1
|
Grambusch IM, Schmitz C, Schlabitz C, Ducati RG, Lehn DN, Volken de Souza CF. Encapsulation of Saccharomyces spp. for Use as Probiotic in Food and Feed: Systematic Review and Meta-analysis. Probiotics Antimicrob Proteins 2024; 16:1979-1995. [PMID: 39249640 DOI: 10.1007/s12602-024-10331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 09/10/2024]
Abstract
Probiotics, particularly yeasts from the genus Saccharomyces, are valuable for their health benefits and potential as antibiotic alternatives. To be effective, these microorganisms must withstand harsh environmental conditions, necessitating advanced protective technologies such as encapsulation to maintain probiotic viability during processing, storage, and passage through the digestive system. This review and meta-analysis aims to describe and compare methods and agents used for encapsulating Saccharomyces spp., examining operating conditions, yeast origins, and species. It provides an overview of the literature on the health benefits of nutritional yeast consumption. A bibliographic survey was conducted following the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. The meta-analysis compared encapsulation methods regarding their viability after encapsulation and exposure to the gastrointestinal tract. Nineteen studies were selected after applying inclusion/exclusion criteria. Freeze drying was found to be the most efficient for cell survival, while ionic gelation was best for maintaining viability after exposure to the gastrointestinal tract. Consequently, the combination of freeze drying and ionic gelation proved most effective in maintaining high cell viability during encapsulation, storage, and consumption. Research on probiotics for human food and animal feed indicates that combining freeze drying and ionic gelation effectively protects Saccharomyces spp.; however, industrial scalability must be considered. Reports on yeast encapsulation using agro-industrial residues as encapsulants offer promising strategies for preserving potential probiotic yeasts, contributing to the environmental sustainability of industrial processes.
Collapse
Affiliation(s)
- Isabel Marie Grambusch
- Food Biotechnology Laboratory, University of Vale Do Taquari - Univates, Lajeado, RS, Brazil
| | - Caroline Schmitz
- Food Biotechnology Laboratory, University of Vale Do Taquari - Univates, Lajeado, RS, Brazil
| | - Cláudia Schlabitz
- Food Biotechnology Laboratory, Graduate Program in Biotechnology, University of Vale Do Taquari - Univates, Av. Avelino Tallini, 171, ZC 95914-014, Lajeado, RS, Brazil
| | - Rodrigo Gay Ducati
- Graduate Program in Biotechnology, University of Vale Do Taquari - Univates, Lajeado, RS, Brazil
| | - Daniel Neutzling Lehn
- Food Biotechnology Laboratory, Graduate Program in Biotechnology, University of Vale Do Taquari - Univates, Av. Avelino Tallini, 171, ZC 95914-014, Lajeado, RS, Brazil
| | - Claucia Fernanda Volken de Souza
- Food Biotechnology Laboratory, Graduate Program in Biotechnology, University of Vale Do Taquari - Univates, Av. Avelino Tallini, 171, ZC 95914-014, Lajeado, RS, Brazil.
| |
Collapse
|
2
|
He G, Liu W, Liu Y, Wei S, Yue Y, Dong L, Yu L. Antifouling hydrogel with different mechanisms:Antifouling mechanisms, materials, preparations and applications. Adv Colloid Interface Sci 2024; 335:103359. [PMID: 39591834 DOI: 10.1016/j.cis.2024.103359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/23/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
Biofouling is a long-standing problem for biomedical devices, membranes and marine equipment. Eco-friendly hydrogels show great potential for antifouling applications due to their unique antifouling characteristics. However, a single antifouling mechanism cannot meet a wider practical application of antifouling hydrogels, combined with multiple antifouling mechanisms, the various antifouling advantages can be played, as well as the antifouling performance and service life of antifouling hydrogel can be improved. For the construction of the antifouling hydrogel with multiple antifouling mechanisms, the antifouling mechanisms that have been used in antifouling hydrogels should be analyzed. Hence, this review focus on five major antifouling mechanisms used in antifouling hydrogel: hydration layer, elastic modulus, antifoulant modification, micro/nanostructure and self-renewal surface construction. The methods of exerting the above antifouling mechanisms in hydrogels and the materials of preparing antifouling hydrogel are introduced. Finally, the development of antifouling hydrogel in biomedical materials, membrane and marine related field is summarized, and the existing problems as well as the future trend of antifouling hydrogel are discussed. This review provides reasonable guidance for the future and application of the construction of antifouling hydrogels with multiple antifouling mechanisms.
Collapse
Affiliation(s)
- Guangling He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Wenyan Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yuhua Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Shuqing Wei
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yuhao Yue
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Lei Dong
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China; Sanya Oceanographic Laboratory, Sanya 572024, China.
| |
Collapse
|
3
|
Ogawa M, Moreno-García J, Barzee TJ. Filamentous fungal pellets as versatile platforms for cell immobilization: developments to date and future perspectives. Microb Cell Fact 2024; 23:280. [PMID: 39415192 PMCID: PMC11484145 DOI: 10.1186/s12934-024-02554-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
Filamentous fungi are well-known for their efficiency in producing valuable molecules of industrial significance, but applications of fungal biomass remain relatively less explored despite its abundant and diverse opportunities in biotechnology. One promising application of mycelial biomass is as a platform to immobilize different cell types such as animal, plant, and microbial cells. Filamentous fungal biomass with little to no treatment is a sustainable biomaterial which can also be food safe compared to other immobilization supports which may otherwise be synthetic or heavily processed. Because of these features, the fungal-cell combination can be tailored towards the targeted application and be applied in a variety of fields from bioremediation to biomedicine. Optimization efforts to improve cell loading on the mycelium has led to advancements both in the applied and basic sciences to understand the inter- and intra-kingdom interactions. This comprehensive review compiles for the first time the current state of the art of the immobilization of animal, yeast, microalgae, bacteria, and plant cells in filamentous fungal supports and presents outlook of applications in intensified fermentations, food and biofuel production, and wastewater treatment. Opportunities for further research and development were identified to include elucidation of the physical, chemical, and biological bases of the immobilization mechanisms and co-culture dynamics; expansion of the cell-fungus combinations investigated; exploration of previously unconsidered applications; and demonstration of scaled-up operations. It is concluded that the potential exists to leverage the unique qualities of filamentous fungus as a cellular support in the creation of novel materials and products in support of the circular bioeconomy.
Collapse
Affiliation(s)
- Minami Ogawa
- Department of Food Science and Technology, University of California, Davis, CA, 95616, USA
| | - Jaime Moreno-García
- Department of Food Science and Technology, University of California, Davis, CA, 95616, USA.
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, 14014, Córdoba, Spain.
| | - Tyler J Barzee
- Department of Biosystems and Agricultural Engineering, University of Kentucky, 128 C.E. Barnhart Building, Lexington, KY, 40546-0276, USA.
| |
Collapse
|
4
|
Rojas-Muñoz YV, de Jesús Perea-Flores M, Quintanilla-Carvajal MX. Probiotic Encapsulation: Bead Design Improves Bacterial Performance during In Vitro Digestion (Part 2: Operational Conditions of Vibrational Technology). Polymers (Basel) 2024; 16:2492. [PMID: 39274126 PMCID: PMC11397813 DOI: 10.3390/polym16172492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/10/2024] [Accepted: 08/17/2024] [Indexed: 09/16/2024] Open
Abstract
The development of functional foods is a viable alternative for the prevention of numerous diseases. However, the food industry faces significant challenges in producing functional foods based on probiotics due to their high sensitivity to various processing and gastrointestinal tract conditions. This study aimed to evaluate the effect of the operational conditions during the extrusion encapsulation process using vibrating technology on the viability of Lactobacillus fermentum K73, a lactic acid bacterium with hypocholesterolemia probiotic potential. An optimal experimental design approach was employed to produce sweet whey-sodium alginate (SW-SA) beads with high bacterial content and good morphological characteristics. In this study, the effects of frequency, voltage, and pumping rate were optimized for a 300 μm nozzle. The microspheres were characterized using RAMAN spectroscopy, scanning electron microscopy, and confocal laser scanning microscopy. The optimal conditions for bead production were found: 70 Hz, 250 V, and 20 mL/min with a final cell count of 8.43 Log10 (CFU/mL). The mean particle diameter was 620 ± 5.3 µm, and the experimental encapsulation yield was 94.3 ± 0.8%. The INFOGEST model was used to evaluate the survival of probiotic beads under gastrointestinal tract conditions. Upon exposure to in vitro conditions of oral, gastric, and intestinal phases, the encapsulated viability of L. fermentum was 7.6 Log10 (CFU/mL) using the optimal encapsulation parameters, which significantly improved the survival of probiotic bacteria during both the encapsulation process and under gastrointestinal conditions compared to free cells.
Collapse
Affiliation(s)
- Yesica Vanesa Rojas-Muñoz
- Universidad de La Sabana, Facultad de Ingeniería, Maestría en Diseño y Gestión de Procesos, Campus Universitario del Puente del Común, Chía 250001, Cundinamarca, Colombia
| | - María de Jesús Perea-Flores
- Instituto Politécnico Nacional, Centro de Nanociencias y Micro y Nanotecnologías, Unidad Profesional "Adolfo López Mateos", Luis Enrique Erro s/n, Zacatenco, CDMX C.P. 07738, Mexico
| | - María Ximena Quintanilla-Carvajal
- Universidad de La Sabana, Facultad de Ingeniería, Maestría en Diseño y Gestión de Procesos, Campus Universitario del Puente del Común, Chía 250001, Cundinamarca, Colombia
- Universidad de La Sabana, Facultad de Ingeniería, Grupo de Investigación de Procesos Agroindustriales (GIPA), Campus Universitario del Puente del Común, Chía 250001, Cundinamarca, Colombia
| |
Collapse
|
5
|
Rahimi D, Sadeghi A, Kashaninejad M, Ebrahimi M. Postbiotic characterization of a potential probiotic yeast isolate, and its microencapsulation in alginate beads coated layer-by-layer with chitosan. Heliyon 2024; 10:e28452. [PMID: 38560170 PMCID: PMC10979270 DOI: 10.1016/j.heliyon.2024.e28452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Considering biosafety concerns and survivability limitations of probiotics (PRO) under different stresses, application of postbiotics and encapsulated PRO has received considerable attentions. Accordingly, the objective of the present study was to investigate the postbiotic capabilities of a potential PRO yeast isolate and the effect of encapsulation with alginate (Alg) and chitosan (Ch) on its survival under SGI conditions. Sequencing results of the PCR products led to the identification of Saccharomyces cerevisiae as the selected potential PRO yeast isolated from wheat germ sourdough. High survival of the isolate under simulated gastrointestinal (SGI) conditions (95.74%), its proper adhesion abilities, as well as its potent inhibitory activity against Listeria monocytogenes (75.84%) and Aspergillus niger (77.35%) were approved. Interestingly, the yeast cell-free supernatant (CFS) showed the highest antioxidant (84.35%) and phytate-degrading (56.19%) activities compared to the viable and heat-dead cells of the isolate. According to the results of the HPLC-based assay, anti-ochratoxin A (OTA) capability of the dead cells was also significantly (P < 0.05) higher than that of the viable cell. Meanwhile, the yeast CFS had no anti-OTA and antimicrobial activities against the foodborne bacteria and fungi tested. Further, microencapsulation of the yeast isolate in Alg beads coated layer-by-layer with Ch (with 77.02% encapsulation efficacy and diameter of 1059 μm based on the field emission scanning electron microscopy analysis) significantly enhanced its survivability under SGI conditions in comparison with the free cells. In addition, electrostatic cross-linking between negatively charged carboxylic groups of Alg and positively charged amino groups of Ch was verified in accordance with Fourier transform infrared and zeta potential data. Human and/or industrial food trials in future are needed for practical applications of these emerging ingredients.
Collapse
Affiliation(s)
- Delasa Rahimi
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Alireza Sadeghi
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahdi Kashaninejad
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Maryam Ebrahimi
- Food, Drug and Natural Products Health Research Center, Golestan University of Medical Science, Gorgan, Iran
| |
Collapse
|
6
|
Wu Y, Li P, Jiang Z, Sun X, He H, Yan P, Xu Y, Liu Y. Bioinspired yeast-based β-glucan system for oral drug delivery. Carbohydr Polym 2023; 319:121163. [PMID: 37567689 DOI: 10.1016/j.carbpol.2023.121163] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 08/13/2023]
Abstract
Oral drug delivery is the preferred route of drug administration for patients, especially those who need long-term medication. Recently, bioinspired drug delivery systems have emerged for the oral delivery of various therapeutics. Among them, the yeast-based β-glucan system is a novel and promising platform, for oral administration that can overcome the biological barriers of the harsh gastrointestinal environment. Remarkably, the yeast-based β-glucan system not only protects the drug through the harsh gastrointestinal environment but also achieves targeted therapeutic effects by specifically recognizing immune cells, especially macrophages. Otherwise, it exhibits immunomodulatory properties. Based on the pleasant characteristics of the yeast-based β-glucan system, they are widely used in various macrophage-related diseases for oral administration. In this review, we introduced the structure and function of yeast-based β-glucan. Subsequently, we further summarized the current preparation methods of yeast-based β-glucan carriers and the strategies for preparing yeast-based β-glucan drug delivery systems. In addition, we focus on discussing the applications of β-glucan drug delivery systems in various diseases. Finally, the current challenges and future perspectives of the β-glucan drug delivery system are introduced.
Collapse
Affiliation(s)
- Ya Wu
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Pengyun Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Zongzhe Jiang
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xiaolei Sun
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China
| | - Huqiang He
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China
| | - Pijun Yan
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yong Xu
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Yong Liu
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
7
|
Rojas-Muñoz YV, Santagapita PR, Quintanilla-Carvajal MX. Probiotic Encapsulation: Bead Design Improves Bacterial Performance during In Vitro Digestion. Polymers (Basel) 2023; 15:4296. [PMID: 37959976 PMCID: PMC10649307 DOI: 10.3390/polym15214296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
The stability and release properties of all bioactive capsules are strongly related to the composition of the wall material. This study aimed to evaluate the effect of the wall materials during the encapsulation process by ionotropic gelation on the viability of Lactobacillus fermentum K73, a lactic acid bacterium that has hypocholesterolemia probiotic potential. A response surface methodology experimental design was performed to improve bacterial survival during the synthesis process and under simulated gastrointestinal conditions by tuning the wall material composition (gelatin 25% w/v, sweet whey 8% v/v, and sodium alginate 1.5% w/v). An optimal mixture formulation determined that the optimal mixture must contain a volume ratio of 0.39/0.61 v/v sweet whey and sodium alginate, respectively, without gelatin, with a final bacterial concentration of 9.20 log10 CFU/mL. The mean particle diameter was 1.6 ± 0.2 mm, and the experimental encapsulation yield was 95 ± 3%. The INFOGEST model was used to evaluate the survival of probiotic beads in gastrointestinal tract conditions. Upon exposure to in the vitro conditions of oral, gastric, and intestinal phases, the encapsulated cells of L. fermentum decreased only by 0.32, 0.48, and 1.53 log10 CFU/mL, respectively, by employing the optimized formulation, thereby improving the survival of probiotic bacteria during both the encapsulation process and under gastrointestinal conditions compared to free cells. Beads were characterized using SEM and ATR-FTIR techniques.
Collapse
Affiliation(s)
- Yesica Vanesa Rojas-Muñoz
- Maestría en Diseño y Gestión de Procesos, Facultad de Ingeniería, Campus Universitario del Puente del Común, Universidad de La Sabana, Chía 250001, Colombia;
| | - Patricio Román Santagapita
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires & Centro de Investigación en Hidratos de Carbono (CIHIDECAR, UBA-CONICET), Buenos Aires 1428, Argentina;
| | - María Ximena Quintanilla-Carvajal
- Maestría en Diseño y Gestión de Procesos, Facultad de Ingeniería, Campus Universitario del Puente del Común, Universidad de La Sabana, Chía 250001, Colombia;
- Grupo de Investigación de Procesos Agroindustriales (GIPA), Facultad de Ingeniería, Campus Universitario del Puente del Común, Universidad de La Sabana, Chía 250001, Colombia
| |
Collapse
|
8
|
Huang J, Qiao C, Wang X, Gao Y, Zhao J, Luo H, Wang Y, Hou C, Huo D. The microsphere of sodium alginate-chitosan-Pichia kudriavzevii enhanced esterase activity to increase the content of esters in Baijiu solid-state fermentation. Food Chem 2023; 407:135154. [PMID: 36502727 DOI: 10.1016/j.foodchem.2022.135154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Pichia kudriavzevii was one of the important aroma-producing fungi in the solid-state fermentation of Baijiu, and immobilization was an effective strategy for improving microbial performance. Herein, P. kudriavzevii cells were immobilized in a gel network that crosslinked by chitosan and sodium alginate to form sodium alginate/chitosan-P. kudriavzevii microspheres (SA/CS-PMs). Their structural characteristics and formation processes were characterized by SEM and FT-IR. The effect of synthesis conditions on the performance of microspheres were determined by single-factor experiments. Under the optimal conditions, the SA/CS-PMs could increase the amylase activity of the fermentation broth by 57.18%, the esterase activity by 66.13%, the content of ester by 67.04%, and could be reused at least three times. Further research results indicated that the content of ester could be increased significantly in Baijiu solid-state fermentation with the SA/CS-PMs. In conclusion, the SA/CS-PMs could improve the ester production ability of P. kudriavzevii by increasing the esterase activity, which was a valuable exploration of directional biosynthesis and a feasible strategy to improve solid-state fermentation quality.
Collapse
Affiliation(s)
- Jiaqing Huang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Cailin Qiao
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xinrou Wang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yuwei Gao
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jinsong Zhao
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, Sichuan, China
| | - Huibo Luo
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, Sichuan, China
| | - Yongzhong Wang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Changjun Hou
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, Sichuan, China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
9
|
Bolanos-Barbosa AD, Rodríguez CF, Acuña OL, Cruz JC, Reyes LH. The Impact of Yeast Encapsulation in Wort Fermentation and Beer Flavor Profile. Polymers (Basel) 2023; 15:polym15071742. [PMID: 37050356 PMCID: PMC10096922 DOI: 10.3390/polym15071742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The food and beverage industry is constantly evolving, and consumers are increasingly searching for premium products that not only offer health benefits but a pleasant taste. A viable strategy to accomplish this is through the altering of sensory profiles through encapsulation of compounds with unique flavors. We used this approach here to examine how brewing in the presence of yeast cells encapsulated in alginate affected the sensory profile of beer wort. Initial tests were conducted for various combinations of sodium alginate and calcium chloride concentrations. Mechanical properties (i.e., breaking force and elasticity) and stability of the encapsulates were then considered to select the most reliable encapsulating formulation to conduct the corresponding alcoholic fermentations. Yeast cells were then encapsulated using 3% (w/v) alginate and 0.1 M calcium chloride as a reticulating agent. Fourteen-day fermentations with this encapsulating formulation involved a Pilsen malt-based wort and four S. cerevisiae strains, three commercially available and one locally isolated. The obtained beer was aged in an amber glass container for two weeks at 4 °C. The color, turbidity, taste, and flavor profile were measured and compared to similar commercially available products. Cell growth was monitored concurrently with fermentation, and the concentrations of ethanol, sugars, and organic acids in the samples were determined via high-performance liquid chromatography (HPLC). It was observed that encapsulation caused significant differences in the sensory profile between strains, as evidenced by marked changes in the astringency, geraniol, and capric acid aroma production. Three repeated batch experiments under the same conditions revealed that cell viability and mechanical properties decreased substantially, which might limit the reusability of encapsulates. In terms of ethanol production and substrate consumption, it was also observed that encapsulation improved the performance of the locally isolated strain.
Collapse
Affiliation(s)
- Angie D. Bolanos-Barbosa
- Product and Process Design Group (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 111711, Colombia
| | - Cristian F. Rodríguez
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá 111711, Colombia
| | - Olga L. Acuña
- Product and Process Design Group (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 111711, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá 111711, Colombia
- Correspondence: (J.C.C.); (L.H.R.); Tel.: +57-1-339-4949 (ext. 1789) (J.C.C.); +57-1-339-4949 (ext. 1702) (L.H.R.)
| | - Luis H. Reyes
- Product and Process Design Group (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 111711, Colombia
- Correspondence: (J.C.C.); (L.H.R.); Tel.: +57-1-339-4949 (ext. 1789) (J.C.C.); +57-1-339-4949 (ext. 1702) (L.H.R.)
| |
Collapse
|
10
|
Li Y, Sun S. Antifouling enhancement of thin-film composite polyamide reverse osmosis membrane by surface immersion deposition and in-situ crosslinking method with NaAlg-GA hydrogel. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Application of Immobilized Yeasts for Improved Production of Sparkling Wines. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Verdejo sparkling wines from two consecutive vintages were elaborated following the “champenoise” method. The second fermentation was developed with the same free or immobilized Saccharomyces cerevisiae bayanus yeast strain, carrying out four batch replicates each year. The sparkling wines were analyzed after 9 months of aging, showing no significant differences among the two typologies in the enological parameters (pH, total acidity, volatile acidity, reducing sugars, and alcoholic strength), the effervescence, or the spectrophotometric measurements. The free amino nitrogen content was significantly higher in the sparkling wines obtained from immobilized yeasts, nevertheless, the levels of neutral polysaccharides and total proteins were lower. No significant differences in the volatile composition were found, except for only two volatile compounds (isobutyric acid and benzyl alcohol); however, these two substances were present at levels below their respective olfactory thresholds. The sensory analysis by consumers showed identical preferences for both types of sparkling wines, except for the color acceptability. The descriptive analysis by a tasting panel revealed that sensorial differences between both sparkling wines were only found for the smell of dough. Therefore, the use of immobilized yeasts for the second fermentation of sparkling wines can reduce and simplify some enological practices such as the procedure of riddling and disgorging, with no impact on the so-mentioned quality parameters.
Collapse
|
12
|
Chitosan chemistry review for living organisms encapsulation. Carbohydr Polym 2022; 295:119877. [DOI: 10.1016/j.carbpol.2022.119877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/20/2022]
|
13
|
Changes in the Volatile Profile of Wheat Sourdough Produced with the Addition of Cava Lees. Molecules 2022; 27:molecules27113588. [PMID: 35684518 PMCID: PMC9181908 DOI: 10.3390/molecules27113588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022] Open
Abstract
The volatile fraction is of great importance for the organoleptic quality and consumer acceptance of bread. The use of sourdough improves the sensory profile of bread, as well as the addition of new ingredients to the fermentation. Cava lees are a sparkling wine by-product formed of dead microorganisms, tartaric acid, and other inorganic compounds, rich in antioxidant compounds as well as β-glucans and mannoproteins. The aim of this study was to evaluate the effect of different concentrations of Cava lees (0–2% w/w) on sourdough volatile compounds to re-valorize this by-product of the wine industry. Headspace solid-phase microextraction (HS-SPME) was optimized to study the volatile fractions of sourdoughs. The parameters selected were 60 °C, 15 min of equilibrium, and 30 min of extraction. It was found that the addition of Cava lees resulted in higher concentrations of volatile compounds (alcohols, acids, aldehydes, ketones and esters), with the highest values being reached with the 2% Cava lees. Moreover, Cava lees contributed to aroma due to the compounds usually found in sparkling wine, such as 1-butanol, octanoic acid, benzaldehyde and ethyl hexanoate.
Collapse
|
14
|
By-Product Revalorization: Cava Lees Can Improve the Fermentation Process and Change the Volatile Profile of Bread. Foods 2022; 11:foods11091361. [PMID: 35564084 PMCID: PMC9099486 DOI: 10.3390/foods11091361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Wine lees are a by-product that represents a 25% of the total winery waste. Although lees are rich in antioxidant compounds and dietary fiber, they have no added value and are considered a residue. The aim of this study was to evaluate the effect of Cava lees (0 and 5% w/w) on microbial populations during sourdough and bread fermentation and the volatile fraction of the final bread. The results showed that 5% Cava lees promoted the growth of both lactic acid bacteria (LAB) and yeast in short fermentations (bread) but did not improve microbial growth in long fermentations (sourdough). Regarding volatile compounds, the addition of Cava lees increased the concentration of volatiles typically found in those products. Also, some compounds reported in sparkling wines were also identified in samples with Cava lees adsorbed on their surface. To sum up, the addition of Cava lees to sourdough and, especially, bread formulation may be a new strategy to revalorize such by-product.
Collapse
|
15
|
Boura K, Dima A, Nigam PS, Panagopoulos V, Kanellaki M, Koutinas A. A critical review for advances on industrialization of immobilized cell Bioreactors: Economic evaluation on cellulose hydrolysis for PHB production. BIORESOURCE TECHNOLOGY 2022; 349:126757. [PMID: 35077811 DOI: 10.1016/j.biortech.2022.126757] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Advances such as cell-on-cell immobilization, multi-stage fixed bed tower (MFBT) bioreactor, promotional effect on fermentation, extremely low temperature fermentation, freeze dried immobilized cells in two-layer fermentation, non-engineered cell factories, and those of recent papers are demonstrated. Studies for possible industrialization of ICB, considering production capacity, low temperatures fermentations, added value products and bulk chemical production are studied. Immobilized cell bioreactors (ICB) using cellulose nano-biotechnology and engineered cells are reported. The development of a novel ICB with recent advances on high added value products and conceptual research areas for industrialization of ICB is proposed. The isolation of engineered flocculant cells leads to a single tank ICB. The concept of cell factories without GMO is a new research area. The conceptual development of multi-stage fixed bed tower membrane (MFBTM) ICB is discussed. Finally, feasible process design and technoeconomic analysis of cellulose hydrolysis using ICB are studied for polyhydroxybutyrate (PHB) production.
Collapse
Affiliation(s)
| | - Agapi Dima
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Poonam S Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| | | | - Maria Kanellaki
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| | | |
Collapse
|
16
|
Yin W, Wang X, Liao Y, Ma L, Qiao J, Liu H, Song X, Liu Y. Encapsulating IM7-Displaying Yeast Cells in Calcium Alginate Beads for One-Step Protein Purification and Multienzyme Biocatalysis. Front Bioeng Biotechnol 2022; 10:849542. [PMID: 35372292 PMCID: PMC8969745 DOI: 10.3389/fbioe.2022.849542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
There are several commercial chromatographic systems for protein purification; however, development of cost-effective 3H-grade (high yield, high purity, and high activity) purification approaches is highly demanded. Here, we establish a methodology for encapsulating the IM7-displaying yeast cells in calcium alginate beads. Taking advantage of this biomaterial-based affinity chromatography, rapid and cost-effective purification of proteins with over 90% purity in a single step is achieved. Moreover, our system enables coating the multienzyme complex to produce reusable immobilized cells for efficient cascade biotransformation. Together, the present method has great application potentials not only in the laboratory but also in the industry for production of protein products as well as biocatalysis.
Collapse
Affiliation(s)
- Wenhao Yin
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Henan, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xinping Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ying Liao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jie Qiao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Henan, China
- *Correspondence: Jie Qiao, ; Xin Song, ; Hui Liu, ; Yi Liu,
| | - Hui Liu
- Department of Hematology, Renmin Hospital of Wuhan University, Hubei, China
- *Correspondence: Jie Qiao, ; Xin Song, ; Hui Liu, ; Yi Liu,
| | - Xin Song
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Henan, China
- *Correspondence: Jie Qiao, ; Xin Song, ; Hui Liu, ; Yi Liu,
| | - Yi Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
- BravoVax Co., Ltd., Hubei, China
- *Correspondence: Jie Qiao, ; Xin Song, ; Hui Liu, ; Yi Liu,
| |
Collapse
|
17
|
Zhang QW, Kong CL, Tao YS. Fate of carotenoids in yeasts: synthesis and cleavage. Crit Rev Food Sci Nutr 2022; 63:7638-7652. [PMID: 35275506 DOI: 10.1080/10408398.2022.2048352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Carotenoids and their cleavage products (norisoprenoids) have excellent functional properties with diverse applications in foods, medicaments, cosmetics, etc. Carotenoids can be oxidatively cleaved through nonspecific reactions or by carotenoid cleavage oxygenases (CCOs), the product of which could further modify food flavor. This review provides comprehensive information on both carotenoid synthesis and cleavage processes with emphasis on enzyme characterization and biosynthetic pathway optimization. The use of interdisciplinary approaches of bioengineering and computer-aided experimental technology for key enzyme modification and systematic pathway design is beneficial to monitor metabolic pathways and assess pathway bottlenecks, which could efficiently lead to accumulation of carotenoids in microorganisms. The identification of CCOs spatial structures isolated from different species has made a significant contribution to the current state of knowledge. Current trends in carotenoid-related flavor modification are also discussed. In particular, we propose the carotenoid-synthesizing yeast Rhodotorula spp. for the production of food bioactive compounds. Understanding the behavior underlying the formation of norisoprenoids from carotenoids using interdisciplinary approaches may point toward other areas of investigation that could lead to better exploiting the potential use of autochthonous yeast in flavor enhancement.
Collapse
Affiliation(s)
- Qian-Wei Zhang
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Cai-Lin Kong
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong-Sheng Tao
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
- Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia, China
| |
Collapse
|
18
|
The development of alginate-based amperometric nanoreactors for biochemical profiling of living yeast cells. Bioelectrochemistry 2022; 145:108082. [DOI: 10.1016/j.bioelechem.2022.108082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/27/2022]
|
19
|
Niculescu AG, Grumezescu AM. Applications of Chitosan-Alginate-Based Nanoparticles-An Up-to-Date Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:186. [PMID: 35055206 PMCID: PMC8778629 DOI: 10.3390/nano12020186] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
Chitosan and alginate are two of the most studied natural polymers that have attracted interest for multiple uses in their nano form. The biomedical field is one of the domains benefiting the most from the development of nanotechnology, as increasing research interest has been oriented to developing chitosan-alginate biocompatible delivery vehicles, antimicrobial agents, and vaccine adjuvants. Moreover, these nanomaterials of natural origin have also become appealing for environmental protection (e.g., water treatment, environmental-friendly fertilizers, herbicides, and pesticides) and the food industry. In this respect, the present paper aims to discuss some of the newest applications of chitosan-alginate-based nanomaterials and serve as an inception point for further research in the field.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| |
Collapse
|
20
|
Tan C, Huang M, McClements DJ, Sun B, Wang J. Yeast cell-derived delivery systems for bioactives. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Li D, Wei Z, Xue C. Alginate-based delivery systems for food bioactive ingredients: An overview of recent advances and future trends. Compr Rev Food Sci Food Saf 2021; 20:5345-5369. [PMID: 34596328 DOI: 10.1111/1541-4337.12840] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/19/2021] [Accepted: 08/16/2021] [Indexed: 01/11/2023]
Abstract
Due to its advantagessuch as ionic crosslinking, pH responsiveness, excellent biocompatibility, biodegradability and low price, alginate has become one of the most important natural polysaccharides extensively used in constructing desired delivery systems for food bioactive ingredients. In this review, the fundamental knowledge of alginate as a building block for construction of nutraceutical delivery systems is introduced. Then, various types of alginate-based nutraceutical delivery systems are classified and summarized. Furthermore, the future trends of alginate-based delivery systems are highlighted. Currently, alginate-based delivery systems include hydrogel, emulsion, emulsion-filled alginate hydrogel, nanoparticle, microparticle, core-shell particle, liposome, edible film, and aerogel. Although alginate has been widely used in the fabrication of food bioactive ingredient delivery systems, further efforts and improvements are still needed. For this purpose, the future perspectives of alginate-based delivery systems are discussed. The feasible research trends of alginate-based delivery systems include the development of novel large-scale commercial preparation technology, multifunctional delivery system based on alginate, alginate oligosaccharide-based delivery system and alginate-based oleogel. Overall, the objective of this review is to provide useful guidance for rational design and application of alginate-based nutraceutical delivery systems in the future.
Collapse
Affiliation(s)
- Duoduo Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
22
|
Evaluation of the effect of alginate matrices combination on insulin-secreting MIN-6 cell viability. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Liger-Belair G, Cilindre C. Recent Progress in the Analytical Chemistry of Champagne and Sparkling Wines. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:21-46. [PMID: 34014763 DOI: 10.1146/annurev-anchem-061318-115018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The strong interplay between the various parameters at play in a bottle and in a glass of champagne or sparkling wine has been the subject of study for about two decades. After a brief overview of the history of champagne and sparkling wines, this article presents the key steps involved in the traditional method leading to the production of premium modern-day sparkling wines, with a specific focus on quantification of the dissolved CO2 found in the sealed bottles and in a glass. Moreover, a review of the literature on the various chemical and instrumental approaches used in the analysis of dissolved and gaseous CO2, effervescence, foam, and volatile organic compounds is reported.
Collapse
Affiliation(s)
- Gérard Liger-Belair
- Equipe Effervescence Champagne et Applications, Groupe de Spectrométrie Moléculaire et Atmosphérique (GSMA), CNRS UMR 7331, UFR Sciences Exactes et Naturelles, BP 1039, Université de Reims Champagne-Ardenne, 51687 Reims CEDEX 2, France; ,
| | - Clara Cilindre
- Equipe Effervescence Champagne et Applications, Groupe de Spectrométrie Moléculaire et Atmosphérique (GSMA), CNRS UMR 7331, UFR Sciences Exactes et Naturelles, BP 1039, Université de Reims Champagne-Ardenne, 51687 Reims CEDEX 2, France; ,
| |
Collapse
|
24
|
Tekin İ, Ersus S. Electrically assisted ionic gelling encapsulation of enzymatically extracted zinc‐chlorophyll derivatives from stinging nettle (
Urtica urens
L.). J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- İdil Tekin
- Food Engineering Department Ege University Bornova İzmir Turkey
| | - Seda Ersus
- Food Engineering Department Ege University Bornova İzmir Turkey
| |
Collapse
|
25
|
Guerriero E, Iorizzo M, Cerasa M, Notardonato I, Testa B, Letizia F, Di Fiore C, Russo MV, Avino P. Fast and Reliable Multiresidue Analysis of Aromas in Wine by Means of Gas Chromatography Coupled with Triple Quadrupole Mass Spectrometry. ANALYTICA 2021; 2:38-49. [DOI: 10.3390/analytica2020005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
Abstract
The paper would like to show a direct injection into GC-MS/QqQ for the determination of secondary aromas in white wine samples fermented in two different ways. The procedure has been compared with more traditional methods used in this field, i.e., headspace analysis and liquid–liquid extraction. The application of such direct injection, for the first time in the literature, allows us to analyze Volatile Organic Compounds (VOCs) in the range 0.1–100 µg mL−1, with Limits of Detection (LODs) and Limits of Quantification (LOQs) between 0.01–0.05 µg mL−1 and 0.03–0.09 µg mL−1, respectively, intraday and interday below 5.6% and 8.5%, respectively, and recoveries above 92% at two different fortification levels. The procedure has been applied to real wine samples: it evidences how the fermentation in wood (cherry) barrel yields higher VOC levels than ones in wine fermented in steel tank, causing production of different secondary aromas and different relative flavors.
Collapse
Affiliation(s)
- Ettore Guerriero
- Institute of Atmospheric Pollution Research (IIA), National Research Council (CNR), Rome Research Area-Montelibretti, I-00015 Monterotondo Scalo, Italy
| | - Massimo Iorizzo
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, I-86100 Campobasso, Italy
| | - Marina Cerasa
- Institute of Atmospheric Pollution Research (IIA), National Research Council (CNR), Rome Research Area-Montelibretti, I-00015 Monterotondo Scalo, Italy
| | - Ivan Notardonato
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, I-86100 Campobasso, Italy
| | - Bruno Testa
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, I-86100 Campobasso, Italy
| | - Francesco Letizia
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, I-86100 Campobasso, Italy
| | - Cristina Di Fiore
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, I-86100 Campobasso, Italy
| | - Mario Vincenzo Russo
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, I-86100 Campobasso, Italy
| | - Pasquale Avino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, I-86100 Campobasso, Italy
- Institute of Ecotoxicology & Environmental Sciences, Kolkata 700156, India
| |
Collapse
|
26
|
Tan C, Wang J, Sun B. Polysaccharide dual coating of yeast capsules for stabilization of anthocyanins. Food Chem 2021; 357:129652. [PMID: 33865001 DOI: 10.1016/j.foodchem.2021.129652] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
The dual coated yeast capsules for anthocyanin encapsulation and stabilization were fabricated. Anthocyanins were preloaded in hollow yeast capsules, and then the dual coating was performed by deposition of opposite charged polysaccharides using layer-by-layer technique. The combination of positively charged chitosan and negatively charged chondroitin sulfate was found to confer the yeast capsules with the highest encapsulation efficiency and retention rate of anthocyanins. Additionally, the coated yeast capsules featured high tolerance to environmental stresses (i.e., oxygen, ascorbic acid, and heat) and therefore effectively inhibited the degradation of anthocyanins. These stabilizing effects were related to the formation of high penetration barrier provided by the double layers of polysaccharides, as well as the enhanced hydrophobic microenvironment in the capsules. Further development of the polysaccharide-coated yeast capsules may hold promise for the controlled delivery of other water-soluble bioactive components.
Collapse
Affiliation(s)
- Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Baoguo Sun
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
27
|
Yousefi M, Khanniri E, Shadnoush M, Khorshidian N, Mortazavian AM. Development, characterization and in vitro antioxidant activity of chitosan-coated alginate microcapsules entrapping Viola odorata Linn. extract. Int J Biol Macromol 2020; 163:44-54. [DOI: 10.1016/j.ijbiomac.2020.06.250] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 01/10/2023]
|
28
|
Uptake of microcapsules with different stiffness and its influence on cell functions. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Jagatić Korenika AM, Preiner D, Tomaz I, Jeromel A. Volatile Profile Characterization of Croatian Commercial Sparkling Wines. Molecules 2020; 25:molecules25184349. [PMID: 32971979 PMCID: PMC7570469 DOI: 10.3390/molecules25184349] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 11/16/2022] Open
Abstract
Commercial sparkling wine production represents a relatively low but important part of the Croatian wine production, especially in the Zagreb county. This study presents the results of volatile aroma compounds profile and organic acid composition of commercial sparkling wine samples from three vine-growing regions in Zagreb county. In total, 174 volatile aroma compounds were identified, separated between their chemical classes (aldehydes, higher alcohols, volatile phenols, terpenes, C13-norisoprenoids, lactones, esters, fatty acids, sulfur compounds, other compounds, other alcohols). Higher alcohols such as phenylethyl and isoamyl alcohol as well as 2-methyl-1-butanol, and esters such as diethyl succinate, ethyl hydrogensuccinate, and ethyl lactate had the strongest impact on the volatile compounds profile of Zagreb county sparkling wine. The presence of diethyl glutarate and diethyl malonate, compounds whose concentrations are influenced by yeast autolysis or caused by chemical esterification during the ageing process, was also noted. The influence of every single volatile aroma compound was evaluated by discriminant analysis using forward stepwise model. The volatile profiles of traditional sparkling wines from Croatia were presented for the first time. It is hoped the results will contribute to better understanding the quality potential and to evaluate possible differences on the bases of detected aroma concentrations and multivariate analysis.
Collapse
Affiliation(s)
- Ana-Marija Jagatić Korenika
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia; (A.-M.J.K.); (I.T.); (A.J.)
| | - Darko Preiner
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia; (A.-M.J.K.); (I.T.); (A.J.)
- Center of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, 10000 Zagreb, Croatia
- Correspondence:
| | - Ivana Tomaz
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia; (A.-M.J.K.); (I.T.); (A.J.)
- Center of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, 10000 Zagreb, Croatia
| | - Ana Jeromel
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia; (A.-M.J.K.); (I.T.); (A.J.)
| |
Collapse
|
30
|
Novel microencapsulated yeast for the primary fermentation of green beer: kinetic behavior, volatiles and sensory profile. Food Chem 2020; 340:127900. [PMID: 32871359 DOI: 10.1016/j.foodchem.2020.127900] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/23/2022]
Abstract
The development of innovative and more cost-effective approaches of making beer throughout continuous fermentation process remains a challenging problem, which is worthy of serious exploration. The current work focuses on the application of a commercial brewing yeast (S. cerevisiae Nottingham Ale), entrapped into chitosan-calcium alginate double layer microcapsules, for the production of a Pale Ale beer. During the primary alcoholic fermentation, the consumption rate of fermentable brewing sugars and dissolved O2, estimated by the Gompertz equation, was halved in the beer obtained by encapsulated yeast in comparison with the free cell. The physical-chemical parameters of beer (i.e. pH, alcohol content, color and bitterness) were not remarkably affected by the different yeast-inoculating form. However, the volatile profiles identified by means of HS-SPME-GC-MS analysis, significantly differed in terms of terpenes, esters and alcohols content, thus proving that the yeast-inoculating form may typify the odor and flavor descriptors of the green beer.
Collapse
|
31
|
He L, Chang Y, Zhu J, Bi Y, An W, Dong Y, Liu JH, Wang S. A cytoprotective graphene oxide-polyelectrolytes nanoshell for single-cell encapsulation. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1950-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|