1
|
Farzanfar F, Mahoonak AS, Ghorbani M, Ghaboos SHH, Kaveh S. Encapsulation of ultrasound-assisted flaxseed meal protein hydrolysate in nanoliposomal systems by new formulation: Physicochemical properties, release behavior under simulated gastrointestinal conditions. Food Chem X 2025; 27:102389. [PMID: 40231122 PMCID: PMC11995128 DOI: 10.1016/j.fochx.2025.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/22/2025] [Accepted: 03/16/2025] [Indexed: 04/16/2025] Open
Abstract
Flaxseed meal is rich in protein with antioxidant properties. In this study, its protein was hydrolyzed using alcalase and pancreatin (1.2 %-3 %) after ultrasonic pretreatment. The pancreatin-treated hydrolysate showed the highest antioxidant activity, with 75.66 % DPPH inhibition, 70.39 % iron ion chelation, and a total antioxidant activity absorption value of 0.86 nm. To enhance antioxidant stability and control release, the hydrolyzed protein was encapsulated in liposomal nanovesicles with varying flaxseed oil (0.01, 0.02 and 0.03 g/10 ml chloroform) and cholesterol (0.02, 0.03, 0.04 and 0.05 g) concentrations. Treatment L3 (0.02 g flaxseed oil) exhibited the best antioxidant and physicochemical properties, with 95.64 % encapsulation efficiency, 409 nm particle size, -15.9 mV zeta potential, 87.51 % DPPH inhibition, 56.60 % iron ion chelation, and 1.339 total antioxidant activity absorption at 695 nm. The results showed that the optimal treatment of this study (L3) can be a suitable alternative to synthetic antioxidants in food formulations.
Collapse
Affiliation(s)
- Faezeh Farzanfar
- Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4918943464, Iran
| | - Alireza Sadeghi Mahoonak
- Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4918943464, Iran
| | - Mohammad Ghorbani
- Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4918943464, Iran
| | - Seyed Hossein Hosseini Ghaboos
- Food Science and Technology Research Center of East Golestan, Azadshahr Branch, Islamic Azad University, Azadshahr, Iran
| | - Shima Kaveh
- Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4918943464, Iran
| |
Collapse
|
2
|
Rivera ÁER, Ulloa JA, Silvas JEU, Ramírez JCR, Vazquez JAR. Physicochemical, techno-functional, biochemical and structural characterization of a protein isolate from groundnut (Arachis hypogaea L.) paste treated with high-intensity ultrasound. Food Chem 2025; 464:141848. [PMID: 39509893 DOI: 10.1016/j.foodchem.2024.141848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
The objective of this research was to evaluate the effect of ultrasound (HISound) (200, 400 and 600 W; 15-30 min) on the physicochemical, biochemical and structural techno-functional properties of a groundnut paste protein isolate (GPPI). HISound increased the contents of free sulfhydryls (552.22 %), total sulfhydryls (124.68 %) and α-helix (389.75 %), as well as molecular flexibility (50.91 %), hydrophobic surface (38.99 %), and particle size (171.45 %) of GPPI, which improved protein solubility by 8.05 %, oil holding capacity by 73.54 %, emulsifying stability index by 226.25 % and foaming capacity by 216.00 %, compared with non-sonicated GPPI. Also, the microstructure analysis revealed smooth structures, with molecular weights in the range of 13.88-67.07 kDa. Pearson analysis determined some highly significant correlations (r ≥ 0.90, p < 0.01) between some GPPI protein properties. The improvement of GPPI properties by HISound could contribute to its use as an ingredient for human consumption.
Collapse
Affiliation(s)
- Ángel Efraín Rodríguez Rivera
- Doctorado en Ciencias Biológico Agropecuarias en el Área de Ciencias Agrícolas, Universidad Autónoma de Nayarit, Carretera Tepic-Compostela Km 9, 63780 Xalisco, Nayarit, Mexico
| | - José Armando Ulloa
- Doctorado en Ciencias Biológico Agropecuarias en el Área de Ciencias Agrícolas, Universidad Autónoma de Nayarit, Carretera Tepic-Compostela Km 9, 63780 Xalisco, Nayarit, Mexico; Centro de Tecnología de Alimentos, Universidad Autónoma de Nayarit, Ciudad de la Cultura Amado Nervo, 63155 Tepic, Nayarit, Mexico.
| | - Judith Esmeralda Urías Silvas
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero, 1227 Zapopan, Jalisco, Mexico
| | - José Carmen Ramírez Ramírez
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nayarit, Carretera a Chapalilla Km 3.5, 63700 Compostela, Nayarit, Mexico
| | - Juan Alberto Resendiz Vazquez
- Escuela de Ingeniería y Ciencia, Tecnológico de Monterrey, Epigmenio González 500, San Pablo 76130, Querétaro, Mexico
| |
Collapse
|
3
|
Zhou J, Wang W, Zhang Z, Zhu G, Qiao J, Guo S, Bai Y, Zhao C, Teng C, Qin P, Zhang L, Ren G. An underutilized bean: hyacinth bean [Lablab purpureus (L.) sweet]: bioactive compounds, functional activity, and future food prospect and applications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:701-720. [PMID: 38961686 DOI: 10.1002/jsfa.13708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
Hyacinth bean [Lablab purpureus (L.) Sweet], a plant belonging to the leguminous family and traditionally used for medicinal purposes in China, is a valuable resource with a wide range of health benefits. This review examines the bioactive compounds, health-promoting properties and functional food potential of hyacinth bean, highlighting its role in protecting against metabolic diseases and the underlying molecular mechanisms. According to existing research, hyacinth bean contains a diverse array of bioactive compounds, Consumption of hyacinth beans and hyacinth bean-related processed food products, as well as their use in medicines, is associated with a variety of health benefits that are increasingly favoured by the scientific community. In light of these findings, we posit that hyacinth bean holds great promise for further research and food application. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiankang Zhou
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenting Wang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Zhuo Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gege Zhu
- Wuhan No. 23 Middle School in Hanyang District, Wuhan, China
| | - Jiawei Qiao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Shengyuan Guo
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yu Bai
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Chaofan Zhao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Cong Teng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Peiyou Qin
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lizhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Guixing Ren
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Habib M, Singh S, Ahmad S, Jan S, Gupta A, Jan K, Bashir K. Ultrasonication modifies the structural, thermal and functional properties of pumpkin seed protein isolate (PSPI). ULTRASONICS SONOCHEMISTRY 2025; 112:107172. [PMID: 39581038 PMCID: PMC11626063 DOI: 10.1016/j.ultsonch.2024.107172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/28/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Protein isolates from pumpkin seeds were prepared and then treated with high-intensity ultrasound (HIUS) using a probe-based method. The impact of ultrasonication on the physicochemical, molecular, and thermal properties of these isolates were analyzed and compared to untreated controls. Results showed significant improvements (p ≤ 0.05) in color (L*, a*, b* values), solubility, emulsification capacity, and stability, as well as a reduction in molecular weight, indicating enhanced functionality of the pumpkin seed protein isolates (PSPIs) after HIUS treatment. However, HIUS treatment decreased the denaturation temperature (Td), denaturation enthalpy (ΔH), thermal stability, and particle size of the isolates. With treatment durations ranging from 5 to 20 min, Td dropped from 67.31 °C to 56.38 °C, and ΔH declined from 45.78 to 35.43 J/g, likely due to structural and conformational modifications from ultrasonic-induced molecular bond disruptions. The greatest reduction in particle size, from 117.46 μm to 85.26 μm, was observed after 20 min of ultrasonication. X-ray diffraction (XRD) analysis showed two distinct diffraction peaks at 2θ = 10° and 2θ = 20°, indicating altered crystallite sizes post-ultrasound treatment. Ultrasonication induced structural and conformational changes in the pumpkin seed protein isolates, as confirmed by SDS-PAGE and weight loss analyses. Alterations in the SDS-PAGE profile and reduced weight loss were associated with improved solubility and enhanced thermal and functional properties in the treated pumpkin seed protein isolates. This emphasizes the potential of PSPI to increase their value-added potential through ultrasonication.
Collapse
Affiliation(s)
- Mehvish Habib
- Department of Food Technology, Jamia Hamdard, New Delhi 110062, India
| | - Sakshi Singh
- Department of Food Technology, Jamia Hamdard, New Delhi 110062, India
| | - Sameer Ahmad
- Department of Food Technology, Jamia Hamdard, New Delhi 110062, India
| | - Shumaila Jan
- Department of Food Science & Technology, NIFTEM-K, 131028, India
| | - Ankit Gupta
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Kulsum Jan
- Department of Food Technology, Jamia Hamdard, New Delhi 110062, India
| | - Khalid Bashir
- Department of Food Technology, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
5
|
Peng Z, Wang F, Yu L, Jiang B, Cao J, Sun Z, Cheng J. Effect of ultrasound on the characterization and peptidomics of foxtail millet bran protein hydrolysates. ULTRASONICS SONOCHEMISTRY 2024; 110:107044. [PMID: 39186917 PMCID: PMC11396073 DOI: 10.1016/j.ultsonch.2024.107044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Protein hydrolysates have attracted much attention for their high biological activity and are a crucial product form for the utilization of foxtail millet bran by-products. In this study, changes in the structure, functionality, activity and peptide profile of foxtail millet bran protein hydrolysates (FMBPHs) at different ultrasound powers (0 - 600 W) were investigated. The results showed that ultrasound promoted the transformation of α-helix and β-sheet to random coils and β-turn, and the exposure of hydrophobic groups and sulfhydryl groups in FMBPHs. The average particle size of the samples decreased, and the absolute value of the ζ-potential increased significantly. Simultaneously, smaller porous particles and loose fragments appeared on the surface of FMBPHs when the ultrasonic power was increased to 450 W. Additionally, 450 W ultrasound treatment improved solubility, foaming properties, emulsifying properties, thermal stability of FMBPHs. The DPPH, ABTS and hydroxyl radical scavenging ability (IC50, 2.65, 1.06 and 3.02 mg/mL), Fe2+ chelating activity (IC50, 2.62 mg/mL), and reducing power of the samples were also enhanced. The peptidomics results demonstrated that ultrasonication increased the number of active peptides in the hydrolysate, and the relative abundance of 17 active peptides was obviously elevated at 450 W. Peptide map analysis showed that ultrasound-induced structural modifications affected the peptide profiles of Ubiquitin-like domain-containing protein, Cupin type-1 domain-containing protein, 40S ribosomal protein S19, and Oleosin 1, showing changes in the abundance of certain peptides, which may be related to changes in the characterization of FMBPHs.
Collapse
Affiliation(s)
- Zeyu Peng
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Fei Wang
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Luming Yu
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Bo Jiang
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Jia Cao
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Zhigang Sun
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Jianjun Cheng
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
6
|
Lee CC, Suttikhana I, Ashaolu TJ. Techno-Functions and Safety Concerns of Plant-Based Peptides in Food Matrices. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12398-12414. [PMID: 38797944 DOI: 10.1021/acs.jafc.4c02464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Plant-based peptides (PBPs) benefit functional food development and environmental sustainability. Proteolysis remains the primary method of peptide production because it is a mild and nontoxic technique. However, potential safety concerns still emanate from toxic or allergenic sequences, amino acid racemization, iso-peptide bond formation, Maillard reaction, dose usage, and frequency. The main aim of this review is to investigate the techno-functions of PBPs in food matrices, as well as their safety concerns. The distinctive characteristics of PBPs exhibit their techno-functions for improving food quality and functionality by contributing to several crucial food formulations and processing. The techno-functions of PBPs include solubility, hydrophobicity, bitterness, foaming, oil-binding, and water-holding capacities, which subsequently affect food matrices. The safety and quality of foodstuff containing PBPs depend on the proper source of plant proteins, the selection of processing approaches, and compliance with legal regulations for allergen labeling and safety evaluations. The safety concerns in allergenicity and toxicity were discussed. The conclusion is that food technologists must apply safe limits and consider potential allergenic components generated during the development of food products with PBPs. Therefore, functional food products containing PBPs can be a promising strategy to provide consumers with wholesome health benefits.
Collapse
Affiliation(s)
- Chi-Ching Lee
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Halkalı Avenue No: 28, Halkalı, Küçükçekmece, Istanbul 34303, Türkiye
| | - Itthanan Suttikhana
- Department of Multifunctional Agriculture, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, České Budějovice, Branišovská 1645/31a, 370 05 České Budějovice 2, Czechia
| | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Viet Nam
- Faculty of Medicine, Duy Tan University, Da Nang 550000, Viet Nam
| |
Collapse
|
7
|
Xu B, Dong Q, Yu C, Chen H, Zhao Y, Zhang B, Yu P, Chen M. Advances in Research on the Activity Evaluation, Mechanism and Structure-Activity Relationships of Natural Antioxidant Peptides. Antioxidants (Basel) 2024; 13:479. [PMID: 38671926 PMCID: PMC11047381 DOI: 10.3390/antiox13040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Antioxidant peptides are a class of biologically active peptides with low molecular weights and stable antioxidant properties that are isolated from proteins. In this review, the progress in research on the activity evaluation, action mechanism, and structure-activity relationships of natural antioxidant peptides are summarized. The methods used to evaluate antioxidant activity are mainly classified into three categories: in vitro chemical, in vitro cellular, and in vivo animal methods. Also, the biological effects produced by these three methods are listed: the scavenging of free radicals, chelation of metal ions, inhibition of lipid peroxidation, inhibition of oxidative enzyme activities, and activation of antioxidant enzymes and non-enzymatic systems. The antioxidant effects of natural peptides primarily consist of the regulation of redox signaling pathways, which includes activation of the Nrf2 pathway and the inhibition of the NF-κB pathway. The structure-activity relationships of the antioxidant peptides are investigated, including the effects of peptide molecular weight, amino acid composition and sequence, and secondary structure on antioxidant activity. In addition, four computer-assisted methods (molecular docking, molecular dynamics simulation, quantum chemical calculations, and the determination of quantitative structure-activity relationships) for analyzing the structure-activity effects of natural peptides are summarized. Thus, this review lays a theoretical foundation for the development of new antioxidants, nutraceuticals, and cosmetics.
Collapse
Affiliation(s)
- Baoting Xu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qin Dong
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
| | - Changxia Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
| | - Hongyu Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
| | - Baosheng Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Panling Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
- Shanghai Fanshun Edible Fungus Professional Cooperative, Shanghai 201317, China
| |
Collapse
|
8
|
Kozell A, Solomonov A, Shimanovich U. Effects of sound energy on proteins and their complexes. FEBS Lett 2023; 597:3013-3037. [PMID: 37838939 DOI: 10.1002/1873-3468.14755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/16/2023]
Abstract
Mechanical energy in the form of ultrasound and protein complexes intuitively have been considered as two distinct unrelated topics. However, in the past few years, increasingly more attention has been paid to the ability of ultrasound to induce chemical modifications on protein molecules that further change protein-protein interaction and protein self-assembling behavior. Despite efforts to decipher the exact structure and the behavior-modifying effects of ultrasound on proteins, our current understanding of these aspects remains limited. The limitation arises from the complexity of both phenomena. Ultrasound produces multiple chemical, mechanical, and thermal effects in aqueous media. Proteins are dynamic molecules with diverse complexation mechanisms. This review provides an exhaustive analysis of the progress made in better understanding the role of ultrasound in protein complexation. It describes in detail how ultrasound affects an aqueous environment and the impact of each effect separately and when combined with the protein structure and fold, the protein-protein interaction, and finally the protein self-assembly. It specifically focuses on modifying role of ultrasound in amyloid self-assembly, where the latter is associated with multiple neurodegenerative disorders.
Collapse
Affiliation(s)
- Anna Kozell
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Aleksei Solomonov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Ulyana Shimanovich
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
9
|
Liu S, Kong T, Feng Y, Fan Y, Yu J, Duan Y, Cai M, Hu K, Ma H, Zhang H. Effects of slit dual-frequency ultrasound-assisted pulping on the structure, functional properties and antioxidant activity of Lycium barbarum proteins and in situ real-time monitoring process. ULTRASONICS SONOCHEMISTRY 2023; 101:106696. [PMID: 37988957 PMCID: PMC10696417 DOI: 10.1016/j.ultsonch.2023.106696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
To improve the protein dissolution rate and the quality of fresh Lycium barbarum pulp (LBP), we optimized the slit dual-frequency ultrasound-assisted pulping process, explored the dissolution kinetics of Lycium barbarum protein (LBPr), and established a near-infrared spectroscopy in situ real-time monitoring model for LBPr dissolution through spectral information analysis and chemometric methods. The results showed that under optimal conditions (dual-frequency 28-33 kHz, 300 W, 31 min, 40 °C, interval ratio 5:2 s/s), ultrasonic treatment not only significantly increased LBPr dissolution rate (increased by 71.48 %, p < 0.05), improved other nutrient contents and color, but also reduced the protein particle size, changed the amino acid composition ratio and protein structure, and increased the surface hydrophobicity, zeta potential, and free sulfhydryl content of protein, as well as the antioxidant activity of LBPr. In addition, ultrasonication significantly improved the functional properties of the protein, including thermal stability, foaming, emulsification and oil absorption capacity. Furthermore, the real-time monitoring model of the dissolution process was able to quantitatively predict the dissolution rate of LBPr with good calibration and prediction performance (Rc = 0.9835, RMSECV = 2.174, Rp = 0.9841, RMSEP = 1.206). These findings indicated that dual-frequency ultrasound has great potential to improve the quality of LBP and may provide a theoretical basis for the establishment of an intelligent control system in the industrialized production of LBP and the functional development of LBPr.
Collapse
Affiliation(s)
- Shuhan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tianyu Kong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqin Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanli Fan
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Junwei Yu
- Ningxia Zhongning Goji Industry Innovation Research Institute, Zhongning 755100, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kai Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
10
|
Lopes C, Akel Ferruccio C, de Albuquerque Sales AC, Tavares GM, de Castro RJS. Effects of processing technologies on the antioxidant properties of common bean (Phaseolus vulgaris L.) and lentil (Lens culinaris) proteins and their hydrolysates. Food Res Int 2023; 172:113190. [PMID: 37689943 DOI: 10.1016/j.foodres.2023.113190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
The effects of ultrasound (280 W, 5 min), heat treatment (75 °C and 90 °C for 10 min) and microfluidization (125 MPa, 4 cycles) as pre or post treatments and their combination with enzymatic hydrolysis on the antioxidant properties of common bean and lentil protein hydrolysates were investigated. In general, hydrolysis resulted in increases of antioxidant activity, both in the presence and absence of processing technologies. The increases reached maximum values of 158% (ABTS), 105% (DPPH), 279% (FRAP) and 107% (TAC) for the bean protein hydrolysates submitted to post-treatment with ultrasound (ABTS, FRAP and TAC) and pre-treatment with microfluidization (DPPH), compared to their respective controls (untreated samples). For lentil proteins, the increases reached 197% (ABTS), 170% (DPPH), 690% (FRAP) and 213% (TAC) for samples submitted to ultrasound post-treatment (ABTS), microfluidization pre-treatment (DPPH) and post-treatment (FRAP), and 75 °C pre-treatment (TAC) compared to their respective controls. Surface hydrophobicity and molecular weight profile by SEC-HPLC analysis indicated modifications in the structures of proteins in function of the different processing technologies. For both proteins, electrophoresis indicated a similar profile for all hydrolysates, regardless of the process applied as pre or post treatment. Solubility of bean and lentil protein concentrates was also improved. These results indicated that different processing technologies can be successfully used in association with enzymatic hydrolysis to improve the antioxidant properties of lentil and bean proteins.
Collapse
Affiliation(s)
- Caroline Lopes
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, Brazil.
| | - Cláudia Akel Ferruccio
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, Brazil
| | - Anne Caroline de Albuquerque Sales
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, Brazil
| | - Guilherme M Tavares
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, Brazil
| | - Ruann Janser Soares de Castro
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, Brazil.
| |
Collapse
|
11
|
Vieira EF, Fontoura AQ, Delerue-Matos C. Chayote ( Sechium edule (Jacq.) Swartz) Seed as an Unexploited Protein Source: Bio-Functional and Nutritional Quality of Protein Isolates. Foods 2023; 12:2949. [PMID: 37569219 PMCID: PMC10418905 DOI: 10.3390/foods12152949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Chayote seeds have good protein quality and recognized bioactive properties, being still unexplored as a nutraceutical. In this work, chayote seed protein isolates (CSPIs) were prepared by alkaline extraction (AE) and ultrasonic-assisted extraction (UAE) using a probe (20 kHz) or a water bath (40 kHz), and their physicochemical, functional properties and nutraceutical potential were investigated. For all treatments, protein solutions (10% w/v) were treated for 20 min. The UAE significantly (p < 0.05) improved the protein extraction yield and functional properties (protein solubility, turbidity, and emulsifying and foaming properties) of CSPIs. This effect was more pronounced using a probe sonication device. The CSPI obtained by UAE-20 kHz contained 8.2 ± 0.9% dw of proteins with a balanced amino acid profile, higher content of essential amino acids (315.63 mg/g of protein) and higher protein digestibility (80.3 ± 4.5%). Furthermore, CSPI.UAE-20 kHz exhibited the highest phenolic content (7.22 mg GAE/g dw), antioxidant capacity and α-amylase inhibition (74%, at 100 μg/mL concentration). Overall, these results suggest that ultrasound technology contributed greatly to the corresponding functional and nutritional properties of chayote seed proteins. It would be, therefore, useful to apply this Cucurbitaceae species in food systems, promoting its nutritional and commercial value.
Collapse
Affiliation(s)
- Elsa F. Vieira
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto—School of Engineering, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (A.Q.F.); (C.D.-M.)
| | | | | |
Collapse
|
12
|
Lee HY, Cho DY, Jung JG, Kim MJ, Jeong JB, Lee JH, Lee GY, Jang MY, Lee JH, Haque MA, Cho KM. Comparisons of Physicochemical Properties, Bacterial Diversities, Isoflavone Profiles and Antioxidant Activities on Household and Commercial doenjang. Molecules 2023; 28:molecules28083516. [PMID: 37110750 PMCID: PMC10144870 DOI: 10.3390/molecules28083516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
In this study, the physicochemical properties (pH, acidity, salinity, and soluble protein), bacterial diversities, isoflavone contents, and antioxidant activities of doenjang (fermented soy paste), household doenjang (HDJ), and commercial doenjang (CDJ), were assessed and compared. The values of pH 5.14-5.94 and acidity 1.36-3.03%, indicated a similar level in all doenjang. The salinity was high in CDJ at 12.8-14.6%, and the protein contents (25.69-37.54 mg/g) were generally high in HDJ. Forty-three species were identified from the HDJ and CDJ. The main species were verified to be Bacillus amyloliquefaciens (B. amyloliquefaciens), B. amyloliquefaciens subsp. plantarum, Bacillus licheniformis, Bacillus sp. and Bacillus subtilis. Comparing the ratios of isoflavone types, the HDJ has an aglycone ratio of >80%, and 3HDJ indicates a ratio of isoflavone to aglycone of 100%. In the CDJ, except 4CDJ, glycosides account for a high proportion of more than 50%. The results of antioxidant activities and DNA protection effects were variedly confirmed regardless of HDJs and CDJs. Through these results, it is judged that HDJs have a variety of bacterial species compared to CDJs, and these are biologically active and converted from glycoside to aglycone. Bacterial distribution and isoflavone contents could be used as basic data.
Collapse
Affiliation(s)
- Hee Yul Lee
- Department of Green Bio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Du Yong Cho
- Department of Green Bio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Jea Gack Jung
- Department of Green Bio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Min Ju Kim
- Department of Green Bio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Jong Bin Jeong
- Department of Green Bio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Ji Ho Lee
- Department of Green Bio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Ga Young Lee
- Department of Green Bio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Mu Yeun Jang
- Department of Food Science, Gyeongsang National University, Naedongro 139-8, Jinju 52849, Gyeongnam, Republic of Korea
| | - Jin Hwan Lee
- Department of Life Resource Industry, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Md Azizul Haque
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Kye Man Cho
- Department of Green Bio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Republic of Korea
| |
Collapse
|
13
|
Biparva P, Mirzapour-Kouhdasht A, Valizadeh S, Garcia-Vaquero M. Advanced Processing of Giant Kelp ( Macrocystis pyrifera) for Protein Extraction and Generation of Hydrolysates with Anti-Hypertensive and Antioxidant Activities In Vitro and the Thermal/Ionic Stability of These Compounds. Antioxidants (Basel) 2023; 12:antiox12030775. [PMID: 36979023 PMCID: PMC10045072 DOI: 10.3390/antiox12030775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
In this study, giant kelp was explored under various conventional and ultrasound-assisted extraction (UAE) conditions for the extraction of protein, its hydrolysis, and ultrafiltration to generate multiple fractions. The amino acid composition of all the fractions and their biological activities in vitro, including angiotensin-converting enzyme I (ACE) inhibitory activity and antioxidant activities (2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, reducing power (RP), and ferrous chelating (FC) activities) were tested by storing the compounds for 2 weeks at various temperatures (-20-60 °C) and pHs (2-11) to elucidate their thermal and ionic stability, respectively. The yield of protein extraction using the conventional method was lower (≈39%) compared to the use of UAE (150 W, 15 min), which achieved protein recoveries of approximately 60%. After enzymatic hydrolysis and ultrafiltration, low-molecular-weight (MW) hydrolysates had the highest levels of ACE inhibitory (80%), DPPH (84%), RP (0.71 mM trolox equivalents), and FC (81%) activities. Amino acids associated with peptides of high biological activities, such as Val, Ala, Asx, Gly, Lys, Met, Leu, and His, were at higher levels in the low MW fraction compared to any other sample. The biological activities in vitro of all the samples fluctuated under the multiple storage conditions studied, with the highest stability of all the samples appreciated at -20 °C and pH 7. This study shows for the first time the use of giant kelp as a promising source of bioactive peptides and indicates the optimum processing and storing conditions for the use of these compounds as nutraceuticals or functional foods that could help in the prevention of cardiovascular disorders and multiple chronic diseases associated with oxidative damage.
Collapse
Affiliation(s)
- Paniz Biparva
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz P.O. Box 71441-65186, Iran
| | - Armin Mirzapour-Kouhdasht
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Shahriyar Valizadeh
- Department of Natural Resources and Environmental Engineering, School of Agriculture, Shiraz University, Shiraz P.O. Box 71441-65186, Iran
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
14
|
Yang J, Duan Y, Zhang H, Huang F, Wan C, Cheng C, Wang L, Peng D, Deng Q. Ultrasound coupled with weak alkali cycling-induced exchange of free sulfhydryl-disulfide bond for remodeling interfacial flexibility of flaxseed protein isolates. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
15
|
Zhao L, Cheng X, Song X, Ouyang D, Wang J, Wu Q, Jia J. Ultrasonic assisted extraction of mulberry leaf protein: kinetic model, structural and functional properties, in vitro digestion. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
16
|
Wang L, Li X, Gao F, Liu Y, Lang S, Wang C. Effects of pretreatment with a combination of ultrasound and γ-aminobutyric acid on polyphenol metabolites and metabolic pathways in mung bean sprouts. Front Nutr 2023; 9:1081351. [PMID: 36704798 PMCID: PMC9873385 DOI: 10.3389/fnut.2022.1081351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Background Polyphenols play an important role in human nutrition, therefore, how to improve its content with innovative approach is important, and understanding the metabolic pathys is necessary. Mung beans are rich in polyphenols, which made them have physiological functions such as hypoglycemia, antioxidant, and hypotension. However, the content of polyphenols in natural mung bean is relatively low, and it needs to be increased. The methods of increasing polyphenol content in grains and beans by enrichment include physical stress, such as ultrasonic stress, hypoxia stress and ultraviolet radiation, and single exogenous substance stress, such as exogenous amino acids, exogenous sugars. But, the enrichment of polyphenols using exogenous substances in combination with physical stress is less applied. Therefore, this study innovated the use of exogenous γ-aminobutyric acid (GABA) combined with ultrasonic stress to enrich mung bean sprouts polyphenols and enhance their content. The metabolic pathways of the enrichment process were also analyzed to provide a reference for studies related to the enrichment of polyphenols. Methods Mung bean seeds were pretreated with a combination of ultrasound and GABA under different conditions. Single-factor test and response surface methodology were used for optimizing pretreatment conditions of mung bean. Effects of combined pretreatments on the polyphenols content and antioxidant activity of sprouted mung beans were investigated. Additionally, metabolites were identified, and metabolic pathways were analyzed using non-targeted metabolomics techniques. Results Optimal conditions of mung bean pretreatment were found to be 370 W for ultrasound power, 40 min for ultrasonication time, 10 mmol/L for GABA concentration, and 8 h for the soaking duration. Under these conditions, the predicted polyphenol content was found to be 4.52 mg GAE/g DW. The pretreatment of mung beans with a combination of ultrasound and exogenous GABA resulted in mung bean sprouts with enhanced polyphenol content and antioxidant activity compared to mung beans germinated without pretreatment. A significant increase in the content of six polyphenols [Genistein, (-)-Epigallocatechin, Epicatechin, Nobiletin, Naringenin, Biochanin A] in the pretreated and germinated mung beans was found, and six metabolic pathways (flavonoid biosynthesis, isoflavones biosynthesis, biosynthesis of phenylpropanoids, anthocyanin biosynthesis, biosynthesis of secondary metabolites, and metabolic pathways) were significantly activated. Conclusion The obtained results suggest that a combination of ultrasound and exogenous GABA treatment can be used to produce mung bean sprouts with enriched polyphenols content and enhanced antioxidant activity.
Collapse
Affiliation(s)
- Lidong Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China,Daqing Center of Inspection and Testing for Agricultural Products and Processed Products Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing, China,Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China,*Correspondence: Lidong Wang,
| | - Xiaoqiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Fei Gao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ying Liu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shuangjing Lang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Changyuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China,Changyuan Wang,
| |
Collapse
|
17
|
Preparation Process Optimization of Peptides from Agaricus blazei Murrill, and Comparison of Their Antioxidant and Immune-Enhancing Activities Separated by Ultrafiltration Membrane Technology. Foods 2023; 12:foods12020251. [PMID: 36673343 PMCID: PMC9858576 DOI: 10.3390/foods12020251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 01/09/2023] Open
Abstract
Agaricus blazei murrill (ABM), a large fungus, is reported to have extensive biological activities but the antioxidant and immune-regulatory capacities have been less studied and the components responsible for the functions are unclear. This study prepared ABM peptides (ABMP) using ultrasound-assisted enzymatic extraction (UAEE) strategy and cascade ultrafiltration (UF) membrane technology. The UAEE extraction conditions were optimized using response surface methodology (RSM) with four factors and three levels to achieve the maximum ABMP yield (34.03%); the optimal conditions were an enzyme amount of 4%, ratio of ABM to water of 1:30, ultrasonic power of 360 W, and ultrasonic time of 30 min. Four ABMP fractions were obtained after UF with different pore size and their antioxidant and immune-regulatory abilities were evaluated and compared. The results showed that they could effectively scavenge DPPH, hydroxyl, and ABTS radicals, especially for ABMP-2; the scavenging rate of the above radicals were 79.31%, 63.60%, and 96.08%, respectively. In addition, four ABMP fractions also activated macrophage activity through strengthening phagocytosis and the production of NO, IL-6, IL-1β, and TNF-α in a dose-dependent manner. Notably, the ABMP-2 fraction with a MW of 3-5 kDa and peptide purity of 82.88% was found to have the best effect, showing the maximum phagocytosis (189.37%) as well as NO (7.98 μM), IL-6 (195.05 pg/mL), IL-1β (876.15 pg/mL), and TNF-α (1620 pg/mL) secretion at a treatment concentration of 150 μg/mL. The findings indicated that the ABMP, especially for the separate ABMP-2, could be used as dietary supplements and have the potential to be exploited as immune-enhancing agents.
Collapse
|
18
|
Abd-Talib N, Shaharuddin AS, Yaji ELA, Wahab NSA, Razali N, Len KYT, Roslan J, Wong FWF, Saari N, Paée KF. Alternative Processes for the Production of Bioactive Peptides. MATERIALS INNOVATIONS AND SOLUTIONS IN SCIENCE AND TECHNOLOGY 2023:83-93. [DOI: 10.1007/978-3-031-26636-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
19
|
Yan F, Wang Q, Teng J, Wu F, He Z. Preparation process optimization and evaluation of bioactive peptides from Carya cathayensis Sarg meal. Curr Res Food Sci 2022; 6:100408. [PMID: 36545513 PMCID: PMC9762147 DOI: 10.1016/j.crfs.2022.100408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Carya cathayensis Sarg meal (CM) is a by-product of the edible kernel during oil manufacture. In order to improve wastes utilization, the CM derived peptides (CMPs) that showed an in vitro radical scavenging ability were firstly prepared by five different hydrolases. Alcalase treatment revealed the highest yield and the optimal conditions were further determined by response surface methodology (RSM), under which the yield reached 35.84%. Simulated gastrointestinal digestion led to an enrichment of low molecular weight (MW) peptides (<3 kDa), which was beneficial for protecting hepatocyte damaged by hydrogen peroxide (H2O2). Furthermore, generated hydrolysates exhibited protective effects on paraquat-induced Caenorhabditis elegans via enhancing expressions of Skinhead-1 (SKN-1) and its downstream target including glutathione S-transferase (GST)-4 and superoxide dismutase (SOD)-3 to diminish oxidative stress. Taken together, our results demonstrated that simple enzymatic hydrolysis of crude protein powder from CM represents an efficient, eco-friendly and economical strategy for producing bioactive peptides, which can be supplemented in nutraceutical products and food preservation.
Collapse
Affiliation(s)
- Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Qingqing Wang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, 311300, Zhejiang, China
| | - Jialuo Teng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Fenghua Wu
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, 311300, Zhejiang, China
| | - Zhiping He
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, 311300, Zhejiang, China,College of Food Science and Engineering, Xinjiang Institute of Technology Xinjiang, Aksu, 843100, China,Corresponding author. College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
20
|
Aguilar-Toalá JE, Vidal-Limon A, Liceaga AM. Nutricosmetics: A new frontier in bioactive peptides' research toward skin aging. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 104:205-228. [PMID: 37236732 DOI: 10.1016/bs.afnr.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Food derived bioactive peptides are small protein fragments (2-20 amino acids long) that can exhibit health benefits, beyond basic nutrition. For example, food bioactive peptides can act as physiological modulators with hormone or drug-like activities including anti-inflammatory, antimicrobial, antioxidant, and the ability to inhibit enzymes related to chronic disease metabolism. Recently, bioactive peptides have been studied for their potential role as nutricosmetics. For example, bioactive peptides can impart skin-aging protection toward extrinsic (i.e., environmental and sun UV-ray damage) and intrinsic (i.e., natural cell or chronological aging) factors. Specifically, bioactive peptides have demonstrated antioxidant and antimicrobial activates toward reactive oxygen species (ROS) and pathogenic bacteria associated with skin diseases, respectively. The anti-inflammatory properties of bioactive peptides using in vivo models has also been reported, where peptides have shown to decreased the expression of IL-6, TNF-α, IL-1β, interferon-γ (INF-γ), and interleukin-17 (IL-17) in mice models. This chapter will discuss the main factors that trigger skin-aging processes, as well as provide examples of in vitro, in vivo, and in silico applications of bioactive peptides in relation to nutricosmetic applications.
Collapse
Affiliation(s)
- J E Aguilar-Toalá
- Departamento de Ciencias de la Alimentación, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Lerma, Lerma, Mexico
| | - A Vidal-Limon
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Veracruz, Mexico
| | - Andrea M Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
21
|
Food Protein-Derived Antioxidant Peptides: Molecular Mechanism, Stability and Bioavailability. Biomolecules 2022; 12:biom12111622. [PMID: 36358972 PMCID: PMC9687809 DOI: 10.3390/biom12111622] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
The antioxidant activity of protein-derived peptides was one of the first to be revealed among the more than 50 known peptide bioactivities to date. The exploitation value associated with food-derived antioxidant peptides is mainly attributed to their natural properties and effectiveness as food preservatives and in disease prevention, management, and treatment. An increasing number of antioxidant active peptides have been identified from a variety of renewable sources, including terrestrial and aquatic organisms and their processing by-products. This has important implications for alleviating population pressure, avoiding environmental problems, and promoting a sustainable shift in consumption. To identify such opportunities, we conducted a systematic literature review of recent research advances in food-derived antioxidant peptides, with particular reference to their biological effects, mechanisms, digestive stability, and bioaccessibility. In this review, 515 potentially relevant papers were identified from a preliminary search of the academic databases PubMed, Google Scholar, and Scopus. After removing non-thematic articles, articles without full text, and other quality-related factors, 52 review articles and 122 full research papers remained for analysis and reference. The findings highlighted chemical and biological evidence for a wide range of edible species as a source of precursor proteins for antioxidant-active peptides. Food-derived antioxidant peptides reduce the production of reactive oxygen species, besides activating endogenous antioxidant defense systems in cellular and animal models. The intestinal absorption and metabolism of such peptides were elucidated by using cellular models. Protein hydrolysates (peptides) are promising ingredients with enhanced nutritional, functional, and organoleptic properties of foods, not only as a natural alternative to synthetic antioxidants.
Collapse
|
22
|
Oxidative Stress Amelioration of Novel Peptides Extracted from Enzymatic Hydrolysates of Chinese Pecan Cake. Int J Mol Sci 2022; 23:ijms232012086. [PMID: 36292968 PMCID: PMC9603611 DOI: 10.3390/ijms232012086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Pecan (Carya cathayensis) is an important economic crop, and its hydrolyzed peptides have been evidenced to reduce the effect of oxidative stress due to their antioxidant capacity. Hence, the protocols of ultrafiltration and gel filtration chromatography were established to obtain bioactive peptides from by-products of C. cathayensis (pecan cake). As measured by DPPH/ABTS radical scavenging, the peptides with less molecular weight (MW) possess higher antioxidant capacity. PCPH-III (MW < 3 kDa) presented higher radical scavenging capacity than PCPH-II (3 kDa < MW < 10 kDa) and PCPH-I (MW > 10 kDa) measured by DPPH (IC50: 111.0 μg/ mL) and measured by ABTs (IC50: 402.9 μg/mL). The secondary structure and amino acid composition varied by their MW, in which PCPH-II contained more α-helices (26.71%) and β-sheets (36.96%), PCPH-III contained higher ratios of β-turns (36.87%), while the composition of different secondary of PCPH-I was even 25 ± 5.76%. The variation trend of α-helix and random experienced slightly varied from PCPH-I to PCPH-II, while significantly decreased from PCPH-II to PCPH-III. The increasing antioxidant capacity is followed by the content of proline, and PCPH-III had the highest composition (8.03%). With regard to the six peptides identified by LC-MS/MS, two of them (VYGYADK and VLFSNY) showed stronger antioxidant capacity than others. In silico molecular docking demonstrated their combining abilities with a transcription factor Kelch-like ECH-associated protein 1 (Keap1) and speculated that they inhibit oxidative stress through activating the Keap1-Nrf2-ARE pathway. Meanwhile, increased activity of SOD and CAT—antioxidant markers—were found in H2O2-induced cells. The residue of tyrosine was demonstrated to contribute the most antioxidant capacity of VYGYADK and its position affected less. This study provided a novel peptide screening and by-product utilization process that can be applied in natural product developments.
Collapse
|
23
|
Ultrasound-Assisted Extraction of Artocarpus heterophyllus L. Leaf Protein Concentrate: Solubility, Foaming, Emulsifying, and Antioxidant Properties of Protein Hydrolysates. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The impact of ultrasound-assisted extraction (UAE) was evaluated on the functionality of jackfruit leaf protein hydrolysates. Leaf protein concentrate was obtained by ultrasound (LPCU) and conventional extractions by maceration (LPCM). LPCM and LPCU were hydrolyzed with pancreatin (180 min), and hydrolysates by maceration (HM) and ultrasound (HU) were obtained. The composition of amino acids, techno-functional (solubility, foaming, and emulsifying properties), and antioxidant properties of the hydrolysates were evaluated. A higher amount of essential amino acids was found in HU, while HM showed a higher content of hydrophobic amino acids. LPCs exhibited low solubility (0.97–2.89%). However, HM (67.8 ± 0.98) and HU (77.39 ± 0.43) reached maximum solubility at pH 6.0. The foaming and emulsifying properties of the hydrolysates were improved when LPC was obtained by UAE. The IC50 of LPCs could not be quantified. However, HU (0.29 ± 0.01 mg/mL) showed lower IC50 than HM (0.32 ± 0.01 mg/mL). The results reflect that the extraction method had a significant (p < 0.05) effect on the functionality of protein hydrolysates. The UAE is a suitable method for enhancing of quality, techno-functionality, and antioxidant properties of LPC.
Collapse
|
24
|
Yang J, Duan Y, Geng F, Cheng C, Wang L, Ye J, Zhang H, Peng D, Deng Q. Ultrasonic-assisted pH shift-induced interfacial remodeling for enhancing the emulsifying and foaming properties of perilla protein isolate. ULTRASONICS SONOCHEMISTRY 2022; 89:106108. [PMID: 35933969 PMCID: PMC9364021 DOI: 10.1016/j.ultsonch.2022.106108] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/06/2022] [Accepted: 07/28/2022] [Indexed: 05/07/2023]
Abstract
In order to expand the applications of plant protein in food formulations, enhancement of its functionalities is meaningful. Herein, the effects of ultrasonic (20 KHz, 400 W, 20 min)-assisted pH shift (pH 10 and 12) treatment on the structure, interfacial behaviors, as well as the emulsifying and foaming properties of perilla protein isolate (PPI) were investigated. Results showed that the solubility of PPI treated by ultrasonic-assisted pH shift (named UPPI-10/12) exceeded 90 %, which was at least 2 and 1.4 times that of untreated PPI and ultrasound-based PPI. Meanwhile, UPPI-10/12 possessed higher foamability (increasing by at least 1.2 times) and good emulsifying stability. Ultrasonic-assisted pH shift treatment decomposed large PPI aggregates into tiny particles, evident from the dynamic light scattering (DLS) and atomic force microscopy results. Besides, this approach induced a decrease in α-helix of PPI and an increase in β-sheet, which might result in the exposure of the hydrophobic group on the structural surface of PPI, thus leading to the increase of surface hydrophobicity. The smaller size and higher hydrophobicity endowed UPPI-10/12 faster adsorption rate, tighter interfacial structure, and higher elastic modulus at the air- and oil-water interfaces, evident from the cryo-SEM and interfacial dilatational rheological results. Thus, the emulsifying and foaming properties could evidently enhance. This study demonstrated that ultrasonic-assisted pH shift technique was a simple approach to effectively improve the functional performance of PPI.
Collapse
Affiliation(s)
- Jing Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, and Hubei Research Center of Oil and Plant Protein Engineering Technology, Wuhan 430062, Hubei, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Chen Cheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, and Hubei Research Center of Oil and Plant Protein Engineering Technology, Wuhan 430062, Hubei, China
| | - Lei Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, and Hubei Research Center of Oil and Plant Protein Engineering Technology, Wuhan 430062, Hubei, China
| | - Jieting Ye
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, and Hubei Research Center of Oil and Plant Protein Engineering Technology, Wuhan 430062, Hubei, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dengfeng Peng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, and Hubei Research Center of Oil and Plant Protein Engineering Technology, Wuhan 430062, Hubei, China.
| | - Qianchun Deng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, and Hubei Research Center of Oil and Plant Protein Engineering Technology, Wuhan 430062, Hubei, China.
| |
Collapse
|
25
|
Ultrasound modified protein colloidal particles: Interfacial activity, gel property and encapsulation efficiency. Adv Colloid Interface Sci 2022; 309:102768. [DOI: 10.1016/j.cis.2022.102768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022]
|
26
|
Zhang M, Fan L, Liu Y, Li J. A mechanistic investigation of the effect of dispersion phase protein type on the physicochemical stability of water–in–oil emulsions. Food Res Int 2022; 157:111293. [DOI: 10.1016/j.foodres.2022.111293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/04/2022]
|
27
|
Abd-Talib N, Yaji ELA, Wahab NSA, Razali N, Len KYT, Roslan J, Saari N, Pa’ee KF. Bioactive Peptides and Its Alternative Processes: A Review. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0160-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Rezvankhah A, Yarmand MS, Ghanbarzadeh B. The effects of combined enzymatic and physical modifications of lentil protein applying Alcalase, Flavourzyme, microbial transglutaminase, and ultrasound: antioxidant, antihypertension, and antidiabetic activities. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01478-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Zhao C, Miao Z, Yan J, Liu J, Chu Z, Yin H, Zheng M, Liu J. Ultrasound-induced red bean protein–lutein interactions and their effects on physicochemical properties, antioxidant activities and digestion behaviors of complexes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Du H, Zhang J, Wang S, Manyande A, Wang J. Effect of high-intensity ultrasonic treatment on the physicochemical, structural, rheological, behavioral, and foaming properties of pumpkin (Cucurbita moschata Duch.)-seed protein isolates. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Zaky AA, Simal-Gandara J, Eun JB, Shim JH, Abd El-Aty AM. Bioactivities, Applications, Safety, and Health Benefits of Bioactive Peptides From Food and By-Products: A Review. Front Nutr 2022; 8:815640. [PMID: 35127796 PMCID: PMC8810531 DOI: 10.3389/fnut.2021.815640] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Bioactive peptides generated from food proteins have great potential as functional foods and nutraceuticals. Bioactive peptides possess several significant functions, such as antioxidative, anti-inflammatory, anticancer, antimicrobial, immunomodulatory, and antihypertensive effects in the living body. In recent years, numerous reports have been published describing bioactive peptides/hydrolysates produced from various food sources. Herein, we reviewed the bioactive peptides or protein hydrolysates found in the plant, animal, marine, and dairy products, as well as their by-products. This review also emphasizes the health benefits, bioactivities, and utilization of active peptides obtained from the mentioned sources. Their possible application in functional product development, feed, wound healing, pharmaceutical and cosmetic industries, and their use as food additives have all been investigated alongside considerations on their safety.
Collapse
Affiliation(s)
- Ahmed A. Zaky
- National Research Centre, Department of Food Technology, Food Industries and Nutrition Research Institute, Cairo, Egypt
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| | - Jong-Bang Eun
- Department of Food Science and Technology, Chonnam National University, Gwangju, South Korea
| | - Jae-Han Shim
- Natural Products Chemistry Laboratory, Biotechnology Research Institute, Chonnam National University, Gwangju, South Korea
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
32
|
Zhang X, Dai Z, Zhang Y, Dong Y, Hu X. Structural characteristics and stability of salmon skin protein hydrolysates obtained with different proteases. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
33
|
Xu B, Azam SMR, Feng M, Wu B, Yan W, Zhou C, Ma H. Application of multi-frequency power ultrasound in selected food processing using large-scale reactors: A review. ULTRASONICS SONOCHEMISTRY 2021; 81:105855. [PMID: 34871910 PMCID: PMC8649895 DOI: 10.1016/j.ultsonch.2021.105855] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 05/08/2023]
Abstract
Ultrasound as an eco-friendly green technology has been widely studied in food processing. Nevertheless, there is a lack of publications regarding the application of ultrasound in food processing using large-scale reactors. In this paper, the mechanisms and the devices of multi-frequency power ultrasound (MFPU) are described. Moreover, the MFPU applied in enzymolysis of protein, and washing of fruits and vegetables are reviewed. The application of MFPU can improve the enzymolysis of protein through modification on enzyme, modification on substrate materials, and facilitation of the enzymatic hydrolysis process. The ultrasound treatment can enhance the removal of microorganisms, and pesticides on the surface of fruits and vegetables. Furthermore, the reactors of ultrasound-assisted enzymolysis of protein, and washing of fruits and vegetables on the industrial scale are also detailed. This review paper also considers future trends, limitations, drawbacks, and developments of ultrasound application in enzymolysis and washing.
Collapse
Affiliation(s)
- Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - S M Roknul Azam
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Min Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Bengang Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Weiqiang Yan
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
34
|
Huang Y, Xiang X, Luo X, Li X, Yu X, Li S. Study on the emulsification and oxidative stability of ovalbumin-pectin-pumpkin seed oil emulsions using ovalbumin solution prepared by ultrasound. ULTRASONICS SONOCHEMISTRY 2021; 78:105717. [PMID: 34509956 PMCID: PMC8441206 DOI: 10.1016/j.ultsonch.2021.105717] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 05/07/2023]
Abstract
Pumpkin seed oil (PSO), which is a valuable compound with high nutritional value used for the prevention of various chronic diseases, is prone to oxidation. In this work, small and uniform (su) ovalbumin (OVA) and pectin (PEC) were used to stabilize PSO in the form of an emulsion. The results showed that suOVA-PEC-PSO emulsion with a droplet size of 9.82 ± 0.05 μm was successfully self-assembled from PSO, PEC, and suOVA solution (with a droplet size of 230.13 ± 14.10 nm) treated with 300 W ultrasound, owing to the formation of a more stable interfacial film on the surface of droplets. The interfacial, rheological, emulsifying, and antioxidant properties of the suOVA-PES-PSO emulsions were excellent, owing to the synergistic effects between PEC and suOVA solution. Moreover, the physical stability of the suOVA-PEC-PSO emulsions to salt stress, a freeze-thaw cycle, and heat treatment was also increased and the oxidation of linolenic acid was notably delayed. These results have extended the food-related applications of OVA and PSO, and provide a promising foundation for further exploration of the self-assembly of composite emulsions by small and uniform proteins.
Collapse
Affiliation(s)
- Yu Huang
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology/School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xiaole Xiang
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, Hunan, China
| | - Xiaoying Luo
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology/School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 102488, China.
| | - Xiongwei Yu
- Wuhan Xudong Food Co., Ltd., Wuhan 430000, China
| | - Shugang Li
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology/School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China; Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
35
|
Xu B, Chen J, Sylvain Tiliwa E, Yan W, Roknul Azam SM, Yuan J, Wei B, Zhou C, Ma H. Effect of multi-mode dual-frequency ultrasound pretreatment on the vacuum freeze-drying process and quality attributes of the strawberry slices. ULTRASONICS SONOCHEMISTRY 2021; 78:105714. [PMID: 34411845 PMCID: PMC8379497 DOI: 10.1016/j.ultsonch.2021.105714] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/11/2021] [Accepted: 08/04/2021] [Indexed: 05/09/2023]
Abstract
The effects of osmotic pretreatment assisted by ultrasound in different frequency modes before vacuum freeze-drying (VFD) on moisture migration and quality characteristics of strawberry slices were investigated. The frequency modes are single-frequency modes under 20, 40 kHz (SM-20, SM-40), and dual-frequency under 20/40 kHz including sequential mode (SeDM) and simultaneous mode (SiDM). The quality characteristics of dried strawberry products including rehydration, hardness, color, flavor, total anthocyanins, total phenols, vitamin C content, and active antioxidant components (DPPH and -OH) were determined. Results showed that drying time of the strawberry slices irradiated by ultrasound was reduced by 15.25%-50.00%, compared to the control samples. Besides, dual-frequency ultrasound shortened the drying time more than single-frequency ultrasound. The drying time of SeDM was the shortest. In addition to vitamin C content, the quality characteristics including rehydration, hardness, color, flavor, total anthocyanins, total phenols, and antioxidant activity of dried strawberry products pretreated by SeDM were significantly (p < 0.05) better than those of control and other pretreated samples. It can be concluded that the SeDM was an effective pretreatment method to produce high-quality vacuum freeze-dried strawberry products.
Collapse
Affiliation(s)
- Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 212013 Zhenjiang, Jiangsu, China.
| | - Jianan Chen
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China
| | | | - Weiqiang Yan
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - S M Roknul Azam
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 212013 Zhenjiang, Jiangsu, China
| | - Jun Yuan
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huaian 223003, Jiangsu, China
| | - Benxi Wei
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 212013 Zhenjiang, Jiangsu, China
| |
Collapse
|
36
|
Khan ZS, Sodhi NS, Dhillon B, Dar B, Bakshi RA, Shah SF. Seabuckthorn (Hippophae rhamnoides L.), a novel seed protein concentrate: isolation and modification by high power ultrasound and characterization for its functional and structural properties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01020-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
37
|
Rezvankhah A, Yarmand MS, Ghanbarzadeh B, Mirzaee H. Characterization of bioactive peptides produced from green lentil (
Lens culinaris
) seed protein concentrate using Alcalase and Flavourzyme in single and sequential hydrolysis. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Amir Rezvankhah
- Department of Food Science and Technology Razi Food Chemistry Lab College of Agriculture and Natural Resources University of Tehran Tehran Iran
| | - Mohammad Saeid Yarmand
- Department of Food Science and Technology Razi Food Chemistry Lab College of Agriculture and Natural Resources University of Tehran Tehran Iran
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology Faculty of Agriculture University of Tabriz Tabriz Iran
| | - Homaira Mirzaee
- Department of Food Science and Technology Faculty of Agriculture Tarbiat Modares University Tehran Iran
| |
Collapse
|
38
|
Cheng Y, Ofori Donkor P, Yeboah GB, Ayim I, Wu J, Ma H. Modulating the in vitro digestion of heat-set whey protein emulsion gels via gelling properties modification with sequential ultrasound pretreatment. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Wu W, Jia J, Wen C, Yu C, Zhao Q, Hu J. Optimization of ultrasound assisted extraction of abalone viscera protein and its effect on the iron-chelating activity. ULTRASONICS SONOCHEMISTRY 2021; 77:105670. [PMID: 34304120 PMCID: PMC8327653 DOI: 10.1016/j.ultsonch.2021.105670] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/07/2021] [Accepted: 07/11/2021] [Indexed: 05/08/2023]
Abstract
This study aims to investigate effects of ultrasound assisted extraction on the abalone viscera protein extraction rate and iron-chelating activity of peptides. The optimal conditions for ultrasound assisted extraction by response surface methodology was at sodium hydroxide concentration 14 g/kg, ultrasonic power 428 W and extraction time 52 min. Under the optimal conditions, protein extraction rate was 64.89%, compared with alkaline extraction of 55.67%. The iron-chelating activity of peptides affected by ultrasound technology was further evaluated by iron-chelating rate, FTIR spectroscopy and LC-HRMS/MS. Alcalase was the suitable enzyme for the preparation of iron-chelating peptides from two abalone viscera proteins, showing no significant difference between their iron-chelating rate of 16.24% (ultrasound assisted extraction) and 16.60% (alkaline extraction). Iron binding sites from the two hydrolysates include amino and carboxylate terminal groups and peptide bond of the peptide backbone as well as amino, imine and carboxylate from side chain groups. Moreover, 24 iron-chelating peptides were identified from hydrolysate (alcalase, ultrasound assisted extraction), which were different from the 27 iron-chelating peptides from hydrolysate (alcalase, alkaline extraction). This study suggests the application of ultrasound technology in the generation of abalone viscera-derived iron-chelating peptides which have the ability to combat iron deficiency.
Collapse
Affiliation(s)
- Wenfei Wu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Jiao Jia
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chengrong Wen
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Cuiping Yu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Qi Zhao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiangning Hu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
40
|
Zia S, Khan MR, Shabbir MA, Aadil RM. An update on functional, nutraceutical and industrial applications of watermelon by-products: A comprehensive review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
41
|
Effects of multi-mode divergent ultrasound pretreatment on the physicochemical and functional properties of polysaccharides from Sagittaria sagittifolia L. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Chang SL, Li H, Liu JN, Zhao MX, Tan MH, Xu PW, Wang XD, Wang LW, Yuan XF, Zhao QS, Zhao B. Effect of hydrogen peroxide treatment on the quality of epsilon-poly-L-lysine products. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
43
|
Effects of simultaneous dual-frequency divergent ultrasound-assisted extraction on the structure, thermal and antioxidant properties of protein from Chlorella pyrenoidosa. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102294] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Durand E, Beaubier S, Ilic I, fine F, Kapel R, Villeneuve P. Production and antioxidant capacity of bioactive peptides from plant biomass to counteract lipid oxidation. Curr Res Food Sci 2021; 4:365-397. [PMID: 34142097 PMCID: PMC8187438 DOI: 10.1016/j.crfs.2021.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
Preventing lipid oxidation, especially with the polyunsaturated fat-based products, is a major concern in sectors as agri-food and cosmetic. Even though the efficiency of synthetic antioxidants has been recognized, both consumers and manufacturers are looking for more innovative, healthy and quality products while rejecting synthetic additives due to their concern about safety, along with their environmental impact issues. In this context, plant biomass, which have shown to be rich in compounds, have raised interest for the isolation of novel naturally occurring antioxidants. Among their myriad of molecules, bioactive peptides, which are biologically active sequence of amino acid residues of proteins, seem to be of a great interest. Therefore, the number of identified amino acids sequences of bioactive peptides from plant biomass with potential antioxidant action is progressively increasing. Thus, this review provides a description of 129 works that have been made to produce bioactive peptides (hydrolysate, fraction and/or isolate peptide) from 55 plant biomass, along with the procedure to examine their antioxidant capacity (until 2019 included). The protein name, the process, and the method to concentrate or isolate antioxidant bioactive peptides, along with their identification and/or specificity were described. Considering the complex, dynamic and multifactorial physico-chemical mechanisms of the lipid oxidation, an appropriate in-vitro methodology should be better performed to efficiently probe the antioxidant potential of bioactive peptides. Therefore, the results were discussed, and perspective for antioxidant applications of bioactive peptides from plant biomass was argued.
Collapse
Affiliation(s)
- Erwann Durand
- CIRAD, UMR QualiSud, Montpellier, F-34398, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Sophie Beaubier
- Laboratoire Réactions et Génie des Procédés, UMR CNRS-7274, plateforme SVS, 13 rue du bois de la Champelle, Vandœuvre-lès-Nancy, F-54500, France
| | - Isidora Ilic
- CIRAD, UMR QualiSud, Montpellier, F-34398, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Frederic fine
- TERRES INOVIA, Parc Industriel – 11 Rue Monge, 33600 Pessac, France
| | - Romain Kapel
- Laboratoire Réactions et Génie des Procédés, UMR CNRS-7274, plateforme SVS, 13 rue du bois de la Champelle, Vandœuvre-lès-Nancy, F-54500, France
| | - Pierre Villeneuve
- CIRAD, UMR QualiSud, Montpellier, F-34398, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| |
Collapse
|
45
|
Response Surface Optimization of Enzymatic Hydrolysis of Peptides of Chinese Pecan (Carya cathayensis) and Analysis of Their Antioxidant Capacities and Structures. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10164-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
High-intensity ultrasound together with heat treatment improves the oil-in-water emulsion stability of egg white protein peptides. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106256] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
|
48
|
Zhao Y, Wen C, Feng Y, Zhang J, He Y, Duan Y, Zhang H, Ma H. Effects of ultrasound-assisted extraction on the structural, functional and antioxidant properties of Dolichos lablab L. Protein. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
49
|
Mao C, Wu J, Zhang X, Ma F, Cheng Y. Improving the Solubility and Digestibility of Potato Protein with an Online Ultrasound-Assisted PH Shifting Treatment at Medium Temperature. Foods 2020; 9:E1908. [PMID: 33419333 PMCID: PMC7767040 DOI: 10.3390/foods9121908] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 01/02/2023] Open
Abstract
Ultrasonic (US) treatment was combined with pH shifting (pHS) and mild thermal (40 °C) (T40) treatment (US/T40/pHS) to improve the solubility of potato protein. The effects of the ultrasonication frequency, ultrasonication time, and incorporation sequence on the solubility of potato protein were investigated. The results showed that online US/T40/pHS treatment resulted in higher solubility of potato protein and enhanced free amino group release during in vitro digestion. The solubility of potato protein treated with online US/T40/pHS at a mono-frequency of 40 kHz for 15 min increased by 1.73 times compared with the control (p < 0.05). The digestibility rate increased by 16.0% and 30.8% during gastric and intestinal digestion, respectively, compared with the control (p < 0.05). It was demonstrated that online US/T40/pHS treatment significantly changed the secondary and tertiary structures of potato protein according to the results of circular dichroism and internal fluorescence. SDS-PAGE, particle size, and atomic force microscopy (AFM) showed that structural changes led to the formation of large soluble aggregates. The results suggested that the improvement in the solubility and digestibility of potato protein treated with online US/T40/pHS may be due to the formation of large soluble aggregates, which are more hydrophilic and sensitive to digestive enzymes.
Collapse
Affiliation(s)
- Chao Mao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (C.M.); (J.W.); (X.Z.); (F.M.)
| | - Juan Wu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (C.M.); (J.W.); (X.Z.); (F.M.)
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Jiangsu Provincial Key Laboratory for Food Physical Processing, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiangzhi Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (C.M.); (J.W.); (X.Z.); (F.M.)
| | - Fengping Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (C.M.); (J.W.); (X.Z.); (F.M.)
| | - Yu Cheng
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (C.M.); (J.W.); (X.Z.); (F.M.)
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Jiangsu Provincial Key Laboratory for Food Physical Processing, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
50
|
Aguilar‐Toalá JE, Liceaga AM. Cellular antioxidant effect of bioactive peptides and molecular mechanisms underlying: beyond chemical properties. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jose Eleazar Aguilar‐Toalá
- Protein Chemistry and Bioactive Peptides Laboratory Department of Food Science Purdue University 745 Agriculture Mall Dr. West Lafayette IN47907USA
| | - Andrea M. Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory Department of Food Science Purdue University 745 Agriculture Mall Dr. West Lafayette IN47907USA
| |
Collapse
|