1
|
Eid AH, S Zaki E, Sabry MO, El-Shiekh RA, Khalaf SS. Exploring the anti-anaphylaxis potential of natural products: A Review. Inflammopharmacology 2025:10.1007/s10787-025-01685-2. [PMID: 40106030 DOI: 10.1007/s10787-025-01685-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025]
Abstract
Allergies are a common health issue affecting many people around the world, especially in developed countries. They occur when the immune system overreacts to substances that are usually harmless. Some common allergic conditions include asthma, sinus infections, skin rashes, food allergies, hay fever, severe allergic reactions, eczema, swelling, and reactions to medications or insect stings. The causes of these allergies are complex and often linked to genetics, which can lead to heightened immune responses known as atopy. Throughout history, plant extracts have been used for various purposes, including medicine and food. In addition, their bioactive compounds show a wide range of beneficial effects, such as reducing allergic reactions, fighting oxidative stress, mast cell stabilizers, and lowering inflammation, highlighting their potential for treating various health conditions. Flavonoids and phenolic compounds are commonly used in anaphylaxis for their potent anti-inflammatory action. This review aims to promote the use of natural products as potential treatments for anaphylaxis. In addition, the discovery of new drugs derived from natural sources holds significant promise for the management of anaphylaxis.
Collapse
Affiliation(s)
- Aya H Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Eman S Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Miral O Sabry
- Faculty of Science, National University of Singapore, Singapore, Singapore
- Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Samar S Khalaf
- Biochemistry Department Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| |
Collapse
|
2
|
Liu H, Sun M, Gao Y, Lin J, Zhang T, Zhao G, Lv C. Interactions between protein Z and lycopene: A win-win scenario for both security and stability. Int J Biol Macromol 2025; 295:139401. [PMID: 39788260 DOI: 10.1016/j.ijbiomac.2024.139401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 12/12/2024] [Accepted: 12/29/2024] [Indexed: 01/12/2025]
Abstract
Malt protein Z (PZ), the main albumin in malt endosperm, exhibits trypsin inhibitory activity and has the ability to bind fat-soluble active molecules. However, its potential utilization as a food ingredient necessitates an evaluation of its allergenicity. Lycopene has many functional activities, such as antioxidant and treatment or alleviation of various diseases, but its tendency to degrade easily hinders its effective utilization. Therefore, this paper investigates the allergenicity of PZ and provides a win-win scenario that PZ interacts with lycopene. PZ interacts with lycopene through non-covalent interactions with a ratio of 4.07 ± 0.20, leading to the formation of homogenous particles with an increased absolute zeta potential, from -7.3 ± 0.2 to -20.0 ± 0.6. Unsurprisingly, the presence of lycopene alleviates the allergenicity of PZ by decreasing the IgE, mMcp-1 and vascular permeability, such as the plasma mMcp-1 decreased from 245.0 ± 5.2 ng/mL for the PZ group to 217.8 ± 4.1 ng/mL for the PZ-LYC group. To uncover the potential mechanism, the linear antigenic epitopes of PZ by ABCpred were predicted, which are almost the potential binding site of lycopene at PZ. On the other hand, PZ improved the storage stability of lycopene. The addition of PZ increased lycopene retention in solution from 14.9 ± 2.7 % to 65.5 ± 2.8 % over 10 days at room temperature with light exposure. These results provide foundations for PZ utilization concerning security, and give ways to protect bioactive molecules.
Collapse
Affiliation(s)
- Hanhan Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Mingyang Sun
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Yang Gao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Junyu Lin
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Tuo Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| |
Collapse
|
3
|
Huang R, Xie X, Xu C. An innovative approach to improve the taste, quality, and shelf life of aronia berry juice by integrating food ingredient technology with high-pressure processing (HPP) technology. J Food Sci 2025; 90:e70146. [PMID: 40135458 DOI: 10.1111/1750-3841.70146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/07/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025]
Abstract
Aronia juice possesses multiple health benefits; however, unfavorable taste and storage instability limit its large-scale production and consumption. In this study, aronia juice was formulated with 2% (w/w) gum Arabic or 0.5% (w/w) egg white powder, treated with high-pressure processing (HPP) at 600 MPa for 5 min, and stored at 4°C for 12 months. A hedonic test (N = 60) was conducted, and the level of microorganisms, physicochemical properties, phenolic content, and antioxidant capacity during storage were evaluated. The results showed both formulations effectively reduced astringency, enhanced consumer liking, and improved physical and color stability of aronia juice. During storage, aerobic plate count, yeast counts, and mold counts remained below 1 log CFU/mL after HPP treatment. Only slight fluctuations were observed in pH, titratable acidity, °Brix, and °Brix: acid. Nonanthocyanin phenolic compounds and antioxidant capacity remained relatively stable. Overall, aronia juice formulated with gum Arabic or egg white powder and treated with HPP exhibited higher consumer acceptability, good storage stability, and an extended microbial shelf life at 4°C. These findings are valuable in meeting consumer demand for healthy fruit juices with an appealing taste while supporting the development of the aronia berry industry. PRACTICAL APPLICATION: This study presents an innovative approach to improve the taste, quality, and shelf life of aronia berry juice by integrating food ingredient technology with high-pressure processing technology. The technology also could be used for the commercial production of other high-polyphenol juices like aronia berry.
Collapse
Affiliation(s)
- Rui Huang
- Department of Food Science and Technology, The Food Processing Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Xiaoqing Xie
- Department of Food Science and Technology, The Food Processing Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Changmou Xu
- Department of Food Science and Technology, The Food Processing Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Center for Digital Agriculture, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
4
|
Huang R, Xie X, Xu C. Utilization of egg white powders to mitigate the astringency of Aronia berry juice and produce protein-Proanthocyanidin aggregates with enhanced stability during digestion. Food Chem 2025; 464:141748. [PMID: 39503087 DOI: 10.1016/j.foodchem.2024.141748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
Aronia berry has a strong unpleasant astringency, however, few approaches have been developed to modify it. This study aims to screen out the suitable proteins to mitigate astringency in aronia juice, elucidate the interaction mechanism, and evaluate the digestive stability of formed complexes. Among proteins tested, two egg white powders (original P-110 and modified M-200) were the optimal ones with 0.5 % (w/w) addition to effectively reduce astringency. At room temperature (25 °C), the interaction of proanthocyanidins (PAs) with both P-110 and M-200 was spontaneous, endothermic, and majorly driven by hydrophobic interaction. The binding affinity of PAs with M-200 is stronger than that with P-110. On the other hand, the egg white protein-PA aggregates enhanced the stability of PAs during digestion, allowing more PAs to reach gut microbiota to exert their bioactivities. This study improves fundamental understanding of egg white protein-PAs interaction and provides a practical processing approach for aronia industry.
Collapse
Affiliation(s)
- Rui Huang
- The Food Processing Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Xiaoqing Xie
- The Food Processing Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Changmou Xu
- The Food Processing Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
5
|
Wang N, Liu Q, Shi Q, Wang F, Xu C, Ren H, Yu Q. Effects of the covalent conjugation between caffeic acid and peanut allergen protein Ara h1 on the antigenicity and structure of Ara h1. J Food Sci 2024; 89:5559-5575. [PMID: 39150685 DOI: 10.1111/1750-3841.17276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024]
Abstract
Ara h1 was the highest content of peanut allergen protein, identified as a biomarker of peanut allergen. In this study, Ara h1 was covalently complexed with caffeic acid (CA) to research the effects of covalent conjugation on the antigenicity and protein structural properties of Ara h1. After the covalent complexing of Ara h1 and CA, the IgG-binding capacity of Ara h1 was reduced compared with that of control Ara h1. Moreover, the structure of Ara h1 changed from ordered to disordered, the number of intermolecular hydrogen bonds decreased, and some hydrophobic groups were exposed or hydrophobic peptides were released. The carboxyl group in CA reacted with the amino group in Ara h1. The digestibility of Ara h1-CA was increased. The antigenicity of Ara h1-CA was undetectable after 30 min of digestion in vitro. These findings can serve as a reference for further research on hypoallergenic peanut products.
Collapse
Affiliation(s)
- Na Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center for Animal ImmunologyHenan Agricultural University, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Nutrition and Healthy Food, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Staple Grain Processing Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qingqing Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center for Animal ImmunologyHenan Agricultural University, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Nutrition and Healthy Food, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qilei Shi
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Nutrition and Healthy Food, Henan Agricultural University, Zhengzhou, Henan, China
| | - Fan Wang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Nutrition and Healthy Food, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chao Xu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Nutrition and Healthy Food, Henan Agricultural University, Zhengzhou, Henan, China
| | - Hongtao Ren
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Nutrition and Healthy Food, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Staple Grain Processing Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qiuying Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center for Animal ImmunologyHenan Agricultural University, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Nutrition and Healthy Food, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Narciso JO, Gulzar S, Soliva-Fortuny R, Martín-Belloso O. Emerging Chemical, Biochemical, and Non-Thermal Physical Treatments in the Production of Hypoallergenic Plant Protein Ingredients. Foods 2024; 13:2180. [PMID: 39063264 PMCID: PMC11276117 DOI: 10.3390/foods13142180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Allergies towards gluten and legumes (such as, soybean, peanut, and faba bean) are a global issue and, occasionally, can be fatal. At the same time, an increasing number of households are shifting to plant protein ingredients from these sources, which application and consumption are limited by said food allergies. Children, the elderly, and people with immune diseases are particularly at risk when consuming these plant proteins. Finding ways to reduce or eliminate the allergenicity of gluten, soybean, peanut, and faba bean is becoming crucial. While thermal and pH treatments are often not sufficient, chemical processes such as glycation, polyphenol conjugation, and polysaccharide complexation, as well as controlled biochemical approaches, such as fermentation and enzyme catalysis, are more successful. Non-thermal treatments such as microwave, high pressure, and ultrasonication can be used prior to further chemical and/or biochemical processing. This paper presents an up-to-date review of promising chemical, biochemical, and non-thermal physical treatments that can be used in the food industry to reduce or eliminate food allergenicity.
Collapse
Affiliation(s)
- Joan Oñate Narciso
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; (S.G.); (R.S.-F.); (O.M.-B.)
- Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Saqib Gulzar
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; (S.G.); (R.S.-F.); (O.M.-B.)
- Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Robert Soliva-Fortuny
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; (S.G.); (R.S.-F.); (O.M.-B.)
- Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Olga Martín-Belloso
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; (S.G.); (R.S.-F.); (O.M.-B.)
- Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| |
Collapse
|
7
|
Farhan M, Rizvi A, Aatif M, Muteeb G, Khan K, Siddiqui FA. Dietary Polyphenols, Plant Metabolites, and Allergic Disorders: A Comprehensive Review. Pharmaceuticals (Basel) 2024; 17:670. [PMID: 38931338 PMCID: PMC11207098 DOI: 10.3390/ph17060670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024] Open
Abstract
Given the ongoing rise in the occurrence of allergic disorders, alterations in dietary patterns have been proposed as a possible factor contributing to the emergence and progression of these conditions. Currently, there is a significant focus on the development of dietary therapies that utilize natural compounds possessing anti-allergy properties. Dietary polyphenols and plant metabolites have been intensively researched due to their well-documented anti-inflammatory, antioxidant, and immunomodulatory characteristics, making them one of the most prominent natural bioactive chemicals. This study seeks to discuss the in-depth mechanisms by which these molecules may exert anti-allergic effects, namely through their capacity to diminish the allergenicity of proteins, modulate immune responses, and modify the composition of the gut microbiota. However, further investigation is required to fully understand these effects. This paper examines the existing evidence from experimental and clinical studies that supports the idea that different polyphenols, such as catechins, resveratrol, curcumin, quercetin, and others, can reduce allergic inflammation, relieve symptoms of food allergy, asthma, atopic dermatitis, and allergic rhinitis, and prevent the progression of the allergic immune response. In summary, dietary polyphenols and plant metabolites possess significant anti-allergic properties and can be utilized for developing both preventative and therapeutic strategies for targeting allergic conditions. The paper also discusses the constraints in investigating and broad usage of polyphenols, as well as potential avenues for future research.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Asim Rizvi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Kimy Khan
- Department of Dermatology, Almoosa Specialist Hospital, Dhahran Road, Al Mubarraz 36342, Al Ahsa, Saudi Arabia;
| | - Farhan Asif Siddiqui
- Department of Laboratory and Blood Bank, King Fahad Hospital, Prince Salman Street, Hofuf 36441, Saudi Arabia;
| |
Collapse
|
8
|
Zhang K, Huang J, Wang D, Wan X, Wang Y. Covalent polyphenols-proteins interactions in food processing: formation mechanisms, quantification methods, bioactive effects, and applications. Front Nutr 2024; 11:1371401. [PMID: 38510712 PMCID: PMC10951110 DOI: 10.3389/fnut.2024.1371401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Proteins and polyphenols are abundant in the daily diet of humans and their interactions influence, among other things, the texture, flavor, and bioaccessibility of food. There are two types of interactions between them: non-covalent interactions and covalent interactions, the latter being irreversible and more powerful. In this review, we systematically summarized advances in the investigation of possible mechanism underlying covalent polyphenols-proteins interaction in food processing, effect of different processing methods on covalent interaction, methods for characterizing covalent complexes, and impacts of covalent interactions on protein structure, function and nutritional value, as well as potential bioavailability of polyphenols. In terms of health promotion of the prepared covalent complexes, health effects such as antioxidant, hypoglycemic, regulation of intestinal microbiota and regulation of allergic reactions have been summarized. Also, the possible applications in food industry, especially as foaming agents, emulsifiers and nanomaterials have also been discussed. In order to offer directions for novel research on their interactions in food systems, nutritional value, and health properties in vivo, we considered the present challenges and future perspectives of the topic.
Collapse
Affiliation(s)
- Kangyi Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China
- New-style Industrial Tea Beverage Green Manufacturing Joint Laboratory of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Jinbao Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China
- New-style Industrial Tea Beverage Green Manufacturing Joint Laboratory of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China
- New-style Industrial Tea Beverage Green Manufacturing Joint Laboratory of Anhui Province, Anhui Agricultural University, Hefei, China
| |
Collapse
|
9
|
Simões R, Ribeiro AC, Dias R, Freitas V, Soares S, Pérez-Gregorio R. Unveiling the Immunomodulatory Potential of Phenolic Compounds in Food Allergies. Nutrients 2024; 16:551. [PMID: 38398875 PMCID: PMC10891931 DOI: 10.3390/nu16040551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Food allergies are becoming ever more prevalent around the world. This pathology is characterized by the breakdown of oral tolerance to ingested food allergens, resulting in allergic reactions in subsequent exposures. Due to the possible severity of the symptoms associated with this pathology, new approaches to prevent it and reduce associated symptoms are of utmost importance. In this framework, dietary phenolic compounds appear as a tool with a not fully explored potential. Some phenolic compounds have been pointed to with the ability to modulate food allergies and possibly reduce their symptoms. These compounds can modulate food allergies through many different mechanisms, such as altering the bioaccessibility and bioavailability of potentially immunogenic peptides, by modulating the human immune system and by modulating the composition of the human microbiome that resides in the oral cavity and the gastrointestinal tract. This review deepens the state-of-the-art of the modulation of these mechanisms by phenolic compounds. While this review shows clear evidence that dietary supplementation with foods rich in phenolic compounds might constitute a new approach to the management of food allergies, it also highlights the need for further research to delve into the mechanisms of action of these compounds and decipher systematic structure/activity relationships.
Collapse
Affiliation(s)
- Rodolfo Simões
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
- Food and Health Omics Group, Food and Agroecology Institute, University of Vigo, Campus As Lagoas, s/n, 32004 Ourense, Spain
- Food and Health Omics Group, Department of Chemistry and Biochemistry, Galicia Sur Health Research Institute (IISGS), SERGAS-UVIGO, 32002 Ourense, Spain
| | - Ana Catarina Ribeiro
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Ricardo Dias
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Victor Freitas
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Susana Soares
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Rosa Pérez-Gregorio
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
- Food and Health Omics Group, Food and Agroecology Institute, University of Vigo, Campus As Lagoas, s/n, 32004 Ourense, Spain
- Food and Health Omics Group, Department of Chemistry and Biochemistry, Galicia Sur Health Research Institute (IISGS), SERGAS-UVIGO, 32002 Ourense, Spain
| |
Collapse
|
10
|
Wróblewska B, Kuliga A, Wnorowska K. Bioactive Dairy-Fermented Products and Phenolic Compounds: Together or Apart. Molecules 2023; 28:8081. [PMID: 38138571 PMCID: PMC10746084 DOI: 10.3390/molecules28248081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Fermented dairy products (e.g., yogurt, kefir, and buttermilk) are significant in the dairy industry. They are less immunoreactive than the raw materials from which they are derived. The attractiveness of these products is based on their bioactivity and properties that induce immune or anti-inflammatory processes. In the search for new solutions, plant raw materials with beneficial effects have been combined to multiply their effects or obtain new properties. Polyphenols (e.g., flavonoids, phenolic acids, lignans, and stilbenes) are present in fruit and vegetables, but also in coffee, tea, or wine. They reduce the risk of chronic diseases, such as cancer, diabetes, or inflammation. Hence, it is becoming valuable to combine dairy proteins with polyphenols, of which epigallocatechin-3-gallate (EGCG) and chlorogenic acid (CGA) show a particular predisposition to bind to milk proteins (e.g., α-lactalbumin β-lactoglobulin, αs1-casein, and κ-casein). Reducing the allergenicity of milk proteins by combining them with polyphenols is an essential issue. As potential 'metabolic prebiotics', they also contribute to stimulating the growth of beneficial bacteria and inhibiting pathogenic bacteria in the human gastrointestinal tract. In silico methods, mainly docking, assess the new structures of conjugates and the consequences of the interactions that are formed between proteins and polyphenols, as well as to predict their action in the body.
Collapse
Affiliation(s)
- Barbara Wróblewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, 10-748 Olsztyn, Poland; (A.K.); (K.W.)
| | | | | |
Collapse
|
11
|
Dębińska A, Sozańska B. Dietary Polyphenols-Natural Bioactive Compounds with Potential for Preventing and Treating Some Allergic Conditions. Nutrients 2023; 15:4823. [PMID: 38004216 PMCID: PMC10674996 DOI: 10.3390/nu15224823] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In light of the constantly increasing prevalence of allergic diseases, changes in dietary patterns have been suggested as a plausible environmental explanation for the development and progression of these diseases. Nowadays, much attention has been paid to the development of dietary interventions using natural substances with anti-allergy activities. In this respect, dietary polyphenols have been studied extensively as one of the most prominent natural bioactive compounds with well-documented anti-inflammatory, antioxidant, and immunomodulatory properties. This review aims to discuss the mechanisms underlying the potential anti-allergic actions of polyphenols related to their ability to reduce protein allergenicity, regulate immune response, and gut microbiome modification; however, these issues need to be elucidated in detail. This paper reviews the current evidence from experimental and clinical studies confirming that various polyphenols such as quercetin, curcumin, resveratrol, catechins, and many others could attenuate allergic inflammation, alleviate the symptoms of food allergy, asthma, and allergic rhinitis, and prevent the development of allergic immune response. Conclusively, dietary polyphenols are endowed with great anti-allergic potential and therefore could be used either for preventive approaches or therapeutic interventions in relation to allergic diseases. Limitations in studying and widespread use of polyphenols as well as future research directions are also discussed.
Collapse
Affiliation(s)
- Anna Dębińska
- Department and Clinic of Paediatrics, Allergology and Cardiology, Wrocław Medical University, ul. Chałubińskiego 2a, 50-368 Wrocław, Poland;
| | | |
Collapse
|
12
|
Liu R, Li Z, Yu XC, Hu JN, Zhu N, Liu XR, Hao YT, Kang JW, Li Y. The Effects of Peanut Oligopeptides on Exercise-Induced Fatigue in Mice and Its Underlying Mechanism. Nutrients 2023; 15:nu15071743. [PMID: 37049582 PMCID: PMC10096783 DOI: 10.3390/nu15071743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The aim of this study was to clarify the anti-fatigue effect of peanut oligopeptides (POPs) in mice and to investigate its possible underlying mechanism. A total of 150 male ICR mice were randomly assigned into five groups: control, whey protein (0.50 g/kg·bw), and three peanut peptide groups (0.25, 0.50, and 1.00 g/kg·bw). All the mice were treated with intra-gastric administration for 30 days. Following the intervention, a weight-loaded swimming test, blood lactate concentration, glycogen content, the activities of antioxidant factors and energy metabolism enzymes, and the function of mitochondria in the skeletal muscle were examined. The results show that POP intervention significantly prolonged the exhaustive swimming time, decreased blood lactate concentration levels, regulated the process of energy metabolism, and increased the level of antioxidant enzymes, muscle glycogen, and expressions of mtTFA and NRF-1 in the mitochondria of the gastrocnemius muscle. The results suggest that POPs produce an anti-fatigue effect in the animals, and they may exert this effect through the mechanism of improving the animals’ antioxidant capacity to reduce oxidative damage levels and regulating the process of energy metabolism.
Collapse
Affiliation(s)
- Rui Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Zhen Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Xiao-Chen Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Jia-Ni Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Na Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Xin-Ran Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Yun-Tao Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Jia-Wei Kang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| |
Collapse
|
13
|
Kawasaki R, Kawamura S, Kodama T, Yamana K, Maeda A, Yimiti D, Miyaki S, Hino S, Ozawa N, Nishimura T, Kawamoto S, Ikeda A. Development of a Water-Dispersible Supramolecular Complex of Polyphenol with Polypeptides for Attenuation of the Allergic Response using a Mechanochemical Strategy. Macromol Biosci 2023; 23:e2200462. [PMID: 36640295 DOI: 10.1002/mabi.202200462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/22/2022] [Indexed: 01/15/2023]
Abstract
The prevalence of allergic disorders has increased worldwide in recent decades. Polyphenols, including resveratrol and curcumin, are posited to have potential as therapeutic agents for allergy; however, their use has been limited by poor water solubility. Accordingly, a highly concentrated, water dispersible, supramolecular complexes of polyphenols with polypeptides (poly-L-lysine, poly-γ-glutamic acid) and gelatin using high-speed vibration milling are developed. The complex exhibited resistance to photobleaching and thermal radiation. Treatment of a rat basophilic leukemia cell line (RBL-2H3) with polypeptide complexes containing resveratrol is suppressed allergic responses in vitro. Moreover, aerosolized administration of polypeptide complexes is demonstrated excellent bioavailability and inhibition of immediate hypersensitivity reactions in ear tissue in vivo. Furthermore, the method avoids the use of organic solvent and therefore reduces undesirable biological responses.
Collapse
Affiliation(s)
- Riku Kawasaki
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Shogo Kawamura
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Tomoki Kodama
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Keita Yamana
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Akira Maeda
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Dilimulati Yimiti
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8551, Japan
| | - Shigeru Miyaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8551, Japan.,Medical Center for Translational and Clinical Research, Hiroshima University Hospital, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8551, Japan
| | - Shodai Hino
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, AIST), 1-8-31 Midorigaoka, Ikeda, Japan
| | - Naoki Ozawa
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda, 386-8567, Japan
| | - Tomoki Nishimura
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda, 386-8567, Japan
| | - Seiji Kawamoto
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan.,Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Atsushi Ikeda
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| |
Collapse
|
14
|
Liu Q, Lin S, Sun N. How does food matrix components affect food allergies, food allergens and the detection of food allergens? A systematic review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Cianciosi D, Forbes-Hernández TY, Regolo L, Alvarez-Suarez JM, Navarro-Hortal MD, Xiao J, Quiles JL, Battino M, Giampieri F. The reciprocal interaction between polyphenols and other dietary compounds: Impact on bioavailability, antioxidant capacity and other physico-chemical and nutritional parameters. Food Chem 2022; 375:131904. [PMID: 34963083 DOI: 10.1016/j.foodchem.2021.131904] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023]
Abstract
Polyphenols are plant secondary metabolites, whose biological activity has been widely demonstrated. However, the research in this field is a bit reductive, as very frequently the effect of individual compound is investigated in different experimental models, neglecting more complex, but common, relationships that are established in the diet. This review summarizes the data that highlighted the interaction between polyphenols and other food components, especially macro- (lipids, proteins, carbohydrates and fibers) and micronutrients (minerals, vitamins and organic pigments), paying particular attention on their bioavailability, antioxidant capacity and chemical, physical, organoleptic and nutritional characteristics. The topic of food interaction has yet to be extensively studied because a greater knowledge of the food chemistry behind these interactions and the variables that modify their effects, could offer innovations and improvements in various fields ranging from organoleptic, nutritional to health and economic field.
Collapse
Affiliation(s)
- Danila Cianciosi
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Tamara Y Forbes-Hernández
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Centre, University of Granada, Granada 1800, Spain
| | - Lucia Regolo
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - José M Alvarez-Suarez
- Departamento de Ingeniería en Alimentos. Colegio de Ciencias e Ingenierías. Universidad San Francisco de Quito, Quito, Ecuador 170157, Ecuador; Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito, Quito, Ecuador; King Fahd Medical Research Center, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Maria Dolores Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Centre, University of Granada, Granada 1800, Spain
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Centre, University of Granada, Granada 1800, Spain; Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander 39011, Spain
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona 60131, Italy; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China.
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander 39011, Spain; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
16
|
Pan T, Wu Y, He S, Wu Z, Jin R. Food allergenic protein conjugation with plant polyphenols for allergenicity reduction. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Wang Y, He S, Zhou F, Sun H, Cao X, Ye Y, Li J. Detection of Lectin Protein Allergen of Kidney Beans ( Phaseolus vulgaris L.) and Desensitization Food Processing Technology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14723-14741. [PMID: 34251800 DOI: 10.1021/acs.jafc.1c02801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the increase of food allergy events related to not properly cooked kidney beans (Phaseolus vulgaris L.), more and more researchers are paying attention to the sensitization potential of lectin, one of the major storage and defensive proteins with the specific carbohydrate-binding activity. The immunoglobulin E (IgE), non-IgE, and mixed allergic reactions induced by the lectins were inducted in the current paper, and the detection methods of kidney bean lectin, including the purification strategies, hemagglutination activity, specific polysaccharide or glycoprotein interactions, antibody combinations, mass spectrometry methods, and allergomics strategies, were summarized, while various food processing aspects, such as the physical thermal processing, physical non-thermal processing, chemical modifications, and biological treatments, were reviewed in the potential of sensitization reduction. It might be the first comprehensive review on lectin allergen detection from kidney bean and the desensitization strategy in food processing and will provide a basis for food safety control.
Collapse
Affiliation(s)
- Yongfei Wang
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Shudong He
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Fanlin Zhou
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Hanju Sun
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Xiaodong Cao
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Yongkang Ye
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Jing Li
- College of Biological and Environmental Engineering, Hefei University, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
18
|
Zhang Q, Cheng Z, Chen R, Wang Y, Miao S, Li Z, Wang S, Fu L. Covalent and non-covalent interactions of cyanidin-3- O-glucoside with milk proteins revealed modifications in protein conformational structures, digestibility, and allergenic characteristics. Food Funct 2021; 12:10107-10120. [PMID: 34522929 DOI: 10.1039/d1fo01946e] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Currently, there is a need to explore the effects of different types of protein-anthocyanin complexations, as well as the possible changes in the nutrition and allergenicity of the formed complexes. Here, we systematically investigated the covalent and non-covalent interactions between cyanidin-3-O-glucoside (C3G) and two major milk proteins, α-casein (α-CN) and β-lactoglobulin (β-LG). Fluorescence quenching data showed that, under non-covalent conditions, C3G quenched the fluorescence of the two proteins via a static process, with the interaction forces being revealed; for covalent products, decreased fluorescence intensities were observed with red shifts in the λmax. Multiple spectroscopic analyses implied that C3G-addition induced protein structural unfolding through transitions between the random coil and ordered secondary components. With a two-stage simulated gastrointestinal (GI) digestion model, it was seen that covalent complexes, not their non-covalent counterparts, showed reduced protein digestibility, ascribed to structural changes resulting in the unavailability of enzyme cleaving sites. The GI digests displayed prominent 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation-scavenging abilities (3.8-11.1 mM Trolox equivalents per mL digest), in contrast to the markedly reduced 1,1-diphenyl-2-picrylhydrazyl radical-scavenging capacities. Additionally, covalent protein-C3G complexes, but not their non-covalent counterparts, showed lower IgE-binding levels in comparison to the native control. This study provides new understanding for the development of anthocyanin-milk protein systems as functional ingredients with health-beneficial properties.
Collapse
Affiliation(s)
- Qiaozhi Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P.R. China.
| | - Zhouzhou Cheng
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P.R. China.
| | - Ruyan Chen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P.R. China.
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P.R. China.
| | - Song Miao
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Zhenxing Li
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, 266003, P.R. China
| | - Shunyu Wang
- Zhejiang Li Zi Yuan Food Co., LTD, Jinhua, 321031, P.R. China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P.R. China.
| |
Collapse
|
19
|
Li W, Zhang C, Xu N, Hu Y, Wang C, Li D, Li W. Effect of lipoxygenase‐induced oxidation on molecular structure and digestive properties of arachin and conarachin. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Wenjun Li
- Hubei Key Laboratory of Industrial Microbiology KeyLaboratory of Fermentation Engineering (Ministry of Education) Hubei University of Technology Wuhan China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics Hubei Research Center of Food Fermentation Engineering and Technology Wuhan China
| | - Chao Zhang
- Hubei Key Laboratory of Industrial Microbiology KeyLaboratory of Fermentation Engineering (Ministry of Education) Hubei University of Technology Wuhan China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics Hubei Research Center of Food Fermentation Engineering and Technology Wuhan China
| | - Ning Xu
- Hubei Key Laboratory of Industrial Microbiology KeyLaboratory of Fermentation Engineering (Ministry of Education) Hubei University of Technology Wuhan China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics Hubei Research Center of Food Fermentation Engineering and Technology Wuhan China
| | - Yong Hu
- Hubei Key Laboratory of Industrial Microbiology KeyLaboratory of Fermentation Engineering (Ministry of Education) Hubei University of Technology Wuhan China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics Hubei Research Center of Food Fermentation Engineering and Technology Wuhan China
| | - Chao Wang
- Hubei Key Laboratory of Industrial Microbiology KeyLaboratory of Fermentation Engineering (Ministry of Education) Hubei University of Technology Wuhan China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics Hubei Research Center of Food Fermentation Engineering and Technology Wuhan China
| | - Deyuan Li
- Function Food Key Laboratory of Hubei Province Hubei Uinversity of Chinese Medicine Wuhan China
| | - Wei Li
- Hubei Key Laboratory of Industrial Microbiology KeyLaboratory of Fermentation Engineering (Ministry of Education) Hubei University of Technology Wuhan China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics Hubei Research Center of Food Fermentation Engineering and Technology Wuhan China
| |
Collapse
|
20
|
The gut microbiome-immune axis as a target for nutrition-mediated modulation of food allergy. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Vapor A, Mendonça A, Tomaz CT. Processes for reducing egg allergenicity: Advances and different approaches. Food Chem 2021; 367:130568. [PMID: 34343811 DOI: 10.1016/j.foodchem.2021.130568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/03/2023]
Abstract
Egg is a versatile ingredient and ubiquitous food. Nevertheless, egg proteins are a common cause of allergy mainly in childhood. Until now, egg eviction has been the best way to prevent this disorder, however, processed food can contribute to mitigate allergies and to guarantee life quality of allergic individuals. This review focuses on discussing and highlighting recent advances in processes to reduce egg allergenicity as well as new approaches to egg allergy management. In recent times, different methods have been developed to reduce egg allergies, by hiding the epitopes or changing the native or conformational structure of the proteins. Despite processing food has not yet been a solution to completely remove the allergenic potential of egg proteins, innovative strategies, such as addition of phenolic compounds, have been developed with promising results.
Collapse
Affiliation(s)
- Alcides Vapor
- Department of Chemistry, Faculty of Sciences, Universidade da Beira Interior, Covilhã, Portugal; CICS-UBI, Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - António Mendonça
- Department of Chemistry, Faculty of Sciences, Universidade da Beira Interior, Covilhã, Portugal; CICS-UBI, Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Cândida T Tomaz
- Department of Chemistry, Faculty of Sciences, Universidade da Beira Interior, Covilhã, Portugal; CICS-UBI, Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
22
|
Bessa C, Francisco T, Dias R, Mateus N, Freitas VD, Pérez-Gregorio R. Use of Polyphenols as Modulators of Food Allergies. From Chemistry to Biological Implications. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.623611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The multifactorial process of aging predisposes humans to infections and inflammatory disorders, thus affecting their quality of life and longevity. Given this reality, the need to increase the consumption of bioactive compounds, like dietary polyphenols emerges in our daily basis mostly due to their health related effects in slowing-down the incidence of chronic and degenerative diseases and even food allergy, which has been growing rapidly in prevalence currently affecting 5% of adults and 8% of children. Polyphenols embrace a large family of secondary metabolites from plant-derived foods and food wastes and are considerable of interest since they have attracted special attention over the years because of their reported anti-inflammatory and antimicrobial properties along with their high antioxidant capacity. These compounds are claimed as nutraceuticals with protective effect in offsetting oxidant species over-genesis in normal cells, and with the potential ability to stop or reverse oxidative stress-related diseases. Plant-derived foods represent a substantive portion of human diet containing a significant amount of structurally diverse polyphenols. There is a need to understand the polyphenolic composition of plant-derived foods mainly because of its chemistry, which discloses the bioactivity of a plant extract. However, the lack of standardized methods for analysis and other difficulties associated to the nature and distribution of plant polyphenols leads to a high variability of available data. Furthermore, there is still a gap in the understanding of polyphenols bioavailability and pharmacokinetics, which clearly difficult the settlement of the intake needed to observe health outcomes. Many efforts have been made to provide highly sensitive and selective analytical methods for the extraction (liquid-liquid; solid-liquid; supercritical-fluid), separation (spectrophotometric methods) and structural identification (chromatographic techniques, NMR spectroscopy, MS spectrometry) of phenolic and polyphenolic compounds present in these extracts. Liquid chromatography coupled to mass spectrometry (LC-MS) has been a fundamental technique in this area of research, not only for the determination of this family of compounds in food matrices, but also for the characterization and identification of new polyphenols classified with nutraceutical interest. This review summarizes the nature, distribution and main sources of polyphenols, analytical methods from extraction to characterization to further evaluate the health effects toward immune reactions to food.
Collapse
|
23
|
Zhou C, Chen LL, Lu RQ, Ma WW, Xiao R. Alteration of Intestinal Microbiota Composition in Oral Sensitized C3H/HeJ Mice Is Associated With Changes in Dendritic Cells and T Cells in Mesenteric Lymph Nodes. Front Immunol 2021; 12:631494. [PMID: 34177885 PMCID: PMC8222730 DOI: 10.3389/fimmu.2021.631494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
This research aimed to investigate the allergic reaction of C3H/HeJ mice after sensitization with ovalbumin (OVA) without any adjuvant and to analyze the association between intestinal microbiota and allergy-related immune cells in mesenteric lymph nodes (MLN). The allergic responses of C3H/HeJ mice orally sensitized with OVA were evaluated, and immune cell subsets in spleen and MLN and cytokines were also detected. The intestinal bacterial community structure was analyzed, followed by Spearman correlation analysis between changed gut microbiota species and allergic parameters. Sensitization induced a noticeable allergic response to the gavage of OVA without adjuvant. Increased levels of Th2, IL-4, CD103+CD86+ DC, and MHCII+CD86+ DC and decreased levels of Th1, Treg, IFN-γ, TGF-β1, and CD11C+CD103+ DC were observed in allergic mice. Furthermore, families of Lachnospiraceae, Clostridiaceae_1, Ruminococcaceae, and peprostreptococcaceae, all of which belonging to the order Clostridiales, were positively related to Treg and CD11C+CD103+ DC, while they were negatively related to an allergic reaction, levels of Th2, CD103+CD86+ DC, and MHCII+CD86+ DC in MLN. The family of norank_o_Mollicutes_RF39 belonging to the order Mollicutes_RF39 was similarly correlated with allergic reaction and immune cells in MLN of mice. To sum up, allergic reactions and intestinal flora disturbances could be induced by OVA oral administration alone. The orders of Clostridiales and Mollicutes_RF39 in intestinal flora are positively correlated with levels of Treg and CD11C+CD103+ DC in MLN of mice.
Collapse
Affiliation(s)
- Cui Zhou
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Ling-Ling Chen
- Nutritional Department, Handan First Hospital, Handan, China
| | - Rui-Qi Lu
- School of Basic Medicine, Capital Medical University, Beijing, China
| | - Wei-Wei Ma
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Rong Xiao
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Diaz JT, Foegeding EA, Lila MA. Whey protein-polyphenol aggregate particles mitigate bar hardening reactions in high protein bars. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
25
|
Immunomodulatory Effects of Dietary Polyphenols. Nutrients 2021; 13:nu13030728. [PMID: 33668814 PMCID: PMC7996139 DOI: 10.3390/nu13030728] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023] Open
Abstract
Functional and nutraceutical foods provide an alternative way to improve immune function to aid in the management of various diseases. Traditionally, many medicinal products have been derived from natural compounds with healing properties. With the development of research into nutraceuticals, it is becoming apparent that many of the beneficial properties of these compounds are at least partly due to the presence of polyphenols. There is evidence that dietary polyphenols can influence dendritic cells, have an immunomodulatory effect on macrophages, increase proliferation of B cells, T cells and suppress Type 1 T helper (Th1), Th2, Th17 and Th9 cells. Polyphenols reduce inflammation by suppressing the pro-inflammatory cytokines in inflammatory bowel disease by inducing Treg cells in the intestine, inhibition of tumor necrosis factor-alpha (TNF-α) and induction of apoptosis, decreasing DNA damage. Polyphenols have a potential role in prevention/treatment of auto-immune diseases like type 1 diabetes, rheumatoid arthritis and multiple sclerosis by regulating signaling pathways, suppressing inflammation and limiting demyelination. In addition, polyphenols cause immunomodulatory effects against allergic reaction and autoimmune disease by inhibition of autoimmune T cell proliferation and downregulation of pro-inflammatory cytokines (interleukin-6 (IL-6), IL-1, interferon-γ (IFN-γ)). Herein, we summarize the immunomodulatory effects of polyphenols and the underlying mechanisms involved in the stimulation of immune responses.
Collapse
|
26
|
Zhang Q, Cheng Z, Wang Y, Fu L. Dietary protein-phenolic interactions: characterization, biochemical-physiological consequences, and potential food applications. Crit Rev Food Sci Nutr 2020; 61:3589-3615. [DOI: 10.1080/10408398.2020.1803199] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qiaozhi Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Zhouzhou Cheng
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| |
Collapse
|
27
|
Muralidharan S, Poon YY, Wright GC, Haynes PA, Lee NA. Quantitative proteomics analysis of high and low polyphenol expressing recombinant inbred lines (RILs) of peanut (Arachis hypogaea L.). Food Chem 2020; 334:127517. [PMID: 32711266 DOI: 10.1016/j.foodchem.2020.127517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 06/22/2020] [Accepted: 07/05/2020] [Indexed: 11/28/2022]
Abstract
To facilitate selective breeding of polyphenol-rich peanuts, we looked for mass spectrometry-based proteomic evidence, investigating a subset of recombinant inbred lines (RILs) developed by the Australian peanut breeding program. To do this, we used label-free shotgun proteomics for protein and peptide quantitation, statistically analyzed normalized spectral abundance factors using R-package, as well as assayed important antioxidants. Results revealed statistically significant protein expression changes in 82 proteins classified between high or low polyphenols expressing RILs. Metabolic changes in polyphenol-rich RIL p27-362 point towards increased enzymatic breakdown of sugars and phenylalanine biosynthesis. The study revealed phenylpropanoid pathway overexpression resulting in increased polyphenols biosynthesis. Overexpression of antioxidant enzymes such as catalase, by 73.4 fold was also observed. A strong metabolic correlation exists with the observed phenotypic traits. Peanut RIL p27-362 presents a superior nutritional composition with antioxidant-rich peanut phenotype and could yield commercial profits. Data are available via ProteomeXchange with identifierPXD015493.
Collapse
Affiliation(s)
- Sridevi Muralidharan
- ARC Training Centre for Advanced Technologies in Food Manufacture, School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Yan Yee Poon
- ARC Training Centre for Advanced Technologies in Food Manufacture, School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Graeme C Wright
- Peanut Company of Australia, Kingaroy, Queensland, Australia
| | - Paul A Haynes
- ARC Training Centre for Molecular Technology in the Food Industry, Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Nanju A Lee
- ARC Training Centre for Advanced Technologies in Food Manufacture, School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
28
|
He W, Zhang T, Velickovic TC, Li S, Lyu Y, Wang L, Yi J, Liu Z, He Z, Wu X. Covalent conjugation with (-)-epigallo-catechin 3-gallate and chlorogenic acid changes allergenicity and functional properties of Ara h1 from peanut. Food Chem 2020; 331:127355. [PMID: 32593042 DOI: 10.1016/j.foodchem.2020.127355] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/22/2020] [Accepted: 06/14/2020] [Indexed: 12/15/2022]
Abstract
Ara h1 is a major allergen from peanut. We investigated the effect of covalent conjugation of Ara h1 and dietary polyphenols on allergenicity and functional properties of Ara h1. Enzyme-linked immunosorbent assay revealed that the covalent conjugation of dietary polyphenols significantly reduced the IgE binding capacity of Ara h1. Covalent binding of dietary polyphenols with Ara h1 reduced histamine release by 40% in basophils. The decreased IgE binding capacity of Ara h1 could be ascribed to changes in protein conformation. The IgE epitope of Ara h1 might be blocked by polyphenols at the binding site. Analysis of pepsin digestion of Ara h1-polyphenol conjugates indicated that the covalent binding increased pepsin digestibility and reduced IgE binding capacity. Furthermore, covalent conjugation of Ara h1 with polyphenols decreased denaturation temperature and increased antioxidant activity. Ara h1 conjugated with polyphenols may be a promising approach for reducing the allergenicity of Ara h1.
Collapse
Affiliation(s)
- Weiyi He
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China
| | - Tingting Zhang
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China
| | - Tanja Cirkovic Velickovic
- Center of Excellence for Molecular Food Sciences & Department of Biochemistry, University of Belgrade-Faculty of Chemistry, Belgrade, Serbia; Ghent University Global Campus, Incheon, South Korea
| | - Shuiming Li
- College of Life Sciences, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China
| | - Yansi Lyu
- Department of Dermatology, Shenzhen University General Hospital, Shenzhen, Guangdong Province 518060, PR China
| | - Linlin Wang
- Department of Digestion, Shenzhen University General Hospital, Shenzhen, Guangdong Province 518060, PR China
| | - Jiang Yi
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China
| | - Zhigang Liu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China
| | - Zhendan He
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China
| | - Xuli Wu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China.
| |
Collapse
|
29
|
Zhang T, Hu Z, Cheng Y, Xu H, Velickovic TC, He K, Sun F, He Z, Liu Z, Wu X. Changes in Allergenicity of Ovalbumin in Vitro and in Vivo on Conjugation with Quercetin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4027-4035. [PMID: 32182051 DOI: 10.1021/acs.jafc.0c00461] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A previous study demonstrated decreased allergenicity in vitro of some food allergens after conjugation with polyphenols. However, little is known about how polyphenol conjugation with food allergens affects in vivo allergenicity. We conjugated a well-known food allergen, ovalbumin (OVA), with quercetin (QUE) to assess the potential allergenicity of OVA in vitro and in vivo in a BALB/c mouse model. QUE could covalently conjugate with OVA and changed the protein structure, which might destroy and/or mask OVA epitopes. Conjugation with QUE decreased IgE binding properties and the release capacity of the conjugated OVA. In vivo, as compared with native protein, conjugation with QUE decreased the levels of IgE, IgG1, IgG, plasma histamine, and mast cell protease-1 (mMCP-1) on the surface of sensitized mast cells, along with decreased FcεRI+ and c-kit+ expression. The levels of Th2-related cytokines (IL-4, IL-5, IL-13) decreased and that of a Th1-related cytokine (IFN-γ) increased slightly, which suggests that conjugation with QUE modulated the imbalance of the Th1/Th2 immune response. Conjugation of OVA with QUE could reduce OVA allergenicity in vitro and in vivo, which could provide information for reducing food allergenicity by conjugation with polyphenols.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, P.R. China
| | - Zongyi Hu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, P.R. China
- Department of Anesthesiology, Shenzhen Nanshan Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province 518060, P.R. China
| | - Yongwei Cheng
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, P.R. China
- Department of Obstetricians and Gynaecologists, Shenzhen University General Hospital, Shenzhen, Guangdong Province 518060, P.R. China
| | - Haoxie Xu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, P.R. China
| | - Tanja Cirkovic Velickovic
- Center of Excellence for Molecular Food Sciences & Department of Biochemistry, University of Belgrade-Faculty of Chemistry, Belgrade, Serbia
- Ghent University Global Campus, Incheon B-9000, South Korea
| | - Kan He
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, P.R. China
| | - Fan Sun
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, P.R. China
| | - Zhendan He
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, P.R. China
| | - Zhigang Liu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, P.R. China
| | - Xuli Wu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, P.R. China
| |
Collapse
|
30
|
Bonku R, Yu J. Health aspects of peanuts as an outcome of its chemical composition. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2019.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
31
|
Hoskin RT, Xiong J, Lila MA. Comparison of berry juice concentrates and pomaces and alternative plant proteins to produce spray dried protein-polyphenol food ingredients. Food Funct 2019; 10:6286-6299. [PMID: 31524913 DOI: 10.1039/c9fo01587f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Spray dried functional food ingredients were prepared by complexing alternative plant protein sources - buckwheat flour alone or blended with pea and rice proteins, with polyphenol sources - blueberry, cranberry and purple muscadine grape extracts from juice concentrates and pomaces - to create colloidal aggregate powders. When fruit pomaces (rather than juice concentrates) were used as polyphenol resources, solid recovery was significantly enhanced, especially for matrices made with pea protein, buckwheat flour or pea-buckwheat blends (over two fold for pea protein-berry pomace aggregates). Polyphenol content and DPPH radical scavenging capacity were, in general, significantly greater for pomace-derived protein-polyphenol aggregates compared to those made with juice concentrates. In particular, the particles produced with muscadine grape pomace presented the highest (p < 0.05) phenolic content (147.3-174.3 mg g-1, 19.4-20.4 mg g-1 and 16.3-21.4 mg g-1 for total phenolic content, anthocyanins and proanthocyanidins respectively), and antioxidant activity (408.9-423.3 μmol TE per g) as well as good spray drying yield (38.6-63.4%). Buckwheat flour, despite its relatively low protein content (13.7%) relative to pea and rice protein isolates (84% and 89%, respectively) still demonstrated high capacity for sorption of flavonoid phytoactive compounds from the berry fruits. These results suggest an efficient plant-based approach to produce value-added protein-polyphenol aggregates with broad utility as healthy food ingredients.
Collapse
Affiliation(s)
- Roberta Targino Hoskin
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
| | | | | |
Collapse
|