1
|
Nair AV, Singh A, Chakravortty D. Defence Warriors: Exploring the crosstalk between polyamines and oxidative stress during microbial pathogenesis. Redox Biol 2025; 83:103648. [PMID: 40288044 DOI: 10.1016/j.redox.2025.103648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/02/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
Microbial infections have been a widely studied area of disease research since historical times, yet they are a cause of severe illness and deaths worldwide. Furthermore, infections by pathogens are not just restricted to humans; instead, a diverse range of hosts, including plants, livestock, marine organisms and fish, cause significant economic losses and pose threats to humans through their transmission in the food chain. It is now believed that both the pathogen and the host contribute to the outcomes of a disease pathology. Researchers have unravelled numerous aspects of host-pathogen interactions, offering valuable insights into the physiological, cellular and molecular processes and factors that contribute to the development of infectious diseases. Polyamines are key factors regulating cellular processes and human ageing and health. However, they are often overlooked in the context of host-pathogen interactions despite playing a dynamic role as a defence molecule from the perspective of the host as well as the pathogen. They form a complex network interacting with several molecules within the cell, with reactive oxygen species being a key component. This review presents a thorough overview of the current knowledge of polyamines and their intricate interactions with reactive oxygen species in the infection of multiple pathogens in diverse hosts. Interestingly, the review covers the interplay of the commensals and pathogen infection involving polyamines and reactive oxygen species, highlighting an unexplored area within this field. From a future perspective, the dynamic interplay of polyamines and oxidative stress in microbial pathogenesis is a fascinating area that widens the scope of developing therapeutic strategies to combat deadly infections.
Collapse
Affiliation(s)
- Abhilash Vijay Nair
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Anmol Singh
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India; Adjunct Faculty, School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India.
| |
Collapse
|
2
|
Xing B, Li P, Li Y, Cui B, Sun Z, Chen Y, Zhang S, Liu Q, Zhang A, Hao L, Du X, Liu X, Wu B, Peng R, Hu S. Integrated Transcriptomic and Metabolomic Analysis of G. hirsutum and G. barbadense Responses to Verticillium Wilt Infection. Int J Mol Sci 2024; 26:28. [PMID: 39795888 PMCID: PMC11720156 DOI: 10.3390/ijms26010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025] Open
Abstract
Verticillium wilt (VW) caused by Verticillium dahliae (Vd) is a devastating fungal cotton disease characterized by high pathogenicity, widespread distribution, and frequent variation. It leads to significant losses in both the yield and quality of cotton. Identifying key non-synonymous single nucleotide polymorphism (SNP) markers and crucial genes associated with VW resistance in Gossypium hirsutum and Gossypium barbadense, and subsequently breeding new disease-resistant varieties, are essential for VW management. Here, we sequenced the transcriptome and metabolome of roots of TM-1 (G. hirsutum) and Hai7124 (G. barbadense) after 0, 1, and 2 days of V991 inoculation. Transcriptome analysis identified a total of 72,752 genes, with 5814 differentially expressed genes (DEGs) determined through multiple group comparisons. KEGG enrichment analysis revealed that the key pathways enriched by DEGs obtained from both longitudinal and transverse comparisons contained the glutathione metabolism pathway. Metabolome analysis identified 995 metabolites, and 22 differentially accumulated metabolites (DAMs), which were correlated to pathways including glutathione metabolism, degradation of valine, leucine, and isoleucine, and biosynthesis of terpenoids, alkaloids, pyridine, and piperidine. The conjoint analysis of transcriptomic and metabolomic sequencing revealed DAMs and DEGs associated with the glutathione metabolism pathway, and the key candidate gene GH_D11G2329 (glutathione S-transferase, GSTF8) potentially associated with cotton response to VW infection was selected. These findings establish a basis for investigating the mechanisms underlying the cotton plant's resistance to VW.
Collapse
Affiliation(s)
- Baoguang Xing
- College of Agricultural, Tarim University, Alar 843300, China; (B.X.); (Y.L.); (B.C.); (S.Z.); (A.Z.)
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (P.L.); (Z.S.); (Y.C.); (Q.L.); (L.H.); (X.D.); (X.L.); (B.W.)
| | - Pengtao Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (P.L.); (Z.S.); (Y.C.); (Q.L.); (L.H.); (X.D.); (X.L.); (B.W.)
| | - Yanfang Li
- College of Agricultural, Tarim University, Alar 843300, China; (B.X.); (Y.L.); (B.C.); (S.Z.); (A.Z.)
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (P.L.); (Z.S.); (Y.C.); (Q.L.); (L.H.); (X.D.); (X.L.); (B.W.)
| | - Bingkai Cui
- College of Agricultural, Tarim University, Alar 843300, China; (B.X.); (Y.L.); (B.C.); (S.Z.); (A.Z.)
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (P.L.); (Z.S.); (Y.C.); (Q.L.); (L.H.); (X.D.); (X.L.); (B.W.)
| | - Zhihao Sun
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (P.L.); (Z.S.); (Y.C.); (Q.L.); (L.H.); (X.D.); (X.L.); (B.W.)
| | - Yu Chen
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (P.L.); (Z.S.); (Y.C.); (Q.L.); (L.H.); (X.D.); (X.L.); (B.W.)
| | - Shaoliang Zhang
- College of Agricultural, Tarim University, Alar 843300, China; (B.X.); (Y.L.); (B.C.); (S.Z.); (A.Z.)
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (P.L.); (Z.S.); (Y.C.); (Q.L.); (L.H.); (X.D.); (X.L.); (B.W.)
| | - Qiankun Liu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (P.L.); (Z.S.); (Y.C.); (Q.L.); (L.H.); (X.D.); (X.L.); (B.W.)
| | - Aiming Zhang
- College of Agricultural, Tarim University, Alar 843300, China; (B.X.); (Y.L.); (B.C.); (S.Z.); (A.Z.)
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (P.L.); (Z.S.); (Y.C.); (Q.L.); (L.H.); (X.D.); (X.L.); (B.W.)
| | - Liuan Hao
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (P.L.); (Z.S.); (Y.C.); (Q.L.); (L.H.); (X.D.); (X.L.); (B.W.)
| | - Xue Du
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (P.L.); (Z.S.); (Y.C.); (Q.L.); (L.H.); (X.D.); (X.L.); (B.W.)
| | - Xiaoyan Liu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (P.L.); (Z.S.); (Y.C.); (Q.L.); (L.H.); (X.D.); (X.L.); (B.W.)
| | - Bei Wu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (P.L.); (Z.S.); (Y.C.); (Q.L.); (L.H.); (X.D.); (X.L.); (B.W.)
| | - Renhai Peng
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (P.L.); (Z.S.); (Y.C.); (Q.L.); (L.H.); (X.D.); (X.L.); (B.W.)
| | - Shoulin Hu
- College of Agricultural, Tarim University, Alar 843300, China; (B.X.); (Y.L.); (B.C.); (S.Z.); (A.Z.)
| |
Collapse
|
3
|
Wang D, Meng L, Zhang H, Liu R, Zhu Y, Tan X, Wu Y, Gao Q, Ren X, Kong Q. Exogenous L-Arginine Enhances Pathogenicity of Alternaria alternata on Kiwifruit by Regulating Metabolisms of Nitric Oxide, Polyamines, Reactive Oxygen Species (ROS), and Cell Wall Modification. J Fungi (Basel) 2024; 10:801. [PMID: 39590720 PMCID: PMC11595605 DOI: 10.3390/jof10110801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Black spot, one of the major diseases of kiwifruit, is caused by Alternaria alternata. A comprehensive investigation into its pathogenicity mechanism is imperative in order to propose a targeted and effective control strategy. The effect of L-arginine on the pathogenicity of A. alternata and the underlying mechanisms were investigated. The results showed that treatment with 5 mM L-1 of L-arginine promoted spore germination and increased the colony diameter and lesion diameter of A. alternata in vivo and in vitro, which were 23.1% and 9.3% higher than that of the control, respectively. Exogenous L-arginine treatment also induced endogenous L-arginine and nitric oxide (NO) accumulation by activating nitric oxide synthase (NOS), arginine decarboxylase (ADC) and ornithine decarboxylase (ODC). In addition, exogenous L-arginine triggered an increase in reactive oxygen species (ROS) levels by activating the activity and inducing gene expression upregulation of NADPH oxidase. The hydrogen peroxide (H2O2) and superoxide anion (O2.-) levels were 15.9% and 2.2 times higher, respectively, than in the control group on the second day of L-arginine treatment. Meanwhile, antioxidant enzyme activities and gene expression levels were enhanced, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX), and glutathione reductase (GR). In addition, exogenous L-arginine stimulated cell wall-degrading enzymes in vivo and in vitro by activating gene expression. These results suggested that exogenous L-arginine promoted the pathogenicity of A. alternata by inducing the accumulation of polyamines, NO, and ROS, and by activating systems of antioxidants and cell wall-degrading enzymes. The present study not only revealed the mechanism by which low concentrations of L-arginine increase the pathogenicity of A. alternata, but also provided a theoretical basis for the exclusive and precise targeting of A. alternata in kiwifruit.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xueyan Ren
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.)
| | - Qingjun Kong
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.)
| |
Collapse
|
4
|
Wang D, Zhang H, Meng L, Tan X, Liu R, Gao Q, Wu Y, Zhu Y, Ren X, Li Y, Kong Q. Exogenous Nitric Oxide Induces Pathogenicity of Alternaria alternata on Huangguan Pear Fruit by Regulating Reactive Oxygen Species Metabolism and Cell Wall Modification. J Fungi (Basel) 2024; 10:726. [PMID: 39452678 PMCID: PMC11508668 DOI: 10.3390/jof10100726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Black spot caused by Alternaria alternata is one of the most common postharvest diseases in fruit and vegetables. A comprehensive investigation into its pathogenicity mechanism is imperative in order to propose a targeted and effective control strategy. The effect of nitric oxide (NO) on the pathogenicity of A. alternata and its underlying mechanism was studied. The results showed that treatment with 0.5 mM L-1 of sodium nitroprusside (SNP) (NO donor) increased the lesion diameter of A. alternata in vivo and in vitro, which was 22.8% and 13.2% higher than that of the control, respectively. Exogenous NO treatment also induced endogenous NO accumulation by activating nitric oxide synthase (NOS). In addition, NO triggered an increase in reactive oxygen species (ROS) levels. NO enhanced activities and gene expression levels of NADPH oxidase (NOX), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX), and glutathione reductase (GR). Moreover, NO stimulated cell wall degrading enzymes by activating the corresponding gene expression in vivo and in vitro. These results suggested that exogenous NO promoted the pathogenicity of A. alternata by inducing ROS accumulation and activating antioxidants and cell wall degrading enzymes. The present results could establish a theoretical foundation for the targeted control of the black spot disease in pear fruit.
Collapse
Affiliation(s)
- Di Wang
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Haijue Zhang
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Lingkui Meng
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Xinyu Tan
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Rong Liu
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Qingchao Gao
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Yan Wu
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Yuhan Zhu
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Xueyan Ren
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qingjun Kong
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| |
Collapse
|
5
|
Calabrese E, Hayes AW, Pressman P, Kapoor R, Dhawan G, Calabrese V, Agathokleous E. Polyamines and hormesis: Making sense of a dose response dichotomy. Chem Biol Interact 2023; 386:110748. [PMID: 37816449 DOI: 10.1016/j.cbi.2023.110748] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023]
Abstract
The diverse biological effects of polyamines (putrescine, spermidine and spermine) were reviewed in the context of hormesis in an integrative manner for the first time. The findings illustrate that each of these polyamines commonly induces hormetic dose responses in a wide range of biological models and types of cells for multiple endpoints in numerous plant species and animal models. Plant research emphasized preconditioning experimental studies in which the respective polyamines conferred some protection against the damaging effects of a broad range of environmental stressors such as drought, salinity, cold/heat, heavy metals and UV-damage in an hormetic manner. Polyamine-based animal hormesis studies emphasized biomedical endpoints such as longevity and neuroprotection. These findings have important biological and biomedical implications and should guide experimental designs of low dose investigations.
Collapse
Affiliation(s)
- Edward Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME, 04469, USA.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | | | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
6
|
Song Y, Ren Y, Xue Y, Lu D, Yan T, He J. Putrescine (1,4-Diaminobutane) enhances antifungal activity in postharvest mango fruit against Colletotrichum gloeosporioides through direct fungicidal and induced resistance mechanisms. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105581. [PMID: 37666606 DOI: 10.1016/j.pestbp.2023.105581] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/06/2023]
Abstract
Anthracnose decay caused by Colletotrichum gloeosporioides greatly shortens the shelf life and commercial quality of mango fruit. Putrescine (1,4-Diaminobutane) is involved in modulating plant defense to various environmental stresses. In this research, in vivo and in vitro tests were used to explore the antifungal activity and the underlying mechanism of putrescine against C. gloeosporioides in mango fruit after harvested. In vivo tests suggested that putrescine markedly delayed the occurrence of disease and limited the spots expansion on inoculated mango fruit. Further analysis exhibited that putrescine treatment enhanced disease resistance, along with enhanced activities of chitinase (CHI), β-1,3-glucanase (GLU), phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-coumarate coenzyme A ligase (4CL), polyphenol oxidase (PPO) and the accumulation of lignin, flavonoid, phenolics, and anthocyanin in infected mango fruit. In addition, in vitro tests showed that putrescine exerted strongly antifungal activity against C. gloeosporioides. Putrescine induced the production of reactive oxygen species (ROS) and severe lipid peroxidation damage in C. gloeosporioides mycelia, resulting in the leakage of soluble protein, soluble sugar, nucleic acids, K+ and Ca2+ of C. gloeosporioides mycelia. The mycelium treated with putrescine showed severe deformity and shrinkage, and even cracking. Taken together, putrescine could effectively reduce the incidence rate and severity of anthracnose disease possibly through direct fungicidal effect and indirect induced resistance mechanism, thus showing great potential to be applied to disease control.
Collapse
Affiliation(s)
- Yaping Song
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Yanfang Ren
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China.
| | - Yuhao Xue
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Dandan Lu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Tengyu Yan
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Junyu He
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China.
| |
Collapse
|
7
|
Chang J, Wang K, Zhang C, Han X, Zhang X, Ren H, Yao X. Transcriptome Analysis of Resistant and Susceptible Pecan ( Carya illinoinensis) Reveals the Mechanism of Resistance to Black Spot Disease ( Colletotrichum fioriniae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5812-5822. [PMID: 36995220 DOI: 10.1021/acs.jafc.2c08434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Pecan, Carya illinoinensis (Wangenh.) K. Koch, is an important dried fruit and woody oil tree species grown worldwide. With continuous expansion of pecan cultivation, the frequency and scope of diseases, especially black spot disease, are increasing, damaging trees and reducing yields. In this study, the key factors in resistance to black spot disease (Colletotrichum fioriniae) were investigated between the high-resistance pecan variety "Kanza" and the low-resistance variety "Mahan". Leaf anatomy and antioxidase activities confirmed much stronger resistance to black spot disease in "Kanza" than in "Mahan". Transcriptome analysis indicated that the increased expression of genes associated with defense response, oxidation-reduction, and catalytic activity was involved in disease resistance. A connection network identified a highly expressed hub gene CiFSD2 (CIL1242S0042), which might participate in redox reactions to affect disease resistance. Overexpression of CiFSD2 in tobacco inhibited enlargement of necrotic spots and increased disease resistance. Overall, the expression of differentially expressed genes differed in pecan varieties with different levels of resistance to C. fioriniae infection. In addition, the hub genes associated with black spot resistance were identified and the functions clarified. The in-depth understanding of resistance to black spot disease provides new insights for early screening of resistant varieties and molecular-assisted breeding in pecan.
Collapse
Affiliation(s)
- Jun Chang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Hangzhou 311400, China
| | - Kailiang Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Hangzhou 311400, China
| | - Chengcai Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Hangzhou 311400, China
| | - Xiaojiao Han
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Hangzhou 311400, China
| | - Xiaodan Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Hangzhou 311400, China
| | - Huadong Ren
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Hangzhou 311400, China
| | - Xiaohua Yao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Hangzhou 311400, China
| |
Collapse
|
8
|
Polyamine Oxidase-Generated Reactive Oxygen Species in Plant Development and Adaptation: The Polyamine Oxidase-NADPH Oxidase Nexus. Antioxidants (Basel) 2022; 11:antiox11122488. [PMID: 36552696 PMCID: PMC9774701 DOI: 10.3390/antiox11122488] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Metabolism and regulation of cellular polyamine levels are crucial for living cells to maintain their homeostasis and function. Polyamine oxidases (PAOs) terminally catabolize polyamines or catalyse the back-conversion reactions when spermine is converted to spermidine and Spd to putrescine. Hydrogen peroxide (H2O2) is a by-product of both the catabolic and back-conversion processes. Pharmacological and genetic approaches have started to uncover the roles of PAO-generated H2O2 in various plant developmental and adaptation processes such as cell differentiation, senescence, programmed cell death, and abiotic and biotic stress responses. Many of these studies have revealed that the superoxide-generating Respiratory Burst Oxidase Homolog (RBOH) NADPH oxidases control the same processes either upstream or downstream of PAO action. Therefore, it is reasonable to suppose that the two enzymes co-ordinately control the cellular homeostasis of reactive oxygen species. The intricate relationship between PAOs and RBOHs is also discussed, posing the hypothesis that these enzymes indirectly control each other's abundance/function via H2O2.
Collapse
|
9
|
Guo S, Li T, Chen M, Wu C, Ge X, Fan G, Li X, Zhou D, Mi L, Zhao X, Yang T. Sustainable and effective Chitosan-based edible films incorporated with OEO nanoemulsion against apricots’ black spot. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Sheng C, Yu D, Li X, Yu H, Zhang Y, Saqib Bilal M, Ma H, Zhang X, Baig A, Nie P, Zhao H. OsAPX1 Positively Contributes to Rice Blast Resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:843271. [PMID: 35386681 PMCID: PMC8978999 DOI: 10.3389/fpls.2022.843271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Ascorbate peroxidases (APXs) maintain cellular reactive oxygen species (ROS) homeostasis through their peroxidase activity. Here, we report that OsAPX1 also promotes ROS production such that a delicate cellular ROS homeostasis is achieved temporally after Magnaporthe oryzae infection. OsAPX1 specifically induces ROS production through increasing respiratory burst oxidase homologs (OsRBOHs) expression and can be inhibited by DPI, a ROS inhibitor. The time-course experiment data show that the simultaneous induction of OsAPX1 and OsRBOHs leads to ROS accumulation at an early stage; whereas a more durable expression of OsAPX1 leads to ROS scavenging at a later stage. By the temporal switching between ROS inducer and eliminator, OsAPX1 triggers an instant ROS burst upon M. oryzae infection and then a timely elimination of ROS toxicity. We find that OsAPX1 is under the control of the miR172a-OsIDS1 regulatory module. OsAPX1 also affects salicylic acid (SA) synthesis and signaling, which contribute to blast resistance. In conclusion, we show that OsAPX1 is a key factor that connects the upstream gene silencing and transcription regulatory routes with the downstream phytohormone and redox pathway, which provides an insight into the sophisticated regulatory network of rice innate immunity.
Collapse
Affiliation(s)
- Cong Sheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Dongli Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Xuan Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Hanxi Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Yimai Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Saqib Bilal
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Hongyu Ma
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xin Zhang
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| | - Ayesha Baig
- Department of Biotechnology, COMSATS University Islamabad Abbottabad Campus, Abbottabad, Pakistan
| | - Pingping Nie
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Hongwei Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Lai C, Zhou X, Zhang S, Zhang X, Liu M, Zhang C, Xu X, Xu X, Chen X, Chen Y, Lin W, Lai Z, Lin Y. PAs Regulate Early Somatic Embryo Development by Changing the Gene Expression Level and the Hormonal Balance in Dimocarpus longan Lour. Genes (Basel) 2022; 13:genes13020317. [PMID: 35205362 PMCID: PMC8872317 DOI: 10.3390/genes13020317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023] Open
Abstract
Polyamines (PAs) play an important regulatory role in many basic cellular processes and physiological and biochemical processes. However, there are few studies on the identification of PA biosynthesis and metabolism family members and the role of PAs in the transition of plant embryogenic calli (EC) into globular embryos (GE), especially in perennial woody plants. We identified 20 genes involved in PA biosynthesis and metabolism from the third-generation genome of longan (Dimocarpus longan Lour.). There were no significant differences between longan and other species regarding the number of members, and they had high similarity with Citrus sinensis. Light, plant hormones and a variety of stress cis-acting elements were found in these family members. The biosynthesis and metabolism of PAs in longan were mainly completed by DlADC2, DlSAMDC2, DlSAMDC3, DlSPDS1A, DlSPMS, DlCuAOB, DlCuAO3A, DlPAO2 and DlPAO4B. In addition, 0.01 mmol∙L−1 1-aminocyclopropane-1-carboxylic acid (ACC), putrescine (Put) and spermine (Spm), could promote the transformation of EC into GE, and Spm treatment had the best effect, while 0.01 mmol∙L−1 D-arginine (D-arg) treatment inhibited the process. The period between the 9th and 11th days was key for the transformation of EC into GE in longan. There were higher levels of gibberellin (GA), salicylic acid (SA) and abscisic acid (ABA) and lower levels of indole-3-acetic acid (IAA), ethylene and hydrogen peroxide (H2O2) in this key period. The expression levels in this period of DlADC2, DlODC, DlSPDS1A, DlCuAOB and DlPAO4B were upregulated, while those of DlSAMDC2 and DlSPMS were downregulated. These results showed that the exogenous ACC, D-arg and PAs could regulate the transformation of EC into GE in longan by changing the content of endogenous hormones and the expression levels of PA biosynthesis and metabolism genes. This study provided a foundation for further determining the physicochemical properties and molecular evolution characteristics of the PA biosynthesis and metabolism gene families, and explored the mechanism of PAs and ethylene for regulating the transformation of plant EC into GE.
Collapse
Affiliation(s)
- Chunwang Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
| | - Xiaojuan Zhou
- Ganzhou Agricultural and Rural Bureau, Ganzhou 341000, China;
| | - Shuting Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
| | - Xueying Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
| | - Mengyu Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
| | - Chunyu Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
| | - Xiaoqiong Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
| | - Xiaoping Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
| | - Xiaohui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
| | - Yan Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
| | - Wenzhong Lin
- Quanzhou Agricultural Science Research Institute, Quanzhou 362212, China;
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
- Correspondence:
| |
Collapse
|
12
|
Zhao J, Wang X, Pan X, Jiang Q, Xi Z. Exogenous Putrescine Alleviates Drought Stress by Altering Reactive Oxygen Species Scavenging and Biosynthesis of Polyamines in the Seedlings of Cabernet Sauvignon. FRONTIERS IN PLANT SCIENCE 2021; 12:767992. [PMID: 34970285 PMCID: PMC8712750 DOI: 10.3389/fpls.2021.767992] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/16/2021] [Indexed: 06/09/2023]
Abstract
Climate change imposes intensive dry conditions in most grape-growing regions. Drought stress is one of the most devastating abiotic factors threatening grape growth, yield, and fruit quality. In this study, the alleviation effect of exogenous putrescine (Put) was evaluated using the seedlings of Cabernet Sauvignon (Vitis vinifera L.) subjected to drought stress. The phenotype, photosynthesis index, membrane injury index (MII), and antioxidant system, as well as the dynamic changes of endogenous polyamines (PAs) of grape seedlings, were monitored. Results showed that drought stress increased the MII, lipid peroxidation, and the contents of reactive oxygen species (ROS) (H2O2 and O2 -), while it decreased the antioxidant enzyme activity and the net photosynthesis rate (Pn). However, the application of Put alleviated the effects of drought stress by altering ROS scavenging, enhancing the antioxidant system, and increasing the net Pn. Put distinctly increased the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as the contents of ascorbic acid (AsA) and glutathione (GSH). Meanwhile, exogenous Put also promoted the metabolism of endogenous PAs by upregulating their synthetic genes. Our results confirmed that the exogenous application of Put can enhance the antioxidant capacity as well as alter the PA pool, which provides better drought tolerance for Cabernet Sauvignon seedlings.
Collapse
Affiliation(s)
- Jiaqi Zhao
- College of Enology, Northwest A&F University, Xianyang, China
| | - Xuefei Wang
- College of Enology, Northwest A&F University, Xianyang, China
| | - Xingbo Pan
- College of Enology, Northwest A&F University, Xianyang, China
| | - Qianqian Jiang
- College of Enology, Northwest A&F University, Xianyang, China
| | - Zhumei Xi
- College of Enology, Northwest A&F University, Xianyang, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Xianyang, China
| |
Collapse
|
13
|
Mei RF, Shi YX, Gan JL, Deng SP, Ding H, Cai L, Ding ZT. Interaction between Alternaria alternata and monoterpenoids caused by fungal self-protection. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Ghosh A, Saha I, Debnath SC, Hasanuzzaman M, Adak MK. Chitosan and putrescine modulate reactive oxygen species metabolism and physiological responses during chili fruit ripening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:55-67. [PMID: 33812227 DOI: 10.1016/j.plaphy.2021.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
We investigated the combined effect of chitosan (CHT) and putrescine (PUT) on the postharvest shelf life of Capsicum fruit concerning the metabolism of reactive oxygen species (ROS) through direct and indirect effects on ripening characters cell wall hydrolyzing enzyme and ROS metabolism. The PUT and CHT directly affected quality indices like color, firmness and water loss with a concomitant oxidative bust in the development of O2•- and H2O2 in fruit pulp. This was accompanied by significant suppression of respiratory flux, a decrease of total soluble solids and ascorbic acid content throughout postharvest storage. PUT applied with CHT modified the oxidative metabolism of fruits by a significant reduction in the level of O2•- and H2O2 content. In addition, a significant accumulation of total polyamine under respective treatment was reasonably correlated with both ROS producing enzyme as well as H2O2 and O2•-. Wall hydrolyzing enzymes like pectin methyl esterase and cellulase had marked downregulation both under PUT and CHT + PUT treatment. Moreover, on close observation, the combinational effects of PUT and CHT had better effects in the regulation of those enzymes as compared to individual treatment. Fruits restore higher antioxidative capacities as evident with superoxide dismutase (SOD), guaiacol peroxidases (GPX), ascorbate peroxidase (APX) catalase (CAT), glutathione peroxidase (GPX), NADPH oxidase (NOX) and glutathione reductase (GR), indicating their roles on fruit coat softening. Finally, the treatment of PUT and CHT in combination increased shelf life vis-à-vis the quality of fruit.
Collapse
Affiliation(s)
- Arijit Ghosh
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 74 1235, Nadia, W.B., India
| | - Indraneel Saha
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 74 1235, Nadia, W.B., India
| | | | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh.
| | - Malay Kumar Adak
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 74 1235, Nadia, W.B., India.
| |
Collapse
|
15
|
Wang D, Dong Y, Chen X, Liu Y, Wang J, Wang X, Wang C, Song H. Incorporation of apricot (Prunus armeniaca) kernel essential oil into chitosan films displaying antimicrobial effect against Listeria monocytogenes and improving quality indices of spiced beef. Int J Biol Macromol 2020; 162:838-844. [DOI: 10.1016/j.ijbiomac.2020.06.220] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/29/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022]
|
16
|
Aghdam MS, Palma JM, Corpas FJ. NADPH as a quality footprinting in horticultural crops marketability. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
González-Gordo S, Rodríguez-Ruiz M, Palma JM, Corpas FJ. Superoxide Radical Metabolism in Sweet Pepper ( Capsicum annuum L.) Fruits Is Regulated by Ripening and by a NO-Enriched Environment. FRONTIERS IN PLANT SCIENCE 2020; 11:485. [PMID: 32477380 PMCID: PMC7240112 DOI: 10.3389/fpls.2020.00485] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/31/2020] [Indexed: 05/21/2023]
Abstract
Superoxide radical (O2 •-) is involved in numerous physiological and stress processes in higher plants. Fruit ripening encompasses degradative and biosynthetic pathways including reactive oxygen and nitrogen species. With the use of sweet pepper (Capsicum annuum L.) fruits at different ripening stages and under a nitric oxide (NO)-enriched environment, the metabolism of O2 •- was evaluated at biochemical and molecular levels considering the O2 •- generation by a NADPH oxidase system and its dismutation by superoxide dismutase (SOD). At the biochemical level, seven O2 •--generating NADPH-dependent oxidase isozymes [also called respiratory burst oxidase homologs (RBOHs) I-VII], with different electrophoretic mobility and abundance, were detected considering all ripening stages from green to red fruits and NO environment. Globally, this system was gradually increased from green to red stage with a maximum of approximately 2.4-fold increase in red fruit compared with green fruit. Significantly, breaking-point (BP) fruits with and without NO treatment both showed intermediate values between those observed in green and red peppers, although the value in NO-treated fruits was lower than in BP untreated fruits. The O2 •--generating NADPH oxidase isozymes I and VI were the most affected. On the other hand, four SOD isozymes were identified by non-denaturing electrophoresis: one Mn-SOD, one Fe-SOD, and two CuZn-SODs. However, none of these SOD isozymes showed any significant change during the ripening from green to red fruits or under NO treatment. In contrast, at the molecular level, both RNA-sequencing and real-time quantitative PCR analyses revealed different patterns with downregulation of four genes RBOH A, C, D, and E during pepper fruit ripening. On the contrary, it was found out the upregulation of a Mn-SOD gene in the ripening transition from immature green to red ripe stages, whereas a Fe-SOD gene was downregulated. In summary, the data reveal a contradictory behavior between activity and gene expression of the enzymes involved in the metabolism of O2 •- during the ripening of pepper fruit. However, it could be concluded that the prevalence and regulation of the O2 •- generation system (NADPH oxidase-like) seem to be essential for an appropriate control of the pepper fruit ripening, which, additionally, is modulated in the presence of a NO-enriched environment.
Collapse
Affiliation(s)
| | | | | | - Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| |
Collapse
|
18
|
Zhang W, Cao J, Fan X, Jiang W. Applications of nitric oxide and melatonin in improving postharvest fruit quality and the separate and crosstalk biochemical mechanisms. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Xu J, Zhou Y, Xu Z, Chen Z, Duan L. Combining Physiological and Metabolomic Analysis to Unravel the Regulations of Coronatine Alleviating Water Stress in Tobacco ( Nicotiana tabacum L.). Biomolecules 2020; 10:E99. [PMID: 31936106 PMCID: PMC7023163 DOI: 10.3390/biom10010099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022] Open
Abstract
Drought is a major abiotic stress that restricts plants growth, development, and yield. Coronatine (COR), a mimic of JA-Ile, functions in plant tolerance to multiple stresses. In our study, we examined the effects of COR in tobacco under polyethylene glycol (PEG) stress. COR treatment improved plant growth under stress as measured by fresh weight (FW) and dry weight (DW). The enzyme activity assay indicated that, under osmotic stress conditions, the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) were enhanced by COR treatment. Histochemical analyses via nitrotetrazolium blue chloride (NBT) and 3,3'-diaminobenzidine (DAB) staining showed that COR reduced reactive oxygen species (ROS) accumulation during osmotic stress. Metabolite profiles revealed that COR triggered significant metabolic changes in tobacco leaves under osmotic stress, and many essential metabolites, such as sugar and sugar derivatives, organic acids, and nitrogen-containing compounds, which might play active roles in osmotic-stressed tobacco plants, were markedly accumulated in the COR-treated tobacco. The work presented here provides a comprehensive understanding of the COR-mediated physiological, biochemical, and metabolic adjustments that minimize the adverse impact of osmotic stress on tobacco.
Collapse
Affiliation(s)
- Jiayang Xu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (J.X.); (Y.Z.)
| | - Yuyi Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (J.X.); (Y.Z.)
| | - Zicheng Xu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Z.X.); (Z.C.)
| | - Zheng Chen
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Z.X.); (Z.C.)
| | - Liusheng Duan
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (J.X.); (Y.Z.)
| |
Collapse
|