1
|
Asqardokht-Aliabadi A, Sarabi-Aghdam V, Homayouni-Rad A, Hosseinzadeh N. Postbiotics in the Bakery Products: Applications and Nutritional Values. Probiotics Antimicrob Proteins 2025; 17:292-314. [PMID: 39066881 DOI: 10.1007/s12602-024-10327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
In recent years, the consumption of postbiotics has gained significant attention due to their potential health benefits. However, their application in the bakery industry remains underutilized. This review focuses on recent advances in the use of postbiotics, specifically the metabolites of lactic acid bacteria, in bakery products. We provide a concise overview of the multifaceted benefits of postbiotics, including their role as natural antioxidants, antimicrobials, and preservatives, and their potential to enhance product quality, extend shelf-life, and contribute to consumer welfare. This review combines information from various sources to provide a comprehensive update on recent advances in the role of postbiotics in bakery products, subsequently discussing the concept of sourdough as a leavening agent and its role in improving the nutritional profile of bakery products. We highlighted the positive effects of postbiotics on bakery items, such as improved texture, flavor, and shelf life, as well as their potential to contribute to overall health through their antioxidant properties and their impact on gut health. Overall, this review emphasizes the promising potential of postbiotics to revolutionize the bakery industry and promote healthier and more sustainable food options. The integration of postbiotics into bakery products represents a promising frontier and offers innovative possibilities to increase product quality, reduce food waste, and improve consumer health. Further research into refining techniques to incorporate postbiotics into bakery products is essential for advancing the health benefits and eco-friendly nature of these vital food items.
Collapse
Affiliation(s)
- Abolfazl Asqardokht-Aliabadi
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Vahideh Sarabi-Aghdam
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Negin Hosseinzadeh
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Zhang Y, Wang D, Zhang Z, Guan H, Zhang Y, Xu D, Xu X, Li D. Improvement on wheat bread quality by in situ produced dextran-A comprehensive review from the viewpoint of starch and gluten. Compr Rev Food Sci Food Saf 2024; 23:e13353. [PMID: 38660747 DOI: 10.1111/1541-4337.13353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Deterioration of bread quality, characterized by the staling of bread crumb, the softening of bread crust and the loss of aroma, has caused a huge food waste and economic loss, which is a bottleneck restriction to the development of the breadmaking industry. Various bread improvers have been widely used to alleviate the issue. However, it is noteworthy that the sourdough technology has emerged as a pivotal factor in this regard. In sourdough, the metabolic breakdown of carbohydrates, proteins, and lipids leads to the production of exopolysaccharides, organic acids, aroma compounds, or prebiotics, which contributes to the preeminent ability of sourdough to enhance bread attributes. Moreover, sourdough exhibits a "green-label" feature, which satisfies the consumers' increasing demand for additive-free food products. In the past two decades, there has been a significant focus on sourdough with in situ produced dextran due to its exceptional performance. In this review, the behaviors of bread crucial compositions (i.e., starch and gluten) during dough mixing, proofing, baking and bread storing, as well as alterations induced by the acidic environment and the presence of dextran are systemically summarized. From the viewpoint of starch and gluten, results obtained confirm the synergistic amelioration on bread quality by the coadministration of acidity and dextran, and also highlight the central role of acidification. This review contributes to establishing a theoretical foundation for more effectively enhancing the quality of wheat breads through the application of in situ produced dextran.
Collapse
Affiliation(s)
- Yao Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Postdoctoral Research Program of Materials Science and Engineering, School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
- Postdoctoral Programme of Juxiangyuan Health Food (Zhongshan) Co., Ltd., Zhongshan, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhihong Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Huanan Guan
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yanjie Zhang
- Postdoctoral Programme of Juxiangyuan Health Food (Zhongshan) Co., Ltd., Zhongshan, China
| | - Dan Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Dandan Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Verbeke C, Debonne E, Van Leirsberghe H, Van Bockstaele F, Eeckhout M. An Impact Assessment of Par-Baking and Storage on the Quality of Wheat, Whole Wheat, and Whole Rye Breads. Foods 2024; 13:224. [PMID: 38254525 PMCID: PMC10814006 DOI: 10.3390/foods13020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Par-baking technology increases the production efficiency of bread. However, the degree of par-baking can vary significantly amongst product types and intended sales markets, leading to substantial differences in the quality attributes of the finished product. The objective of this study was to explore the impact of the degree of par-baking on the technological quality of wheat, whole wheat, and whole rye bread (95, 75, and 50% of full baking time). More specifically, this study focused on the starch pasting behavior of different flour formulations, the crumb core temperature during par-baking, and the influence of the degree of par-baking on the bread characteristics of (composite) wheat bread as a function of storage time. The quality attributes of par-baked bread (0 and 4 days after par-baking) and fully baked bread (0 and 2 days after full baking) were assessed. A reduction in the degree of par-baking from 95 to 50% resulted over time in 19.4% less hardening and 8.6% more cohesiveness for the re-baked wheat breads. Nevertheless, it also negatively impacted springiness (-9.1%) and adhesion (+475%). It is concluded that using the core temperature to define the degree of par-baking is not sufficient for bread loaves intended to be consumed over time, but the results indicate that reducing the degree of par-baking can be beneficial for certain quality aspects of the breads.
Collapse
Affiliation(s)
- Celeste Verbeke
- Ghent University, Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Research Unit Cereal and Feed Technology, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium; (C.V.); (E.D.); (H.V.L.)
| | - Els Debonne
- Ghent University, Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Research Unit Cereal and Feed Technology, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium; (C.V.); (E.D.); (H.V.L.)
| | - Hannah Van Leirsberghe
- Ghent University, Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Research Unit Cereal and Feed Technology, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium; (C.V.); (E.D.); (H.V.L.)
| | - Filip Van Bockstaele
- Ghent University, Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Food Structure and Function Research Group, Coupure Links 653, 9000 Ghent, Belgium;
| | - Mia Eeckhout
- Ghent University, Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Research Unit Cereal and Feed Technology, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium; (C.V.); (E.D.); (H.V.L.)
| |
Collapse
|
4
|
Riley IM, Nivelle MA, Ooms N, Delcour JA. The use of time domain 1 H NMR to study proton dynamics in starch-rich foods: A review. Compr Rev Food Sci Food Saf 2022; 21:4738-4775. [PMID: 36124883 DOI: 10.1111/1541-4337.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/30/2022] [Accepted: 07/31/2022] [Indexed: 01/28/2023]
Abstract
Starch is a major contributor to the carbohydrate portion of our diet. When it is present with water, it undergoes several transformations during heating and/or cooling making it an essential structure-forming component in starch-rich food systems (e.g., bread and cake). Time domain proton nuclear magnetic resonance (TD 1 H NMR) is a useful technique to study starch-water interactions by evaluation of molecular mobility and water distribution. The data obtained correspond to changes in starch structure and the state of water during or resulting from processing. When this technique was first applied to starch(-rich) foods, significant challenges were encountered during data interpretation of complex food systems (e.g., cake or biscuit) due to the presence of multiple constituents (proteins, carbohydrates, lipids, etc.). This article discusses the principles of TD 1 H NMR and the tools applied that improved characterization and interpretation of TD NMR data. More in particular, the major differences in proton distribution of various dough and cooked/baked food systems are examined. The application of variable-temperature TD 1 H NMR is also discussed as it demonstrates exceptional ability to elucidate the molecular dynamics of starch transitions (e.g., gelatinization, gelation) in dough/batter systems during heating/cooling. In conclusion, TD NMR is considered a valuable tool to understand the behavior of starch and water that relate to the characteristics and/or quality of starchy food products. Such insights are crucial for food product optimization and development in response to the needs of the food industry.
Collapse
Affiliation(s)
- Isabella M Riley
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Mieke A Nivelle
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Nand Ooms
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
- Biscuiterie Thijs, Herentals, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Lai WF, Wong WT. Edible Clusteroluminogenic Films Obtained from Starch of Different Botanical Origins for Food Packaging and Quality Management of Frozen Foods. MEMBRANES 2022; 12:membranes12040437. [PMID: 35448407 PMCID: PMC9029101 DOI: 10.3390/membranes12040437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023]
Abstract
Starch is a naturally occurring material showing high potential for use in food packaging because of its low cost, natural abundance and high biodegradability. Over the years, different starch-based packaging films have been developed, but the impact of botanical sources on film performance has rarely been exploited. Efforts devoted to exploiting the role played by the clusteroluminescence of starch in food packaging are also lacking. This study fills these gaps by comparing the properties of edible starch films generated from different botanical sources (including water chestnuts, maize and potatoes) in food packaging. Such films are produced by solution casting. They are highly homogeneous, with a thickness of 55–65 μm. Variations in the botanical sources of starch have no significant impact on the color parameters (including L*, a* and b*) and morphological features of the films but affect the water vapor permeability, maximum tensile strength and elongation at break. Starch films from water chestnut show the highest percentage of transmittance, whereas those from potatoes are the opaquest. No observable change in the intensity of clusteroluminescence occurs when a packaging bag generated from starch is used to package fresh or frozen chicken breast meat; however, a remarkable decline in the intensity of luminescence is noted when the frozen meat is thawed inside the bag. Our results reveal the impact of starch sources on the performance of starch films in food packaging and demonstrate the possibility of using the clusteroluminescence of starch as an indicator to reveal the state of packaged frozen food.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China;
- Ciechanover Institute of Precision and Regenerative Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
- Correspondence:
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China;
| |
Collapse
|
6
|
Zhong Y, Tai L, Blennow A, Ding L, Herburger K, Qu J, Xin A, Guo D, Hebelstrup KH, Liu X. High-amylose starch: Structure, functionality and applications. Crit Rev Food Sci Nutr 2022; 63:8568-8590. [PMID: 35373669 DOI: 10.1080/10408398.2022.2056871] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Starch with a high amylose (AM) content (high AM starch, HAS) has attracted increasing research attention due to its industrial application potential, such as functional foods and biodegradable packaging. In the past two decades, HAS structure, functionality, and applications have been the research hotspots. However, a review that comprehensively summarizes these areas is lacking, making it difficult for interested readers to keep track of past and recent advances. In this review, we highlight studies that benefited from rapidly developing techniques, and systematically review the structure, functionality, and applications of HAS. We particularly emphasize the relationships between HAS molecular structure and physicochemical properties.
Collapse
Affiliation(s)
- Yuyue Zhong
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingyu Tai
- Department of Chemical, Environmental and Material Engineering, Sapienza University of Rome, Rome, Italy
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Li Ding
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Herburger
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jianzhou Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Anzhou Xin
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Dongwei Guo
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Kim Henrik Hebelstrup
- Department of Agroecology, Aarhus University, Flakkebjerg, Denmark
- Plantcarb Aps, Vedbaek, Denmark
| | - Xingxun Liu
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
7
|
Oliveira MEAS, Alves TDO, Gutkoski LC, Miranda MZ, Larraz Ferreira MS, Takeiti CY. Brazilian Cerrado
wheat: Technological quality of genotypes grown in tropical locations. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Thais de Oliveira Alves
- Food and Nutrition Graduate Program Nutrition School Federal University of the State of Rio de Janeiro UNIRIO Rio de Janeiro Brazil
| | - Luiz Carlos Gutkoski
- Food and Nutrition Graduate Program Nutrition School Federal University of the State of Rio de Janeiro UNIRIO Rio de Janeiro Brazil
| | | | - Mariana Simões Larraz Ferreira
- Food and Nutrition Graduate Program Nutrition School Federal University of the State of Rio de Janeiro UNIRIO Rio de Janeiro Brazil
| | - Cristina Yoshie Takeiti
- Food and Nutrition Graduate Program Nutrition School Federal University of the State of Rio de Janeiro UNIRIO Rio de Janeiro Brazil
- Embrapa Agroindústria de Alimentos Rio de Janeiro Brazil
| |
Collapse
|
8
|
Hu X, Cheng L, Hong Y, Li Z, Li C, Gu Z. An extensive review: How starch and gluten impact dough machinability and resultant bread qualities. Crit Rev Food Sci Nutr 2021; 63:1930-1941. [PMID: 34423705 DOI: 10.1080/10408398.2021.1969535] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Wheat flour can form dough with a three-dimensional viscoelastic structure that is responsible for gas holding during fermentation and oven-rise, creating a typical fixed, open-cell foam structure of bread after baking. As the major components of dough, the continuous reticular skeleton formed by gluten proteins and the concentrated starch granules entrapped in gluten matrix predominantly determine dough rheological behaviors and bread qualities. This review surveys the latest literatures and draws out a conclusion from a plethora of information related to the filling effects of starch granules on gluten matrix and the cross-linking mechanisms between gluten proteins and starch granules, which is of great significance to provide sufficient scientific knowledge for development of bread with satisfactory attributes and quality control of end products.
Collapse
Affiliation(s)
- Xiaohui Hu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Collaborative innovation center of food safety and quality control in Jiangsu province, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Collaborative innovation center of food safety and quality control in Jiangsu province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
9
|
Reyniers S, De Brier N, Ooms N, Matthijs S, Piovesan A, Verboven P, Brijs K, Gilbert RG, Delcour JA. Amylose molecular fine structure dictates water-oil dynamics during deep-frying and the caloric density of potato crisps. NATURE FOOD 2020; 1:736-745. [PMID: 37128034 DOI: 10.1038/s43016-020-00180-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/08/2020] [Indexed: 05/03/2023]
Abstract
The fine structure of extractable amylose (E-AM) in potato flakes dictates oil uptake during the production of deep-fried crisps from dough made from the flakes, and thus their caloric density. High levels of short E-AM chains increase the extent of amylose crystallization during dough making and increase water binding. Time-domain proton NMR analysis showed that they also cause water to be released at a low rate during deep-frying and thus restrict dough expansion and, most importantly, oil uptake. X-ray micro-computed tomography revealed that this results in high thickness of the crisp solid matrix and reduced pore sizes. Thus, the level of short E-AM chains in potato flakes impacts amylose crystal formation, dough strength and expansion, as well as the associated oil uptake during deep-frying. Based on these results, we advise potato crisp manufacturers to source potato cultivars with high levels of short amylose chains for the production of reduced-calorie crisps and to make well-reasoned process adaptations to control the extractability of potato amylose.
Collapse
Affiliation(s)
- S Reyniers
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium.
| | - N De Brier
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
- Belgian Red Cross, Mechelen, Belgium
| | - N Ooms
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | | | - A Piovesan
- BIOSYST - MeBioS and LFoRCe, KU Leuven, Leuven, Belgium
| | - P Verboven
- BIOSYST - MeBioS and LFoRCe, KU Leuven, Leuven, Belgium
| | - K Brijs
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - R G Gilbert
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu, China
| | - J A Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Nivelle MA, Beghin AS, Vrinten P, Nakamura T, Delcour JA. Amylose and amylopectin functionality during storage of bread prepared from flour of wheat containing unique starches. Food Chem 2020; 320:126609. [PMID: 32222658 DOI: 10.1016/j.foodchem.2020.126609] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 11/17/2022]
Abstract
Bread crumb firming is largely determined by the properties of gluten and starch, and the transformations they undergo during bread making and storage. Amylose (AM) and amylopectin (AP) functionality in fresh and stored bread was investigated with NMR relaxometry. Bread was prepared from flours containing normal and atypical starches, e.g., flour from wheat line 5-5, with or without the inclusion of Bacillus stearothermophilus α-amylase. Initial crumb firmness increased with higher levels of AM or shorter AM chains. Both less extended AM and gluten networks and too rigid AM networks led to low crumb resilience. AP retrogradation during storage increased when crumb contained more AP or longer AP branch chains. Shorter AP branch chains, which were present at higher levels in 5-5 than in regular bread, were less prone to retrogradation, thereby limiting gluten network dehydration due to gluten to starch moisture migration. Correspondingly, crumb firming in 5-5 bread was restricted.
Collapse
Affiliation(s)
- Mieke A Nivelle
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Alice S Beghin
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Patricia Vrinten
- Bioriginal Food & Science Corporation, Saskatoon, Saskatchewan S7J 0R1, Canada
| | - Toshiki Nakamura
- Tohoku Agricultural Research Centre NARO, Morioka, Iwate 020-0198, Japan.
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| |
Collapse
|
11
|
Reyniers S, Ooms N, Gomand SV, Delcour JA. What makes starch from potato (Solanum tuberosumL.) tubers unique: A review. Compr Rev Food Sci Food Saf 2020; 19:2588-2612. [DOI: 10.1111/1541-4337.12596] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/02/2020] [Accepted: 06/12/2020] [Indexed: 01/21/2023]
Affiliation(s)
- Stijn Reyniers
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe)KU Leuven Leuven Belgium
| | - Nand Ooms
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe)KU Leuven Leuven Belgium
| | - Sara V. Gomand
- Department of Agriculture and FisheriesGovernment of Flanders Brussels Belgium
| | - Jan A. Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe)KU Leuven Leuven Belgium
| |
Collapse
|
12
|
Whitney K, Simsek S. Potato flour as a functional ingredient in bread: evaluation of bread quality and starch characteristics. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14698] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kristin Whitney
- Department of Plant Sciences North Dakota State University PO Box 6050, Dept# 7670 Fargo ND58108‐6050USA
| | - Senay Simsek
- Department of Plant Sciences North Dakota State University PO Box 6050, Dept# 7670 Fargo ND58108‐6050USA
| |
Collapse
|
13
|
Amylolysis as a tool to control amylose chain length and to tailor gel formation during potato-based crisp making. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Verbauwhede AE, Lambrecht MA, Jekle M, Lucas I, Fierens E, Shegay O, Brijs K, Delcour JA. Microscopic investigation of the formation of a thermoset wheat gluten network in a model system relevant for bread making. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14359] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Annelien E. Verbauwhede
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe) KU Leuven Kasteelpark Arenberg 20 B‐3001 Leuven Belgium
| | - Marlies A. Lambrecht
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe) KU Leuven Kasteelpark Arenberg 20 B‐3001 Leuven Belgium
| | - Mario Jekle
- Institute of Brewing and Beverage Technology Research Group Cereal Technology and Process Engineering Technical University of Munich Weihenstephaner Steig 20 85354 Freising Germany
| | - Isabelle Lucas
- Institute of Brewing and Beverage Technology Research Group Cereal Technology and Process Engineering Technical University of Munich Weihenstephaner Steig 20 85354 Freising Germany
| | - Ellen Fierens
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe) KU Leuven Kasteelpark Arenberg 20 B‐3001 Leuven Belgium
| | - Oksana Shegay
- Competence Center for Fermentation Puratos Group Rue Bourrie 12 B‐5300 Andenne Belgium
| | - Kristof Brijs
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe) KU Leuven Kasteelpark Arenberg 20 B‐3001 Leuven Belgium
| | - Jan A. Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe) KU Leuven Kasteelpark Arenberg 20 B‐3001 Leuven Belgium
| |
Collapse
|