickpea (Cicer arietinum L.) and coconut (Coccus nucifera L.) beverages by Lactobacillus paracasei subsp paracasei LBC 81: The influence of sugar content on growth and stability during storage. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Guardado-Félix D, Lazo-Vélez MA, Pérez-Carrillo E, Panata-Saquicili DE, Serna-Saldívar SO. Effect of partial replacement of wheat flour with sprouted chickpea flours with or without selenium on physicochemical, sensory, antioxidant and protein quality of yeast-leavened breads. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109517] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Wang Y, Wang Y, Li K, Bai Y, Li B, Xu W. Effect of high intensity ultrasound on physicochemical, interfacial and gel properties of chickpea protein isolate. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109563] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Faridy JCM, Stephanie CGM, Gabriela MMO, Cristian JM. Biological Activities of Chickpea in Human Health (Cicer arietinum L.). A Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:142-153. [PMID: 32239331 DOI: 10.1007/s11130-020-00814-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Chickpea is one of the most consumed legumes worldwide. Among their benefits are the high protein concentration that reflects not only at the nutritional level but also on the supply of active peptides; besides, it presents different metabolites with pharmacological activities. Some biological activities identified in the different compounds of chickpea are antioxidant, antihypertensive, hypocholesterolemic, and anticancer. Although most reports are based on the effects of the proteins and their hydrolysates, alcoholic extracts have also been proven that contain phenolic compounds, saponins, phytates, among others; therefore, their consumption has been dubbed as an alternative for the prevention of chronic degenerative diseases. In the present review, we summarize the nutritional composition of the chickpea and describe the main biological activities reported for this legume, revealing some of its beneficial effects on health, of which there is still much to be elucidated.
Collapse
Affiliation(s)
- Juárez-Chairez Milagros Faridy
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacateco, Unidad Profesional "Adolfo López Mateos", Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, C.P.07738. Delegación Gustavo A. Madero, CDMX, Mexico
| | - Cid-Gallegos María Stephanie
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacateco, Unidad Profesional "Adolfo López Mateos", Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, C.P.07738. Delegación Gustavo A. Madero, CDMX, Mexico
| | - Meza-Márquez Ofelia Gabriela
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacateco, Unidad Profesional "Adolfo López Mateos", Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, C.P.07738. Delegación Gustavo A. Madero, CDMX, Mexico
| | - Jiménez-Martínez Cristian
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacateco, Unidad Profesional "Adolfo López Mateos", Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, C.P.07738. Delegación Gustavo A. Madero, CDMX, Mexico.
| |
Collapse
|
34
|
Reis ARD, Boleta EHM, Alves CZ, Cotrim MF, Barbosa JZ, Silva VM, Porto RL, Lanza MGDB, Lavres J, Gomes MHF, Carvalho HWPD. Selenium toxicity in upland field-grown rice: Seed physiology responses and nutrient distribution using the μ-XRF technique. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110147. [PMID: 31918255 DOI: 10.1016/j.ecoenv.2019.110147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/26/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Selenium (Se) is an essential element for human and animal, although considered beneficial to higher plants. Selenium application at high concentration to plants can cause toxicity decreasing the physiological quality of seeds. This study aimed to characterize the Se toxicity on upland rice yield, seed physiology and the localization of Se in seeds using X-ray fluorescence microanalysis (μ-XRF). In the flowering stage, foliar application of Se (0, 250, 500, 1000, 1500, 2000 g ha-1) as sodium selenate was performed. A decrease in rice yield and an increase in seed Se concentrations were observed from 250 g Se ha-1. The storage proteins in the seeds showed different responses with Se application (decrease in albumin, increase in prolamin and glutelin). There was a reduction in the concentrations of total sugars and sucrose with the application of 250 and 500 g Se ha-1. The highest intensities Kα counts of Se were detected mainly in the endosperm and aleurone/pericarp. μ-XRF revealed the spatial distribution of sulfur, calcium, and potassium in the seed embryos. The seed germination decreased, and the electrical conductivity increased in response to high Se application rates showing clearly an abrupt decrease of physiological quality of rice seeds. This study provides information for a better understanding of the effects of Se toxicity on rice, revealing that in addition to the negative effects on yield, there are changes in the physiological and biochemical quality of seeds.
Collapse
Affiliation(s)
- André Rodrigues Dos Reis
- São Paulo State University (UNESP), Rua Domingos da Costa Lopes 780, Tupã, SP, Postal Code 17602-496, Brazil.
| | | | - Charline Zaratin Alves
- Federal University of Mato Grosso do Sul (UFMS), Rodovia MS-306 - Zona Rural, Chapadão do Sul, MS, Postal Code 79560-000, Brazil
| | - Mayara Fávero Cotrim
- Federal University of Mato Grosso do Sul (UFMS), Rodovia MS-306 - Zona Rural, Chapadão do Sul, MS, Postal Code 79560-000, Brazil
| | - Julierme Zimmer Barbosa
- Federal Institute of Southeast Minas Gerais, Rua Monsenhor José Augusto, n. 204 - Bairro São José, Barbacena, MG, 36205-018, Brazil
| | | | | | | | - José Lavres
- University of São Paulo - USP, Av. Centenário, 303, São Dimas, Piracicaba, SP, Postal Code 13400-970, Brazil
| | | | | |
Collapse
|
35
|
Ma S, Zhang M, Bao X, Fu Y. Preparation of antioxidant peptides from oat globulin. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1716076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Sarina Ma
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R.China
| | - Meili Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R.China
| | - Xiaolan Bao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R.China
| | - Yuan Fu
- College of Science, Inner Mongolia Agricultural University, Hohhot, P.R.China
| |
Collapse
|