1
|
Sundaresan S, Vijaikanth V. Recent advances in electrochemical detection of common azo dyes. Forensic Toxicol 2025; 43:1-21. [PMID: 39093537 DOI: 10.1007/s11419-024-00696-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 07/20/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE Food forensics is an emerging field and the initial part of this review showcases the toxic effects and the instrumental methods applied for the detection of the most commonly used azo dyes. Electrochemical detection has a lot of advantages and hence the significance of the most important techniques used in the electrochemical detection is discussed. The major part of this review highlights the surface modified electrodes, utilized for the detection of the most important azo dyes to achieve low detection limit (LOD). METHODS A thorough literature study was conducted using scopus, science direct and other scientific databases using specific keywords such as toxic azo dyes, electrochemical detection, modified electrodes, LOD etc. The recent references in this field have been included. RESULTS From the published literature, it is observed that with the growing interests in the field of electrochemical techniques, a lot of importance have been given in the area of modifying the working electrodes. The results unambiguously show that the modified electrodes outperform bare electrodes and offer a lower LOD value. CONCLUSION According to the literature reports it can be concluded that, compared to other detection methods, electrochemical techniques are much dependable and reproducible. The fabrication of the electrode material with the appropriate modifications is the main factor that influences the sensitivity. Electrochemical sensors can be designed to be more sensitive, more reliable, and less expensive. These sensors can be effectively used by toxicologists to detect trace amounts of harmful dyes in food samples.
Collapse
Affiliation(s)
- Sumi Sundaresan
- Department of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore, 641114, Tamil Nadu, India
| | - Vijendran Vijaikanth
- Department of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore, 641114, Tamil Nadu, India.
| |
Collapse
|
2
|
Zeng S, Zhu H, Sohan ASMMF, Liu J, Wan X, Lin X, Yin B. A remote-controlled portable workstation for highly sensitive and real-time chemiluminescent detection of cadmium. Food Chem 2024; 452:139549. [PMID: 38762939 DOI: 10.1016/j.foodchem.2024.139549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/20/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024]
Abstract
The prevention of pollution requires real-time monitoring of cadmium (Cd2+) concentration in the food, as it has a dramatic impact on poultry and can pose a threat to human health. Here, we fabricate a portable workstation integrating a microfluidic chip that facilitates real-time monitoring of Cd2+ levels in real samples by utilizing the Luminol-KMnO4 chemiluminescence (CL) system. Interestingly, Cd2+ can significantly enhance the CL signal, resulting in sensitive detection of Cd2+ in the range of 0-0.18 mg/L with the limit of detection (LOD) of 0.207 μg/L. Furthermore, a remote-controlled unit is integrated into the portable workstation to form a remote-controlled portable workstation (RCPW) performing automated point-of-care testing (POCT) of Cd2+. The as-prepared strategy allows remote control of RCPW to avoid long-distance transportation of samples to achieve real-time target monitoring. Consequently, this system furnishes RCPW for monitoring Cd2+ levels in real samples, thereby holding potential for applications in preventing food pollution.
Collapse
Affiliation(s)
- Shiyu Zeng
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Haoyu Zhu
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - A S M Muhtasim Fuad Sohan
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jun Liu
- Suqian Product Quality Supervision and Inspection Institute, Suqian 223800, China
| | - Xinhua Wan
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaodong Lin
- University of Macau Zhuhai UM Science and Technology Research Institute, Zhuhai 519000, China.
| | - Binfeng Yin
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
3
|
Ganesh PS, Elugoke SE, Lee SH, Ko HU, Kim SY, Ebenso EE. A bifunctional MoS 2/SGCN nanocatalyst for the electrochemical detection and degradation of hazardous 4-nitrophenol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116701. [PMID: 39018731 DOI: 10.1016/j.ecoenv.2024.116701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024]
Abstract
Herein, we reported the dual functions of molybdenum disulfide/sulfur-doped graphitic carbon nitride (MoS2/SGCN) composite as a sensing material for electrochemical detection of 4-NP and a catalyst for 4-NP degradation. The MoS2 nanosheet, sulfur-doped graphitic carbon nitride (SGCN) and MoS2/SGCN were characterized using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) spectroscopy and X-ray photoelectron spectroscopy (XPS). Electrochemical characterization of these materials with electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) in 1 mM K4[Fe(CN)6]3-/4- show that the composite has the lowest charge transfer resistance and the best electrocatalytic activity. The limit of detection (LOD) and the linear range of 4-nitrophenol at MoS2/SGCN modified glassy carbon electrode (MoS2/SGCN/GCE) were computed as 12.8 nM and 0.1 - 2.6 μM, respectively. Also, the percentage recoveries of 4-NP in spiked tap water samples ranged from 97.8 - 99.1 %. The electroanalysis of 4-NP in the presence of notable interferons shows that the proposed electrochemical sensor features outstanding selectivity toward 4-NP. Additionally, the results of the catalytic degradation of 4-NP at MoS2/SGCN show that the nanocatalyst catalyzed the transformation of 4-NP to 4-aminophenol (4-AP) with a first-order rate constant (k) estimated to be 4.2 ×10-2 s-1. The results of this study confirm that the MoS2/SGCN nanocatalyst is a useful implement for electroanalytical monitoring and catalytic degradation of the hazardous 4-NP in water samples.
Collapse
Affiliation(s)
- Pattan-Siddappa Ganesh
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan 31253, Republic of Korea.
| | - Saheed Eluwale Elugoke
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| | - Seok-Han Lee
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan 31253, Republic of Korea
| | - Hyun-U Ko
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan 31253, Republic of Korea
| | - Sang-Youn Kim
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan 31253, Republic of Korea.
| | - Eno E Ebenso
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| |
Collapse
|
4
|
Qin X, Yin P, Zhang Y, Su M, Chen F, Xu X, Zhao J, Gui Y, Guo H, Zhao C, Zhang Z. Self-assembled ordered AuNRs-modified electrodes for simultaneous determination of dopamine and topotecan with improved data reproducibility. Mikrochim Acta 2024; 191:350. [PMID: 38806865 DOI: 10.1007/s00604-024-06441-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024]
Abstract
Gold nanomaterials have been widely explored in electrochemical sensors due to their high catalytic property and good stability in multi-medium. In this paper, the reproducibility of the signal among batches of gold nanorods (AuNRs)-modified electrodes was investigated to improve the data stabilization and repeatability. Ordered and random self-assembled AuNRs-modified electrodes were used as electrochemical sensors for the simultaneous determination of dopamine (DA) and topotecan (TPC), with the aim of obtaining an improved signal stability in batches of electrodes and realizing the simultaneous determination of both substances. The morphology and structure of the assemblies were analyzed and characterized by UV-Vis spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray powder diffraction (XRD). Electrochemical studies showed that the ordered AuNRs/ITO electrodes have excellent signal reproducibility among several individuals due to the homogeneous mass transfer in the ordered arrangement of the AuNRs. Under the optimized conditions, the simultaneous detection results of DA and TPC showed good linearity in the ranges 1.75-45 μM and 1.5-40 μM, and the detection limits of DA and TPC were 0.06 μM and 0.17 μM, respectively. The results showed that the prepared ordered AuNR/ITO electrode had high sensitivity, long-term stability, and reproducibility for the simultaneous determination of DA and TPC, and it was expected to be applicable for real sample testing.
Collapse
Affiliation(s)
- Xiaoyun Qin
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| | - Peijun Yin
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| | - Yuhang Zhang
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| | - Mingxing Su
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| | - Fenghua Chen
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| | - Xinru Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Jianbo Zhao
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| | - Yanghai Gui
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| | - Huishi Guo
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| | - Chao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
5
|
Balram D, Lian KY, Sebastian N, Alharthi SS, Al-Saidi HM, Yadav VK, Kumar D, Kumar V. A novel ternary nanocomposite based electrochemical sensor coupled with regularized neural network for nanomolar detection of sunset yellow FCF. JOURNAL OF ALLOYS AND COMPOUNDS 2023; 968:171934. [DOI: 10.1016/j.jallcom.2023.171934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
6
|
Saleh Mohammadnia M, Roghani-Mamaqani H, Ghalkhani M, Hemmati S. A Modified Electrochemical Sensor Based on N,S-Doped Carbon Dots/Carbon Nanotube-Poly(Amidoamine) Dendrimer Hybrids for Imatinib Mesylate Determination. BIOSENSORS 2023; 13:bios13050547. [PMID: 37232908 DOI: 10.3390/bios13050547] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/27/2023]
Abstract
Imatinib mesylate, an anticancer drug, is prescribed to treat gastrointestinal stromal tumors and chronic myelogenous leukemia. A hybrid nanocomposite of N,S-doped carbon dots/carbon nanotube-poly(amidoamine) dendrimer (N,S-CDs/CNTD) was successfully synthesized and used as a significant modifier to design a new and highly selective electrochemical sensor for the determination of imatinib mesylate. A rigorous study with electrochemical techniques, such as cyclic voltammetry and differential pulse voltammetry, was performed to elucidate the electrocatalytic properties of the as-prepared nanocomposite and the preparation procedure of the modified glassy carbon electrode (GCE). A higher oxidation peak current was generated for the imatinib mesylate on a N,S-CDs/CNTD/GCE surface compared to the GCE and CNTD/GCE. The N,S-CDs/CNTD/GCE showed a linear relationship between the concentration and oxidation peak current of the imatinib mesylate in 0.01-100 μM, with a detection limit of 3 nM. Finally, the imatinib mesylate's quantification in blood-serum samples was successfully performed. The N,S-CDs/CNTD/GCE's reproducibility and stability were indeed excellent.
Collapse
Affiliation(s)
- Maryam Saleh Mohammadnia
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 533184-1133, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 533184-1133, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 533184-1133, Iran
| | - Masoumeh Ghalkhani
- Electrochemical Sensors Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, P.O. Box 16785-163, Tehran 167881-5811, Iran
| | - Salar Hemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 516661-6471, Iran
- Biotechnology Research Center, Tabriz University of Medical Science, Tabriz 516661-6471, Iran
| |
Collapse
|
7
|
You Y, Luo B, Wang C, Dong H, Wang X, Hou P, Sun L, Li A. An ultrasensitive probe-free electrochemical immunosensor for gibberellins employing polydopamine-antibody nanoparticles modified electrode. Bioelectrochemistry 2023; 150:108331. [PMID: 36446196 DOI: 10.1016/j.bioelechem.2022.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Gibberellins (GA3) is an ubiquitous plant hormone, which plays a regulatory role in different growth stages of plants, so it is of great significance to develop a sensitive quantitative analysis method for GA3. In this study, carboxylated graphene oxide- carboxylated multi-walled carbon nanotubes-Fc (GO-MWNT-Fc) composite material and PDANPs-antibody (PDANPs-Ab) were sequentially modified to screen-printed electrodes (SPEs), and an ultrasensitive probe-free immunosensor for GA3 was developed. Fc was applied to generate electrochemical signals. GO-COOH and MWNT-COOH can increase the catalytic ability of the sensor and bind the PDANPs-Ab nanoparticles. PDANPs nanomaterial were synthetized by a facile self-polymerization and used to bind with antibody, so as to increase the antibody loading of the sensor. The as-prepared immunosensor has the widest detection range (100 aM-1 mM) and lowest detection limit (17.4 aM) for GA3 up to date. To our knowledge, it is the first electrochemical immunosensor for GA3. By changing the GA3 antibody to ABA antibody, a sensitive and selective immunosensor for ABA was also fabricated. This immunosensor platform is simple, sensitive, and low cost. It opens broad prospect in on-site applications for biosensors in detecting of various biomolecules in precision agriculture.
Collapse
Affiliation(s)
- Yang You
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China
| | - Bin Luo
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Cheng Wang
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hongtu Dong
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaodong Wang
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Peichen Hou
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lijun Sun
- School of Life Sciences, Nantong University, 9 Seyuan Rd, Nantong, Jiangsu 226019, China.
| | - Aixue Li
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
8
|
Holman JB, Shi Z, Fadahunsi AA, Li C, Ding W. Advances on microfluidic paper-based electroanalytical devices. Biotechnol Adv 2023; 63:108093. [PMID: 36603801 DOI: 10.1016/j.biotechadv.2022.108093] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Since the inception of the first electrochemical devices on paper substrates, many different reports of microfluidic paper-based electroanalytical devices (μPEDs), innovative hydrophobic barriers and electrode fabrication processes have allowed the incorporation of diverse materials, resulting in different applications and a boost in performance. These advancements have led to the creation of paper-based devices with comparable performance to many standard conventional devices, with the added benefits of pumpless fluidic transport, component separation and reagent storage that can be exploited to automate and handle sample preprocessing. Herein, we review μPEDs, summarize the characteristics and functionalities of μPEDs, such as separation, fluid flow control and storage, and outline the conventional and emerging fabrication and modification approaches for μPEDs. We also examine the recent application of μPEDs in biomedicine, the environment, and food and water safety, as well as some limitations and challenges that must be addressed.
Collapse
Affiliation(s)
- Joseph Benjamin Holman
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhengdi Shi
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Adeola A Fadahunsi
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chengpan Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Weiping Ding
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
9
|
Lang Y, Zhang B, Cai D, Tu W, Zhang J, Shentu X, Ye Z, Yu X. Determination Methods of the Risk Factors in Food Based on Nanozymes: A Review. BIOSENSORS 2022; 13:69. [PMID: 36671904 PMCID: PMC9856088 DOI: 10.3390/bios13010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Food safety issues caused by foodborne pathogens, chemical pollutants, and heavy metals have aroused widespread concern because they are closely related to human health. Nanozyme-based biosensors have excellent characteristics such as high sensitivity, selectivity, and cost-effectiveness and have been used to detect the risk factors in foods. In this work, the common detection methods for pathogenic microorganisms, toxins, heavy metals, pesticide residues, veterinary drugs, and illegal additives are firstly reviewed. Then, the principles and applications of immunosensors based on various nanozymes are reviewed and explained. Applying nanozymes to the detection of pathogenic bacteria holds great potential for real-time evaluation and detection protocols for food risk factors.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, China
| | | | | |
Collapse
|
10
|
Thara C, Mathew S, Rose Chacko A, Mathew B. Dual Functional Carbon Nitride Dots as Electrochemical Sensor and Anticancer Agent with Chemotherapic and Photodynamic Effect. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
11
|
Zhang M, Yu H, Tang X, Zhu X, Deng S, Chen W. Multifunctional Carbon Dots-Based Fluorescence Detection for Sudan I, Sudan IV and Tetracycline Hydrochloride in Foods. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234166. [PMID: 36500788 PMCID: PMC9738507 DOI: 10.3390/nano12234166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 05/29/2023]
Abstract
Sudan dyes are strictly prohibited from being added to edible products as carcinogens and tetracycline hydrochloride (TC) remaining in animal-derived food may cause harm to the human body. Therefore, it is necessary to establish a high-sensitivity, simple and convenient method for the detection of Sudan dyes and TC in foods for safety purposes. In this work, multifunctional blue fluorescent carbon dots (B-CDs) were prepared by a one-step hydrothermal synthesis using glucose as the carbon source. The results show that the fluorescence intensity of B-CDs was significantly affected by the acidity of the solution and can be quenched by Sudan I, IV and TC through selective studies. Interestingly, the fluorescence quenching intensities of B-CDs have a good linear relationship with the concentration of Sudan I and IV at pH = 3-7. The wide range of pH is beneficial to broaden the application of B-CDs in a practical samples analysis. The method has been successfully applied to real food samples of tomato paste, palm oil and honey, and the detection limits are 26.3 nM, 54.2 nM and 31.1 nM for Sudan I, Sudan IV and TC, respectively. This method integrates Sudan dyes and TC into the same multifunctional B-CDs, which shows that the sensor has a great potential in food safety detection.
Collapse
Affiliation(s)
- Min Zhang
- Department of Chemical Engineering, Yingkou Institute of Technology, Yingkou 115014, China
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Hongmei Yu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Xiaodan Tang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Xiuhui Zhu
- Department of Chemical Engineering, Yingkou Institute of Technology, Yingkou 115014, China
| | - Shuping Deng
- Department of Chemical Engineering, Yingkou Institute of Technology, Yingkou 115014, China
| | - Wei Chen
- Department of Physics, The University of Texas at Arlington, Arlington, TX 76019-0059, USA
| |
Collapse
|
12
|
Yu Y, Han J, Yin J, Huang J, Liu J, Geng L, Sun X, Zhao W. Dual-Target Electrochemical Sensor Based on 3D MoS2-rGO and Aptamer Functionalized Probes for Simultaneous Detection of Mycotoxins. Front Chem 2022; 10:932954. [PMID: 35836672 PMCID: PMC9274162 DOI: 10.3389/fchem.2022.932954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/10/2022] [Indexed: 12/03/2022] Open
Abstract
A dual-target aptamer functionalized probes (DTAFP) was applied for the detection of aflatoxin B1 (AFB1) and zearalenone (ZEN) simultaneously, which has not been reported. Meanwhile, two functional materials for signal amplification of the DTAFP were synthesized: 1) a three-dimensional molybdenum disulfide-reduced graphene oxide (MoS2-rGO) as a favorable loading interface; 2) a double-probes gold nanoparticles (AuNPs) modified by Thionin (Thi) and 6-(Ferrocenyl) hexanethiol (FC6S) as distinguishable and non-interfering signals. Mycotoxins on the electrode surface release into solution under the function of the DTAFP, leading a reduction of the differential peak impulse in signal response. Under the optimum conditions, the aptasensor exhibited a detection range of 1.0 pg mL−1–100 ng mL−1 for AFB1 and ZEN, with no observable cross reactivity. In addition, the aptasensor performed excellent stability, reproducibility, specificity, and favorable recovery in the detection of edible oil. This work demonstrated a novel method for the construction of a simple, rapid, and sensitive aptasensor in the detection of multiple mycotoxins simultaneously.
Collapse
Affiliation(s)
- Yanyang Yu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo, China
| | - Jie Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo, China
| | - Jiaqi Yin
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo, China
| | - Jing Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo, China
| | - Lingjun Geng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo, China
| | - Wenping Zhao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo, China
- *Correspondence: Wenping Zhao,
| |
Collapse
|
13
|
Bankole OE, Verma DK, Chávez González ML, Ceferino JG, Sandoval-Cortés J, Aguilar CN. Recent trends and technical advancements in biosensors and their emerging applications in food and bioscience. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Li Z, Shen F, Mishra RK, Wang Z, Zhao X, Zhu Z. Advances of Drugs Electroanalysis Based on Direct Electrochemical Redox on Electrodes: A Review. Crit Rev Anal Chem 2022; 54:269-314. [PMID: 35575782 DOI: 10.1080/10408347.2022.2072679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The strong development of mankind is inseparable from the proper use of drugs, and the electroanalytical research of drugs occupies an important position in the field of analytical chemistry. This review mainly elaborates the research progress of drugs electroanalysis based on direct electrochemical redox on various electrodes for the recent decade from 2011 to 2021. At first, we summarize some frequently used electrochemical data processing and electrochemical mechanism research derivation methods in the literature. Then, according to the drug therapeutic and application/usage purposes, the research progress of drugs electrochemical analysis is classified and discussed, where we focus on drugs electrochemical reaction mechanism. At the same time, the comparisons of electrochemical sensing performance of the drugs on various electrodes from recent studies are listed, so that readers can more intuitively compare and understand the electroanalytical sensing performance of each modified electrode for each of the drug. Finally, this review discusses the shortcomings and prospects of the drugs electroanalysis based on direct electrochemical redox research.
Collapse
Affiliation(s)
- Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Feichen Shen
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Rupesh K Mishra
- Identify Sensors Biologics at Bindley Bioscience Center, West Lafayette, Indiana, USA
- School of Material Science and Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xueling Zhao
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| |
Collapse
|
15
|
Moradi O. Electrochemical sensors based on carbon nanostructures for the analysis of bisphenol A-A review. Food Chem Toxicol 2022; 165:113074. [PMID: 35489466 DOI: 10.1016/j.fct.2022.113074] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022]
Abstract
Overuse of Bisphenol A (BPA), a proven endocrine disruptor, has become a serious public health problem across the world. It has the potential to harm both the environment and human health, notably reproductive disorders, heart disease, and diabetes. Accordingly, much attention has been paid to the detection of BPA to promote food safety and environmental health. Carbon based nanostructures have proven themselves well in a variety of applications, such as energy storage, catalysis and sensors, due to their remarkable properties. Therefore, researchers have recently focused on fabricating electrochemical BPA sensors based on carbon nanostructures due to their unique advantages, such as real-time monitoring, simplicity, high selectivity, high sensitivity and easy operation. The purpose of the current review was to summarize the recent findings on carbon nanostructures for electrochemically sensing the BPA, as well as relevant future prospects and ongoing challenges.
Collapse
Affiliation(s)
- Omid Moradi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
16
|
Jahani PM, Aflatoonian MR, Rayeni RA, Di Bartolomeo A, Mohammadi SZ. Graphite carbon nitride-modified screen-printed electrode as a highly sensitive and selective sensor for detection of amaranth. Food Chem Toxicol 2022; 163:112962. [DOI: 10.1016/j.fct.2022.112962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 12/27/2022]
|
17
|
Deng L, Yuan J, Huang H, Xie S, Xu J, Yue R. Fabrication of hierarchical Ru/PEDOT:PSS/Ti 3C 2T x nanocomposites as electrochemical sensing platforms for highly sensitive Sudan I detection in food. Food Chem 2022; 372:131212. [PMID: 34600196 DOI: 10.1016/j.foodchem.2021.131212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 01/07/2023]
Abstract
In our paper, a promising electrochemical sensing platform was fabricated with titanium carbide (Ti3C2Tx), poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and ruthenium nanoparticles (RuNPs). First, the Shandong pancake structural PEDOT:PSS/Ti3C2Tx was prepared by physical stirring. PEDOT:PSS as the dispersant was embedded into the Ti3C2Tx nanosheets, increasing the degree of dispersion of the Ti3C2Tx nanosheets and further improving the specific surface area of the composite material. Then, RuNPs were supported on the surface of PEDOT:PSS/Ti3C2Tx to form the hierarchical ternary nanocomposite of Ru/PEDOT:PSS/Ti3C2Tx. The prepared Ru/PEDOT:PSS/Ti3C2Tx nanocomposite exhibited promising electrochemical sensing properties toward Sudan I detection with a wide detection range of 0.01 ∼ 100 μM and a high sensitivity of 482.43 μA mM-1 cm-2. Moreover, the Ru/PEDOT:PSS/Ti3C2Tx sensing platform has been successfully applied for Sudan I detection in ketchup and chili paste, implying the promising application prospect of Ru/PEDOT:PSS/Ti3C2Tx in food safety testing.
Collapse
Affiliation(s)
- Lu Deng
- College of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jie Yuan
- College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Hui Huang
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Shuqian Xie
- College of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jingkun Xu
- College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| | - Ruirui Yue
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
18
|
Meng F, Qin Y, Zhang W, Chen F, Zheng L, Xing J, Aihaiti A, Zhang M. Amplified electrochemical sensor employing Ag NPs functionalized graphene paper electrode for high sensitive analysis of Sudan I. Food Chem 2022; 371:131204. [PMID: 34598114 DOI: 10.1016/j.foodchem.2021.131204] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/23/2021] [Accepted: 09/19/2021] [Indexed: 11/17/2022]
Abstract
In this study, a high-performance flexible reduced graphene oxide (rGO) paper electrode composed of silver nanoparticles (Ag NPs) for the detection of Sudan I was fabricated. Ag NPs were doped with rGO nanoheets by self-assemble and assembled into a paper electrode with layer-by-layer structure via vacuum filtration. Thanks to the highly efficient electrocatalysis of Ag NPs towards reduction of azo bond, the as-prepared hybrid paper can be used alone as a flexible sensor for the detection of Sudan I in chili powder, with the high sensitivity (22.93 μA μmol/L) and the low detection limit (41.3 nmol/L). The sensor also expressed good selectivity, repeatability, reproducibility, stability and recovery between 96.1% and 101.8% (RSD < 6%). With the advantages of low-cost and scalable production capacity, such Ag NPs/rGO functional papers can be used as flexible disposable sensors for electrochemical detection of Sudan I.
Collapse
Affiliation(s)
- Fanxing Meng
- College of Life Science & Technology, Xinjiang University, Xinjiang 830046, China; Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, Xinjiang 830046, China
| | - Yanan Qin
- College of Life Science & Technology, Xinjiang University, Xinjiang 830046, China; Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, Xinjiang 830046, China
| | - Wenrui Zhang
- College of Life Science & Technology, Xinjiang University, Xinjiang 830046, China; Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, Xinjiang 830046, China
| | - Fei Chen
- College of Life Science & Technology, Xinjiang University, Xinjiang 830046, China; Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, Xinjiang 830046, China
| | - Li Zheng
- College of Life Science & Technology, Xinjiang University, Xinjiang 830046, China; Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, Xinjiang 830046, China
| | - Jun Xing
- College of Life Science & Technology, Xinjiang University, Xinjiang 830046, China; Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, Xinjiang 830046, China
| | - Aihemaitijiang Aihaiti
- College of Life Science & Technology, Xinjiang University, Xinjiang 830046, China; Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, Xinjiang 830046, China
| | - Minwei Zhang
- College of Life Science & Technology, Xinjiang University, Xinjiang 830046, China; Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, Xinjiang 830046, China.
| |
Collapse
|
19
|
Wu Q, Ji C, Zhang L, Shi Q, Wu Y, Tao H. A simple sensing platform based on a 1T@2H-MoS 2/cMWCNTs composite modified electrode for ultrasensitive detection of illegal Sudan I dye in food samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:549-559. [PMID: 35048913 DOI: 10.1039/d1ay01775f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The work presented here describes a highly sensitive and simple electrochemical sensor for the detection of Sudan I dye based on a nanocomposite made of MoS2 heterogeneous nanosheets (1T@2H-MoS2) and carboxylated carbon nanotubes (cMWCNTs) (1T@2H-MoS2/cMWCNTs). XPS results indicate that the content of 1T phase MoS2 was estimated to be 72% in 1T@2H-MoS2. Electron microscopy results show that the tubular cMWCNTs are uniformly interwoven in MoS2 nanosheets to form a three-dimensional network structure. Due to the synergistic electrocatalytic ability and high electroactive surface area, the 1T@2H-MoS2/cMWCNTs modified electrode demonstrated excellent analytical performance for Sudan I, including simple operation, good stability and a wide linear range from 5.00 × 10-9 to 2.00 × 10-6 mol L-1 and 2.00 × 10-6 to 1.00 × 10-4 mol L-1 with an ultra-low detection limit of 1.56 × 10-9 mol L-1. The recoveries of Sudan I from spiked real samples (chilli powder and ketchup) were in the range of 95.60% to 106.10% with low RSD (<5%), indicating that the 1T@2H-MoS2/cMWCNTs modified electrode is a promising tool for the analysis of illegal Sudan I in food samples.
Collapse
Affiliation(s)
- Qiaoling Wu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.
- Key Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Chun Ji
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Lingli Zhang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.
- Key Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Qili Shi
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.
- Key Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Yuangen Wu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.
- Key Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Han Tao
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.
- Key Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China
| |
Collapse
|
20
|
An ultra-sensitive electrochemical aptasensor for simultaneous quantitative detection of Pb 2+ and Cd 2+ in fruit and vegetable. Food Chem 2022; 382:132173. [PMID: 35149468 DOI: 10.1016/j.foodchem.2022.132173] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/21/2021] [Accepted: 01/14/2022] [Indexed: 01/12/2023]
Abstract
An electrochemical aptasensor based on aptamer was designed for the first time to simultaneously detect Cd2+ and Pb2+ in fruit and vegetable. The double-stranded DNA including aptamers were immobilized on the electrode via Au-S bond. Due to the specific binding of aptamer and metal ions, the aptamers labelled with methylene blue or ferrocene were competed off the gold electrode, and the electrochemical signal was decreased. Under the optimal conditions, the electrochemical aptasensor showed linear response to Cd2+ and Pb2+ in the range of 0.1 to 1000 nmol/L, and the detection limits of Cd2+ and Pb2+ achieved 89.31 and 16.44 pmol/L (3σ), respectively. Excellent stability and reproducibility were exhibited with RSD 2.27% (Cd2+) and 3.61% (Pb2+). The digested fruit and vegetable were also tested, and the recoveries were in the range of 90.06% to 97.24%. Thus, this strategy held great potential in monitoring cadmium and lead pollution.
Collapse
|
21
|
Mei L, Shi Y, Shi Y, Yan P, Lin C, Sun Y, Wei B, Li J. Multivalent SnO 2 quantum dot-decorated Ti 3C 2 MXene for highly sensitive electrochemical detection of Sudan I in food. Analyst 2022; 147:5557-5563. [DOI: 10.1039/d2an01432g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A new electrochemical sensor was fabricated by SnO2 quantum dot-decorated Ti3C2 MXene for the highly sensitive detection of Sudan I in food. This sensor with good selectivity, precision and accuracy can be used in monitoring illegal food additives.
Collapse
Affiliation(s)
- Lin Mei
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P.R. China
| | - Yanmei Shi
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou 450001, P.R. China
| | - Yange Shi
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P.R. China
| | - Pengpeng Yan
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P.R. China
| | - Chunlei Lin
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P.R. China
| | - Yue Sun
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P.R. China
| | - Bingjie Wei
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P.R. China
| | - Jing Li
- School of Foreign Languages, Zhongyuan University of Technology, Zhengzhou 450007, P.R. China
| |
Collapse
|
22
|
Mousazadeh F, Mohammadi SZ, Akbari S, Mofidinasab N, Aflatoonian MR, Shokooh-Saljooghi A. Recent Advantages of Mediator Based Chemically Modified Electrodes;
Powerful Approach in Electroanalytical Chemistry. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411017999201224124347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Modified electrodes have advanced from the initial studies aimed at understanding
electron transfer in films to applications in areas such as energy production and analytical
chemistry. This review emphasizes the major classes of modified electrodes with mediators
that are being explored for improving analytical methodology. Chemically modified electrodes
(CMEs) have been widely used to counter the problems of poor sensitivity and selectivity faced in
bare electrodes. We have briefly reviewed the organometallic and organic mediators that have been
extensively employed to engineer adapted electrode surfaces for the detection of different compounds.
Also, the characteristics of the materials that improve the electrocatalytic activity of the
modified surfaces are discussed.
Objective:
Improvement and promotion of pragmatic CMEs have generated a diversity of novel
and probable strong detection prospects for electroanalysis. While the capability of handling the
chemical nature of the electrode/solution interface accurately and creatively increases , it is predictable
that different mediators-based CMEs could be developed with electrocatalytic activity and
completely new applications be advanced.
Collapse
Affiliation(s)
| | | | - Sedighe Akbari
- Islamic Azad University, Shahrbabak Branch, Shahrbabak,Iran
| | | | - Mohammad Reza Aflatoonian
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman,Iran
| | | |
Collapse
|
23
|
Gao Q, Zang Y, Xie J, Chen L, Xu J, Huang H, Xue H. Bifunctional monomer oligomers-based composite molecularly imprinted membranes for the electrochemical monitoring of Sudan I. Analyst 2022; 147:3764-3772. [DOI: 10.1039/d2an00380e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
P(L)ICO and PASCO-independent bifunctional monomer oligomers were utilized to construct a molecularly imprinted electrochemical sensor for monitoring Sudan I.
Collapse
Affiliation(s)
- Qing Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
- Yangzhou Polytechnic Institute, Yangzhou, Jiangsu, 225002, P. R. China
| | - Yang Zang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Lanfen Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Jiaqi Xu
- Yangzhou Polytechnic Institute, Yangzhou, Jiangsu, 225002, P. R. China
| | - Hao Huang
- Yangzhou Polytechnic Institute, Yangzhou, Jiangsu, 225002, P. R. China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| |
Collapse
|
24
|
Wang Y, Ma D, Zhang G, Wang X, Zhou J, Chen Y, You X, Liang C, Qi Y, Li Y, Wang A. An Electrochemical Immunosensor Based on SPA and rGO-PEI-Ag-Nf for the Detection of Arsanilic Acid. Molecules 2021; 27:molecules27010172. [PMID: 35011402 PMCID: PMC8746453 DOI: 10.3390/molecules27010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 12/02/2022] Open
Abstract
A sensitive electrochemical immunosensor was prepared for rapid detection of ASA based on arsanilic acid (ASA) monoclonal antibody with high affinity. In the preparation of nanomaterials, polyethyleneimine (PEI) improved the stability of the solution and acted as a reducing agent to generate reduced graphene oxide (rGO) with relatively strong conductivity, thereby promoting the transfer of electrons. The dual conductivity of rGO and silver nanoparticles (AgNPs) improved the sensitivity of the sensor. The synthesis of nanomaterials were confirmed by UV-Vis spectroscopy, X-ray diffraction, transmission electron microscopy and scanning electron microscopy. In the optimal experiment conditions, the sensor could achieve the detection range of 0.50–500 ng mL−1 and the limit of detection (LOD) of 0.38 ng mL−1 (S/N = 3). Moreover, the sensor exhibited excellent specificity and acceptable stability, suggesting that the proposed sensor possessed a good potential in ASA detection. Thus, the as-prepared biosensor may be a potential way for detecting other antibiotics in meat and animal-derived foods.
Collapse
Affiliation(s)
- Yanwei Wang
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Dongdong Ma
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Gaiping Zhang
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Xuannian Wang
- School of Life Science and Basic Medicine, Xinxiang University, Xinxiang 453003, China;
| | - Jingming Zhou
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Yumei Chen
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Xiaojuan You
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Chao Liang
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Yanhua Qi
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Yuya Li
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Aiping Wang
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
- Correspondence:
| |
Collapse
|
25
|
Sun Z, Xiao Q, Tang J, Zhuang Q, Wang Y. Ratiometric electrochemical sensor for bisphenol A detection using a glassy carbon electrode modified with a poly(toluidine blue)/gold nanoparticle composite. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5085-5092. [PMID: 34661224 DOI: 10.1039/d1ay01366a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A ratiometric electrochemical sensor for bisphenol A (BPA) detection is developed using a glassy carbon electrode modified with a poly(toluidine blue)/gold nanoparticle composite (PTB/AuNP/GCE). The ratiometric signal, namely, the oxidation peak current ratio of BPA to PTB, increases linearly with BPA concentration in the 0.2-5.0 μM range, with a detection limit of 0.15 μM. The electrochemical mechanism of BPA is studied at the PTB/AuNP/GCE, and the results show that BPA undergoes an electrooxidation process of two electrons and two protons at the PTB/AuNP/GCE. The proposed sensor has high sensitivity, high stability and good selectivity. The application of BPA in water samples is successfully verified using the proposed ratiometric electrochemical sensor.
Collapse
Affiliation(s)
- Zhiyuan Sun
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Qin Xiao
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Jingjing Tang
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Qianfen Zhuang
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Yong Wang
- College of Chemistry, Nanchang University, Nanchang 330031, China.
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
26
|
Wang A, You X, Liu H, Zhou J, Chen Y, Zhang C, Ma K, Liu Y, Ding P, Qi Y, Zhang G. Development of a label free electrochemical sensor based on a sensitive monoclonal antibody for the detection of tiamulin. Food Chem 2021; 366:130573. [PMID: 34311232 DOI: 10.1016/j.foodchem.2021.130573] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/08/2021] [Accepted: 07/08/2021] [Indexed: 11/04/2022]
Abstract
Based on a murine monoclonal antibody (mAb) against tiamulin (TML), an electrochemical immunosensor was proposed using silver-graphene oxide (Ag-GO) nanocomposites and gold nanocomposites (AuNPs) to detect tiamulin (TML). Due to the synergetic properties of Ag-GO nanocomposites and AuNPs, the conductivity of the immunosensor was significantly enhanced. On account of the specific mAb and conductive nanocomposites, the proposed electrochemical immunosensor exhibited a low LOD of 0.003 ng mL-1 for the detection of TML in a wide linear range of 0.01 to 1000 ng mL-1. In addition, the immunosensor did not involve additional redox species. Furthermore, the efficient and simple electrochemical immunosensor was employed to detect TML in real samples with high accuracy, suggesting a potential detection platform for other veterinary antibiotics in animal derived foods.
Collapse
Affiliation(s)
- Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaojuan You
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongliang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China
| | - Chenyang Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Kaikai Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yankai Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China
| | - Peiyang Ding
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanhua Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
27
|
Tajik S, Orooji Y, Ghazanfari Z, Karimi F, Beitollahi H, Varma RS, Jang HW, Shokouhimehr M. Nanomaterials modified electrodes for electrochemical detection of Sudan I in food. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00955-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Wu Z, Liu J, Liang M, Zheng H, Zhu C, Wang Y. Detection of Imatinib Based on Electrochemical Sensor Constructed Using Biosynthesized Graphene-Silver Nanocomposite. Front Chem 2021; 9:670074. [PMID: 33968906 PMCID: PMC8100453 DOI: 10.3389/fchem.2021.670074] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Abstract
The establishment of a monitoring technique for imatinib is necessary in clinical and environmental toxicology. Leaf extracts of Lycoris longituba were used as reducing agent for the one-step synthesis of reduced graphene oxide-Ag nanocomposites. This nanocomposite was characterized by TEM, FTIR, XRD, and other instruments. Then, the graphene/Ag nanocomposite was used as a modifier to be cemented on the surface of the glassy carbon electrode. This electrode exhibited excellent electrochemical sensing performance. Under the optimal conditions, the proposed electrode could detect imatinib at 10 nM−0.28 mM with a low limit of detection. This electrochemical sensor also has excellent anti-interference performance and reproducibility.
Collapse
Affiliation(s)
- Zhen Wu
- Day Chemotherapy Unit, Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jingjing Liu
- Hematology Department, Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | | | | | - Chuansheng Zhu
- Hematology Department, Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yan Wang
- Hematology Department, Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
29
|
Torres-Rivero K, Florido A, Bastos-Arrieta J. Recent Trends in the Improvement of the Electrochemical Response of Screen-Printed Electrodes by Their Modification with Shaped Metal Nanoparticles. SENSORS 2021; 21:s21082596. [PMID: 33917220 PMCID: PMC8067965 DOI: 10.3390/s21082596] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 12/04/2022]
Abstract
Novel sensing technologies proposed must fulfill the demands of wastewater treatment plants, the food industry, and environmental control agencies: simple, fast, inexpensive, and reliable methodologies for onsite screening, monitoring, and analysis. These represent alternatives to conventional analytical methods (ICP-MS and LC-MS) that require expensive and non-portable instrumentation. This needs to be controlled by qualified technicians, resulting moreover in a long delay between sampling and high-cost analysis. Electrochemical analysis based on screen-printed electrodes (SPEs) represents an excellent miniaturized and portable alternative due to their disposable character, good reproducibility, and low-cost commercial availability. SPEs application is widely extended, which makes it important to design functionalization strategies to improve their analytical response. In this sense, different types of nanoparticles (NPs) have been used to enhance the electrochemical features of SPEs. NPs size (1–100 nm) provides them with unique optical, mechanical, electrical, and chemical properties that give the modified SPEs increased electrode surface area, increased mass-transport rate, and faster electron transfer. Recent progress in nanoscale material science has led to the creation of reproducible, customizable, and simple synthetic procedures to obtain a wide variety of shaped NPs. This mini-review attempts to present an overview of the enhancement of the electrochemical response of SPEs when NPs with different morphologies are used for their surface modification
Collapse
Affiliation(s)
- Karina Torres-Rivero
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, BarcelonaTEch (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain; (K.T.-R.); (A.F.)
- Barcelona Research Center for Multiscale Science and Engineering, Av. Eduard Maristany 16, 08019 Barcelona, Spain
| | - Antonio Florido
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, BarcelonaTEch (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain; (K.T.-R.); (A.F.)
- Barcelona Research Center for Multiscale Science and Engineering, Av. Eduard Maristany 16, 08019 Barcelona, Spain
| | - Julio Bastos-Arrieta
- Grup de Biotecnologia Molecular i Industrial, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Edifici Gaia TR14, 08222 Terrassa, Spain
- Correspondence:
| |
Collapse
|
30
|
Yin C, Zhuang Q, Xiao Q, Wang Y, Xie J. Electropolymerization of poly(methylene blue) on flower-like nickel-based MOFs used for ratiometric electrochemical sensing of total polyphenolic content in chrysanthemum tea. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1154-1163. [PMID: 33595032 DOI: 10.1039/d1ay00028d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A ratiometric electrochemical sensor for caffeic acid (CAE) detection was constructed using a glassy carbon electrode modified with poly(methylene blue) and flower-like nickel-based metal organic frameworks (PMB@Ni-TPA/GCE). The electrochemical behavior of CAE was investigated at the PMB@Ni-TPA/GCE, and was found to follow a two-electron, two-proton electrooxidation process. PMB was used as the internal reference probe, and Ni-TPA can enhance the electrochemical signals of both CAE and PMB. As the CAE concentration increases, the oxidation peak current of CAE is enhanced but that of PMB keeps almost unchanged. The oxidation peak current ratio between CAE and PMB recorded by differential pulse voltammetry changes linearly with CAE concentration over the range of 0.25-15.0 μM, with a detection limit of 0.2 μM. The proposed sensor was successfully employed to evaluate the total polyphenolic content as CAE equivalent in chrysanthemum tea, and the results were comparable with those given by the reference Folin-Ciocalteu spectrophotometry.
Collapse
Affiliation(s)
- Chang Yin
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Qianfen Zhuang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Qin Xiao
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Yong Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China. and College of Chemistry, Nanchang University, Nanchang 330031, China and Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
31
|
A Review on Recent Developments and Applications of Nanozymes in Food Safety and Quality Analysis. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-01983-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Ying Z, Long Y, Yang F, Dong Y, Li J, Zhang Z, Wang X. Self-powered liquid chemical sensors based on solid-liquid contact electrification. Analyst 2021; 146:1656-1662. [PMID: 33514956 DOI: 10.1039/d0an02126a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Triboelectric nanogenerators (TENGs) have attracted many research endeavors as self-powered sensors for force, velocity, and gas detection based on solid-solid or solid-air interactions. Recently, triboelectrification at liquid-solid interfaces also showed intriguing capability in converting physical contacts into electricity. Here, we report a self-powered triboelectric sensor for liquid chemical sensing based on liquid-solid electrification. As a liquid droplet passed across the tribo-negative sensor surface, the induced surface charge balanced with the electrical double layer charge in the liquid droplet. The competition between the double layer charge and surface charge generated characteristic positive and negative voltage spikes, which may serve as a "binary feature" to identify the chemical compound. The sensor showed distinct sensitivity to three amino acids including glycine, lysine and phenylalanine as a function of their concentration. The versatile sensing ability was further demonstrated on several other inorganic and organic chemical compounds dissolved in DI water. This work demonstrated a promising sensing application based on the triboelectrification principle for biofluid sensor development.
Collapse
Affiliation(s)
- Zhihua Ying
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA. and College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China.
| | - Yin Long
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Fan Yang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Yutao Dong
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Jun Li
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Ziyi Zhang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
33
|
Liu M, Lao J, Wang H, Xu Z, Li J, Wen L, Yin Z, Luo C, Peng H. Electrochemical Determination of Tyrosine Using Graphene and Gold Nanoparticle Composite Modified Glassy Carbon Electrode. RUSS J ELECTROCHEM+ 2021. [DOI: 10.1134/s1023193520110063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Garkani Nejad F, Tajik S, Beitollahi H, Sheikhshoaie I. Magnetic nanomaterials based electrochemical (bio)sensors for food analysis. Talanta 2021; 228:122075. [PMID: 33773704 DOI: 10.1016/j.talanta.2020.122075] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/11/2020] [Accepted: 12/28/2020] [Indexed: 01/23/2023]
Abstract
It is widely accepted that nanotechnology attracted more interest because of various values that nanomaterial applications offers in different fields. Recently, researchers have proposed nanomaterials based electrochemical sensors and biosensors as one of the potent alternatives or supplementary analytical tools to the conventional detection procedures that consumes a lot of time. Among different nanomaterials, researchers largely considered magnetic nanomaterials (MNMs) for developing and fabricating the electrochemical (bio)sensors for numerous utilizations. Among several factors, healthier and higher quality foods are the most important preferences of consumers and manufacturers. For this reason, developing new techniques for rapid, precise as well as sensitive determination of components or contaminants of foods is very important. Therefore, developing the new electrochemical (bio)sensors in food analysis is one of the key and effervescent research fields. In this review, firstly, we presented the properties and synthesis strategies of MNMs. Then, we summarized some of the recently developed MNMs-based electrochemical (bio)sensors for food analysis including detecting the antioxidants, synthetic food colorants, pesticides, heavy metal ions, antibiotics and other analytes (bisphenol A, nitrite and aflatoxins) from 2010 to 2020. Finally, the present review described advantages, challenges as well as future directions in this field.
Collapse
Affiliation(s)
- Fariba Garkani Nejad
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, 76175-133, Iran
| | - Somayeh Tajik
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, 76175-133, Iran
| |
Collapse
|
35
|
Synthesis and characterization of novel lanthanum nanoparticles-graphene quantum dots coupled with zeolitic imidazolate framework and its electrochemical sensing application towards vitamin D3 deficiency. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Highly sensitive electrochemical sensor based on Pt nanoparticles/carbon nanohorns for simultaneous determination of morphine and MDMA in biological samples. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137803] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
37
|
Kannan A, Manojkumar S, Radhakrishnan S. A Facile Fabrication of Poly‐ethionine Film on Glassy Carbon Electrode for Simultaneous and Sensitive Detection of Dopamine and Paracetamol. ELECTROANAL 2021. [DOI: 10.1002/elan.202060451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ayyadurai Kannan
- Postgraduate and Research Department of Chemistry Vivekananda College Tiruvedakam West 625 234 Madurai, Tamil Nadu India
| | - Seenivasan Manojkumar
- Postgraduate and Research Department of Chemistry Vivekananda College Tiruvedakam West 625 234 Madurai, Tamil Nadu India
- Battery Research Centre of Green Energy Ming Chi University of Technology 243 New Taipei city Taiwan
| | - Sivaprakasam Radhakrishnan
- Electrodics and Electrocatalysis Division CSIR-Central Electrochemical Research Institute Karaikudi 630 003 Tamil Nadu India
| |
Collapse
|
38
|
Lu Z, Wu L, Dai X, Wang Y, Sun M, Zhou C, Du H, Rao H. Novel flexible bifunctional amperometric biosensor based on laser engraved porous graphene array electrodes: Highly sensitive electrochemical determination of hydrogen peroxide and glucose. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123774. [PMID: 33254785 DOI: 10.1016/j.jhazmat.2020.123774] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 05/20/2023]
Abstract
Polyimide-laser-engraved porous graphene (LEPG) are hopeful electrode modification materials for flexible electrochemical sensing based on its high-efficiency preparation and low cost. Herein, a flexible, multi-patterned, and miniaturized electrode was fabricated via a simple and novel direct laser engraving. 3D LEPG with porous network structure can selective decorated with Pt nanoparticles (Pt NPs) by in situ electrochemical depositions (Pt-LEPG) as sensitively H2O2 sensors with a wide range of linear (0.01-29 nM) and high sensitivity (575.75 μA mM-1 cm-2). Subsequently, a glucose biosensor was successfully constructed through immobilized glucose oxidases (GOD) onto Pt-LEPG electrode. New-designed GOD/Pt-LEPG glucose sensor exhibited a noteworthy lower limit of detection (0.3 μM, S/N = 3) and high sensitivity (241.82 μA mM-1 cm-2), as much a wide-range of linear (0.01-31.5 mM) at near-neutral pH conditions, enabling detect glucose in real human serum specimens with satisfactory results. Predictably, these outstanding performance sensors have great potential in terms of flexible and wearable electronics.
Collapse
Affiliation(s)
- Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| | - Lan Wu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Xianxiang Dai
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Cailong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Haijun Du
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China.
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| |
Collapse
|
39
|
Malla P, Chen GC, Liao HP, Liu CH, Wu WC. Label-free parathyroid hormone immunosensor using nanocomposite modified carbon electrode. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
Mulik BB, Munde AV, Dighole RP, Sathe BR. Electrochemical determination of semicarbazide on cobalt oxide nanoparticles: Implication towards environmental monitoring. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
41
|
Calam TT. Selective and Sensitive Determination of Paracetamol and Levodopa with Using Electropolymerized 3,5‐Diamino‐1,2,4‐triazole Film on Glassy Carbon Electrode. ELECTROANAL 2020. [DOI: 10.1002/elan.202060477] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Chen S, Zheng Y, Shen Z, Li J, Zhu X. Magnetic solid phase extraction based on amino acid ionic liquids magnetic graphene oxide nanomaterials-high performance liquid chromatography for the simultaneous determination of Sudan I–IV. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1856138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Songqing Chen
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, PR China
| | - Yan Zheng
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, PR China
| | - Zijin Shen
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, PR China
| | - Jiawei Li
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, PR China
| | - Xiashi Zhu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, PR China
- College of Guangling, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
43
|
A highly sensitive sensor based on electropolymerization for electrochemical detection of esculetin. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Detection of food spoilage and adulteration by novel nanomaterial-based sensors. Adv Colloid Interface Sci 2020; 286:102297. [PMID: 33142210 DOI: 10.1016/j.cis.2020.102297] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 10/13/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
Food industry is always looking for more innovative and accurate ways to monitor the food safety and quality control of final products. Current detection techniques of analytes are costly and time-consuming, and occasionally require professional experts and specialized tools. The usage of nanomaterials in sensory systems has eliminated not only these drawbacks but also has advantages such as higher sensitivity and selectivity. This article first presents a general overview of the current studies conducted on the detection of spoilage and adulteration in foods from 2015 to 2020. Then, the sensory properties of nanomaterials including metal and magnetic nanoparticles, carbon nanostructures (nanotubes, graphene and its derivatives, and nanofibers), nanowires, and electrospun nanofibers are presented. The latest investigations and advancements in the application of nanomaterial-based sensors in detecting spoilage (food spoilage pathogens, toxins, pH changes, and gases) and adulterants (food additives, glucose, melamine, and urea) have also been discussed in the following sections. To conclude, these sensors can be applied in the smart packaging of food products to meet the demand of consumers in the new era.
Collapse
|
45
|
Fast and enhanced electrochemical sensing of dopamine at cost-effective poly(DL-phenylalanine) based graphite electrode. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114533] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
46
|
Poly(glutamine) film-coated carbon nanotube paste electrode for the determination of curcumin with vanillin: an electroanalytical approach. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02700-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Tajik S, Aflatoonian MR, Beitollahi H, Shoaie IS, Dourandish Z, Fariba GN, Aflatoonian B, Bamorovat M. Electrocatalytic oxidation and selective voltammetric detection of methyldopa in the presence of hydrochlorothiazide in real samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105182] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Li X, Sun X, Li M. Detection of Sudan I in Foods by a MOF‐5/MWCNT Modified Electrode. ChemistrySelect 2020. [DOI: 10.1002/slct.202003559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xueyan Li
- Anhui Key Laboratory of Chemo-Biosensing, School of Chemistry and Materials Science Anhui Normal University 189 Huajin South Road Wuhu 241000 P.R. China
| | - Xiuxiu Sun
- Anhui Key Laboratory of Chemo-Biosensing, School of Chemistry and Materials Science Anhui Normal University 189 Huajin South Road Wuhu 241000 P.R. China
| | - Maoguo Li
- Anhui Key Laboratory of Chemo-Biosensing, School of Chemistry and Materials Science Anhui Normal University 189 Huajin South Road Wuhu 241000 P.R. China
| |
Collapse
|
49
|
Afshar S, Zamani HA, Karimi-Maleh H. NiO/SWCNTs coupled with an ionic liquid composite for amplified carbon paste electrode; A feasible approach for improving sensing ability of adrenalone and folic acid in dosage form. J Pharm Biomed Anal 2020; 188:113393. [PMID: 32504973 DOI: 10.1016/j.jpba.2020.113393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/23/2020] [Accepted: 05/23/2020] [Indexed: 11/30/2022]
Abstract
Electrochemical sensors have shown great appeal for the simultaneous analysis of pharmaceutical compounds. In this way, the presence study described first electroanalytical sensor for simultaneous determination of adrenalone and folic acid. The two-amplified voltammetric sensor was developed by modifying carbon paste electrode (CPE) with NiO/SWCNTs composite and 1-butyl-3-methylimidazolium methanesulfonate (1B3MIMS) and used for simultaneous determination of adrenalone and folic acid. The NiO/SWCNTs was synthesised by a fast and low-cost precipitation strategy and then characterised by EDS, FESEM and XRD methods. The results confirmed a particle size range of ⁓ 26.93-33.87 nm for NiO nanoparticle decorated at SWCNTs. The cyclic voltammetric investigation showed that oxidation potentials of adrenalone and folic acid depend on changing the pH value. The maximum oxidation current for the simultaneous analysis of two compounds occurred at pH = 7.0. In this condition, the sensor showed linear dynamic range 0.01-400 μM and 0.3-350 μM for determination of adrenalone and folic acid, respectively. The NiO/SWCNTs/1B3MIMS/CPE was then used as an ultrasensitive electroanalytical sensor for determination of adrenalone and folic acid in injection samples with recovery ratio between 98.2-103.66 %.
Collapse
Affiliation(s)
- Safoora Afshar
- Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hassan Ali Zamani
- Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Hassan Karimi-Maleh
- Nanostructure Based Biosensors Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
50
|
Said MI, Abdel-aal FA, Rageh AH. Novel sponge-like Mn5O8 nanoparticles deposited on graphite electrode for electrochemical study of hepatitis C antiviral drug, elbasvir. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|