1
|
Xiao XC, Huang JY, Chen YL, Cao KY, Yang RQ, Lin DQ, Hong SJ, Yang YT, Cao MJ. Collagenases from hepatopancreas and muscle of Litopenaeus vannamei: Purification, characterization and comparison of their behaviors in collagen degradation. Food Chem 2025; 475:143282. [PMID: 39946916 DOI: 10.1016/j.foodchem.2025.143282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 03/09/2025]
Abstract
Collagenases are responsible for collagen degradation, resulting in shrimp muscle softening after death. In this study, biochemical characteristics of collagenases purified from hepatopancreas (CPH) and muscle (CPM) of Litopenaeus vannamei were comparatively investigated. Changes of enzyme activity in shrimp hepatopancreas and muscle presented totally different tendencies, which decreased and increased respectively. Also, the key collagenases in different shrimp body parts were different. The CPH was identified as a highly metal-dependent serine proteinase, while the CPM was identified as a Ba2+-dependent metalloproteinase with a maximum activity at 50 °C and pH of 7.0. In terms of degradation behaviors, both CPH and CPM could hydrolyze type I collagen. However, because of diversified cleavage sites and higher efficiency, the CPM was able to degrade collagen more completely. Hence, these findings clarified the collagen degradation mechanism from a new perspective, providing theoretical basis for shrimp texture maintenance.
Collapse
Affiliation(s)
- Xu-Chen Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jia-Yin Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yu-Lei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Kai-Yuan Cao
- Department of Biological Science, National University of Singapore, 117558, Singapore
| | - Ru-Qing Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Duan-Quan Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Shu-Jun Hong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yu-Ting Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Min-Jie Cao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|
2
|
Ren Y, Sun J, Mao X. Protein degradation mechanisms during refrigerated storage of gazami crab (Portunus trituberculatus) at endogenous and microbial-derived enzyme levels. Food Chem 2025; 469:142449. [PMID: 39708657 DOI: 10.1016/j.foodchem.2024.142449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
During storage, the proteins of gazami crab (Portunus trituberculatus) are prone to hydrolysis into amino acids and biogenic amines, in which enzymes play a critical role. However, studies exploring spoilage mechanisms from the perspective of enzymes are limited. This study identified 84 endogenous and 52 microbial-derived proteolytic enzymes and peptidases by proteomics and metagenomics. There are 7 endogenous amino acid deaminases, primarily degrade glutamate and aspartate. Additionally, 25 amino acid deaminases of microbial origin were identified, which mainly degrade serine. The formation of biogenic amines involved 14 enzymes, all of which were microbial in origin, primarily synthesizing putrescine from arginine. The main microbial contributors to these enzymes were Photobacterium, Vibrio, and Aliivibrio, accounting for 63.87 %, 15.51 %, and 8.69 % at the end of refrigeration, respectively. This study provides insights into the mechanisms of quality deterioration in gazami crab during refrigeration, from the perspectives of metabolic enzymes and microbial activity.
Collapse
Affiliation(s)
- Yanmei Ren
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| |
Collapse
|
3
|
Zhan F, Li Z, Pan D, Benjakul S, Li X, Zhang B. Investigating the migration hypothesis: Effects of trypsin-like protease on the quality of muscle proteins of red shrimp ( Solenocera crassicornis) during cold storage. Food Chem X 2023; 20:100906. [PMID: 38144848 PMCID: PMC10740068 DOI: 10.1016/j.fochx.2023.100906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 12/26/2023] Open
Abstract
This study aimed to investigate the effect of trypsin-like protease (TLP) on the quality of muscle proteins in red shrimp (Solenocera crassicornis) during cold storage. The results indicated that the activity of TLP decreased significantly in the head of shrimp but increased significantly in the muscle tissues during the cold storage. The myofibril fragmentation index (MFI) value of intact shrimp was significantly higher than that of beheaded shrimp, while the Ca2+-ATPase activity of intact shrimp was significantly lower than that of beheaded shrimp. SDS-PAGE analysis showed that the molecular weight of purified TLP from the shrimp head was about 24 kDa, and the TLP showed high activity at 50 °C and pH 8, indicating that the TLP belongs to the trypsin family. Results from in vitro simulation experiments indicated that the process of TLP incubation significantly reduced the particle size and enlarged the distribution of myofibrillar proteins (MPs) in shrimp muscle tissues. The comparisons were made with respect to the control samples. It can be inferred that TLP migrated from the shrimp head to the muscle tissues during storage and thus promoted the degradation of MPs in red shrimp. The beheading treatment could be an effective mean to maintain better quality and extend the commercialization of shrimp products.
Collapse
Affiliation(s)
- Feili Zhan
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
- College of Food Science and Pharmacy, Ningbo University, Ningbo 315832, China
| | - Zhipeng Li
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Daodong Pan
- College of Food Science and Pharmacy, Ningbo University, Ningbo 315832, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
4
|
Xu D, Mao L, Deng S, Xie J, Luo H. Tandem Mass Tag Proteomics Provides Insights into the Underlying Mechanism of Flesh Quality Degradation of Litopenaeus vannamei during Refrigerated Waterless Transport at 12 °C. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20304-20313. [PMID: 38054284 DOI: 10.1021/acs.jafc.3c07146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Refrigerated waterless transport at 12 °C of live shrimp (Litopenaeus vannamei) causes flesh quality deterioration, and the underlying mechanism remains unknown. Herein, proteomics and bioinformatics analyses were used to elucidate the molecular mechanism of flesh quality changes. The result showed that 33 and 44 of the differentially abundant proteins (DAPs) were, respectively, identified in the acute cold (AC) group and the combined stress of acute cold and waterless duration (AC+WD) group, which were mostly involved in the metabolism processes and cellular structure of animal tissues, and notably enriched in biological pathways such as lysosome, glycolysis/gluconeogenesis, and focal adhesion. Furthermore, the changes in color and texture properties were closely associated with tubulin, gelsolin, laminin, trypsin-1, dipeptidyl peptidase, triosephosphate isomerase, and aldehyde dehydrogenase. Therefore, these DAPs could be used as potential biomarkers to monitor the deterioration of shrimp flesh quality during refrigerated waterless transportation.
Collapse
Affiliation(s)
- Defeng Xu
- Institute of Marine Medicine, Guangdong Medical University, Zhanjiang 524000, China
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Hui Luo
- Institute of Marine Medicine, Guangdong Medical University, Zhanjiang 524000, China
| |
Collapse
|
5
|
Chen B, Yan Q, Li D, Xie J. Degradation mechanism and development of detection technologies of ATP-related compounds in aquatic products: recent advances and remaining challenges. Crit Rev Food Sci Nutr 2023; 65:101-122. [PMID: 37855450 DOI: 10.1080/10408398.2023.2267690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The degradation of ATP-related compounds is an important biochemical process that reflects the freshness of aquatic products after death. There has been considerable interest in investigating the factors affecting the degradation of ATP-related compounds in aquatic products and in developing techniques to detect them. This review provides the latest knowledge on the degradation mechanisms of ATP-related compounds during the storage of aquatic products and discusses the latest advances in ATP-related compound detection techniques. The degradation mechanisms discussed include mainly degradation pathways, endogenous enzymes, and microbial mechanisms of action. Microbial activity is the main reason for the degradation of IMP and related products during the mid to late storage of aquatic products, mainly through the related enzymes produced by microorganisms. Further elucidation of the degradation mechanisms of ATP-related compounds provides new ideas for quality control techniques in raw aquatic products during storage. The development of new technologies for the detection of ATP-related compounds has become a significant area of research. And, biosensors further improve the efficiency and accuracy of detection and have potential application prospects. The development of biosensor back-end modalities (test strips, fluorescent probes, and artificial intelligence) has accelerated the practical application of biosensors for the detection of ATP-related compounds.
Collapse
Affiliation(s)
- Bohan Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Qi Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Dapeng Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
- Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
- Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| |
Collapse
|
6
|
Xiao XC, Lin D, Cao KY, Sun LC, Chen YL, Weng L, Zhang LJ, Cao MJ. Properties of Pacific white shrimp (Litopenaeus vannamei) collagen and its degradation by endogenous proteinases during cold storage. Food Chem 2023; 419:136071. [PMID: 37027974 DOI: 10.1016/j.foodchem.2023.136071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Many factors are responsible for the diminished quality of shrimp during cold storage, while the role of collagen has rarely been studied. This study therefore investigated the relationship between collagen degradation and changes of textural properties of Pacific white shrimp, and its hydrolysis by endogenous proteinases. The textural properties of shrimp decreased gradually along with disruption of shrimp muscle tissues, and the chewiness property of shrimp muscle showed a linear relationship with collagen contents in muscle during 6-day-storage at 4 °C. Pepsin-solubilized collagen in shrimp muscle consisted of one α1 chain and two α2 chains, revealing a typical tripeptide sequence (i.e., Gly-X-Y) in their molecules. In addition, collagen could be hydrolyzed by crude endogenous proteinases extracted from shrimp hepatopancreas, and serine proteinase plays a critical role in the process. These findings strongly suggested that the quality reduction of shrimp during cold storage is closely associated with collagen degradation.
Collapse
|
7
|
A comprehensive review of the control and utilization of aquatic animal products by autolysis-based processes: Mechanism, process, factors, and application. Food Res Int 2023; 164:112325. [PMID: 36737919 DOI: 10.1016/j.foodres.2022.112325] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Animal aquatic products have high water content, abundant enzyme system and their own diverse microbial flora. These products are severely susceptible to autolysis and degradation after death, resulting in many adverse effects on storage, processing, and transportation. Among them, the endogenous enzyme are the key factor that caused the autolysis and degradation. Autolytic hydrolysis provides an effective way to maximize the use of aquatic by-products and achieve increased protein resources and reduce environmental pollution from by-products. To better acquaintance the autolysis phenomenon and regulation of the autolysis phenomenon. This paper reviews the autolytic mechanism, biochemical changes, influencing factors, and potential applications of animal aquatic products and their by-products to explore autolysis and its effective utilization and regulation. In addition, this study also emphasizes the importance of making full use of aquatic by-products. Furthermore, the research trends and future challenges of autolysis are also discussed. Autolysis can effectively transform aquatic products and by-products into bioactive hydrolysates. The hydrolysates produced by the autolysis of aquatic products and their by-products have attracted attention because of their wide applications in food, healthcare, and animal feed industries. However, the mechanism and regulation (promotion or inhibition) of autolysis should be further studied, and autolysate at the industrial level should be produced to provide high-value-added products for by-product processing and realize the sustainable utilization of resources.
Collapse
|
8
|
Zhou T, Ding YX, Benjakul S, Shui SS, Zhang B. Characterization of endogenous enzymes in sword prawn (Parapenaeopsis hardwickii) and their effects on the quality of muscle proteins during frozen storage. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Du X, Wang B, Li H, Liu H, Shi S, Feng J, Pan N, Xia X. Research progress on quality deterioration mechanism and control technology of frozen muscle foods. Compr Rev Food Sci Food Saf 2022; 21:4812-4846. [PMID: 36201389 DOI: 10.1111/1541-4337.13040] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 01/28/2023]
Abstract
Freezing can prolong the shelf life of muscle foods and is widely used in their preservation. However, inevitable quality deterioration can occur during freezing, frozen storage, and thawing. This review explores the eating quality deterioration characteristics (color, water holding capacity, tenderness, and flavor) and mechanisms (irregular ice crystals, oxidation, and hydrolysis of lipids and proteins) of frozen muscle foods. It also summarizes and classifies the novel physical-field-assisted-freezing technologies (high-pressure, ultrasound, and electromagnetic) and bioactive antifreeze (ice nucleation proteins, antifreeze proteins, natural deep eutectic solvents, carbohydrate, polyphenol, phosphate, and protein hydrolysates), regulating the dynamic process from water to ice. Moreover, some novel thermal and nonthermal thawing technologies to resolve the loss of water and nutrients caused by traditional thawing methods were also reviewed. We concluded that the physical damage caused by ice crystals was the primary reason for the deterioration in eating quality, and these novel techniques promoted the eating quality of frozen muscle foods under proper conditions, including appropriate parameters (power, time, and intermittent mode mentioned in ultrasound-assisted techniques; pressure involved in high-pressure-assisted techniques; and field strength involved in electromagnetic-assisted techniques) and the amounts of bioactive antifreeze. To obtain better quality frozen muscle foods, more efficient technologies and substances must be developed. The synergy of novel freezing/thawing technology may be more effective than individual applications. This knowledge may help improve the eating quality of frozen muscle foods.
Collapse
Affiliation(s)
- Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Bo Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Haijing Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuo Shi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jia Feng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
10
|
Lin D, Sun LC, Chen YL, Liu GM, Miao S, Cao MJ. Shrimp spoilage mechanisms and functional films/coatings used to maintain and monitor its quality during storage. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Peng S, Wei H, Zhan S, Yang W, Lou Q, Deng S, Yu X, Huang T. Spoilage mechanism and preservation technologies on the quality of shrimp: An overview. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Li Y, Yuan Z, Gao Y, Bao Z, Sun N, Lin S. Mechanism of trypsin activation by pulsed electric field treatment revealed based on chemical experiments and molecular dynamics simulations. Food Chem 2022; 394:133477. [PMID: 35728469 DOI: 10.1016/j.foodchem.2022.133477] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/12/2022] [Accepted: 06/11/2022] [Indexed: 11/04/2022]
Abstract
A pulsed electric field (PEF) treatment exhibits different effects on trypsin; however, the mechanism of enzyme activation remains unclear. Herein, chemical experiments combined with molecular dynamics simulations revealed the mechanism of trypsin activation by PEF treatment at the molecular level. The results indicated that compared with the values at 0 kV/cm, the enzyme activity, Vmax, and Kcat at 20 kV/cm increased by 9.30%, 4.74%, and 4.30%, respectively, and Km decreased by 11.14%, indicating an improved interaction between the enzyme and substrate. The simulation results revealed that PEF treatment increased the number of molecular hydrogen bonds and the solvent-accessible surface area, while decreasing the rotation radius and random coil content by 5.00% and 3.37%, respectively. Molecular docking indicated that PEF treatment altered the active center and increased the affinity between the enzyme and substrate. The simulation results were consistent with those of the spectroscopic experiments conducted on trypsin after PEF treatment.
Collapse
Affiliation(s)
- Yinli Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| | - Zihan Yuan
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| | - Yuanhong Gao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| | - Zhijie Bao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China.
| |
Collapse
|
13
|
Li Z, Zhou T, Wu Y, Shui S, Tu C, Benjakul S, Zhang B. Investigation of the activity of cathepsin B in red shrimp (
Solenocera crassicornis
) and its relation to the quality of muscle proteins during chilled and frozen storage. J Food Sci 2022; 87:1610-1623. [DOI: 10.1111/1750-3841.16105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/15/2022] [Accepted: 02/10/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Zhipeng Li
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province College of Food Science and Pharmacy Zhejiang Ocean University Zhoushan China
| | - Ting Zhou
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province College of Food Science and Pharmacy Zhejiang Ocean University Zhoushan China
| | - Yingru Wu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province College of Food Science and Pharmacy Zhejiang Ocean University Zhoushan China
| | - Shanshan Shui
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province College of Food Science and Pharmacy Zhejiang Ocean University Zhoushan China
| | - Chuanhai Tu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province College of Food Science and Pharmacy Zhejiang Ocean University Zhoushan China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University Songkhla Thailand
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province College of Food Science and Pharmacy Zhejiang Ocean University Zhoushan China
| |
Collapse
|
14
|
Khaledian S, Basiri S. The Persian lime peel extract‐loaded tragacanth gel coating for sodium metabisulfite reduction in Pacific white shrimp (
Litopenaeus vannamei
). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Saeed Khaledian
- Department of Food Hygiene and Public Health School of Veterinary Medicine Shiraz University Shiraz Iran
| | - Sara Basiri
- Department of Food Hygiene and Public Health School of Veterinary Medicine Shiraz University Shiraz Iran
| |
Collapse
|
15
|
Yang LG, Wang Y, Wang Y, Fang WH, Feng GP, Ying N, Zhou JY, Li XC. Transcriptome analysis of pacific white shrimp (Penaeus vannamei) intestines and hepatopancreas in response to Enterocytozoon hepatopenaei (EHP) infection. J Invertebr Pathol 2021; 186:107665. [PMID: 34520799 DOI: 10.1016/j.jip.2021.107665] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/19/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Penaeus vannamei is the most economically important species of shrimp cultured worldwide. Enterocytozoon hepatopenaei (EHP) is an emerging pathogen that severely affects the growth and development of shrimps. In this study, the transcriptome differences between EHP-infected and uninfected shrimp were investigated through next-generation sequencing. The unigenes were assembled with the reads from all the four libraries. The differentially expressed genes (DEGs) of intestines and hepatopancreas were analyzed. There were 2,884 DEGs in the intestines and 2,096 DEGs in the hepatopancreas. The GO and KEGG enrichment analysis indicated that DEGs were significantly enriched in signaling pathways associated with nutritional energy metabolism and mobilizing autoimmunity. Moreover, the results suggested the downregulation of key genes in energy synthesis pathways contributed greatly to shrimp growth retardation; the upregulation of immune-related genes enhanced the resistance of shrimp against EHP infection. This study provided identified genes and pathways associated with EHP infection revealing the molecular mechanisms of growth retardation.
Collapse
Affiliation(s)
- Li-Guo Yang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Yuan Wang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Yue Wang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Wen-Hong Fang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Guang-Peng Feng
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Na Ying
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Jin-Yang Zhou
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Xin-Cang Li
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China.
| |
Collapse
|
16
|
Wu S, Zhao M, Gao S, Xu Y, Zhao X, Liu M, Liu X. Change Regularity of Taste and the Performance of Endogenous Proteases in Shrimp ( Penaens vannamei) Head during Autolysis. Foods 2021; 10:foods10051020. [PMID: 34066655 PMCID: PMC8151679 DOI: 10.3390/foods10051020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 11/29/2022] Open
Abstract
This study evaluated the food safety and proximate composition of shrimp head (SH). Potentially toxic elements in SH were below European Union legislation limits. SH had a high content of tasting amino acids (sweet and umami amino acids was 57%) and a high content of functional amino acids (essential amino acids was 37%). Moreover, the changes of flavor and key umami molecules in SH were studied by sensory evaluation, electronic tongue, electronic nose, automated amino acid analyzer, and high performance liquid chromatography (HPLC). The results showed that the significant difference of flavor in SH happened during autolysis. SH with autolysis had the best umami taste at 6 h, which may result from the synergistic work of free amino acids and nucleotide related compounds. Additionally, the performance of endogenous proteases in SH was investigated to efficiently analyze autolysis. The optimum pH and temperature of endogenous proteases in SH were 7.5 and 50 °C, respectively. The autolysis of SH depends on two endogenous proteases (~50 kDa and ~75 kDa). These results suggest that the formation of flavor in SH during autolysis can be controlled, which could provide guidance for SH recycle. SH could consider as one of the food materials for producing condiments.
Collapse
Affiliation(s)
- Shujian Wu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Department of Food Science and Technology, College of Science & Engineering, Jinan University, Guangzhou 510632, China
| | - Mouming Zhao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shijue Gao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Department of Food Science and Technology, College of Science & Engineering, Jinan University, Guangzhou 510632, China
| | - Yue Xu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xiaoying Zhao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Mingyuan Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xiaoling Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
17
|
Zhang X, Shuai Y, Tao H, Li C, He L. Novel Method for the Quantitative Analysis of Protease Activity: The Casein Plate Method and Its Applications. ACS OMEGA 2021; 6:3675-3680. [PMID: 33585747 PMCID: PMC7876679 DOI: 10.1021/acsomega.0c05192] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
No simple methods are used for the quantitative analysis of the protease activity in colored food up till now. Thus, this study aims to establish a new and simple method for the quantitative detection of protease activity, especially in colored food. The detection accuracy, detection limit, and repeatability of the casein plate method were analyzed. Then, the application of the casein plate method in sample detection and recovery was further evaluated. The results showed that the casein plate method for the quantitative detection of protease activity has high accuracy, high precision, and low detection limit. The recoveries of eight kinds of colored samples were in the range of 92.26-97.84%, and the relative standard deviation (RSD) was in the range of 3.56-10.88%. The results of the casein plate method exhibited high accuracy. This indicated that the method was suitable for the detection of colored samples. The casein plate method for the quantitative detection of protease activity is simple. The newly constructed casein plate method has broad potential application value in food industry, especially for the detection of dark food.
Collapse
Affiliation(s)
- Xin Zhang
- Key
Laboratory of Agricultural and Animal Products Store & Processing
of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
- College
of Artificial Intelligence and Electrical Engineering, Guizhou Institute of Technology, Guiyang 550005, P. R. China
| | - Yao Shuai
- Key
Laboratory of Agricultural and Animal Products Store & Processing
of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
- College
of Liquor and Food Engineering, Guizhou
University, Guiyang 550025, P. R. China
| | - Han Tao
- College
of Artificial Intelligence and Electrical Engineering, Guizhou Institute of Technology, Guiyang 550005, P. R. China
- College
of Liquor and Food Engineering, Guizhou
University, Guiyang 550025, P. R. China
| | - Cuiqin Li
- Key
Laboratory of Agricultural and Animal Products Store & Processing
of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
- School
of Chemistry and Chemical Engineering, Guizhou
University, Guiyang 550025, P. R. China
| | - Laping He
- Key
Laboratory of Agricultural and Animal Products Store & Processing
of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
- College
of Liquor and Food Engineering, Guizhou
University, Guiyang 550025, P. R. China
| |
Collapse
|