1
|
Zhou X, Liu Y, Zhao C, Sun J, Shi L, Cong S. Nondestructive detection of cadmium content in oilseed rape leaves under different silicon environments using deep transfer learning and Vis-NIR hyperspectral imaging. Food Chem 2025; 479:143799. [PMID: 40081073 DOI: 10.1016/j.foodchem.2025.143799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
In this paper, a transfer stack denoising autoencoder (T-SDAE) algorithm is proposed to implement the migration of cadmium (Cd) prediction depth characteristic model of oilseed rape leaves in different silicon environments. Stacked denoising autoencoder (SDAE) algorithm was used to reduce dimensionality, and the most effective SDAE deep learning network was transferred to create the T-SDAE model. The results showed that SVR model using SDAE to extract depth features had the best prediction effect on Cd content in silicon-free, low-silicon and higher-silicon environments. Moreover, the coefficient of determination of prediction set (Rp2) were 0.9127, 0.9829 and 0.9606, respectively. Specifically, the Rp2 value of the T-SDAE-SVR optimal prediction set under different silicon environments is 0.9273, RMSEP is 0.01465 mg/kg, and RPD is 3.237. By integrating hyperspectral imaging technology with a deep transfer learning algorithm, accurate detection of various Cd contents in oilseed rape leaves is feasible under different silicon environments.
Collapse
Affiliation(s)
- Xin Zhou
- School of Electrical and Information Engineering of Jiangsu University, Zhenjiang 212013, China; Key Laboratory for Theory and Technology of Intelligent Agricultural Machinery and Equipment of, Jiangsu University, Zhenjiang 212013, China; Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern, Agricultural Equipment, Zhenjiang 212013, China.
| | - Yang Liu
- School of Electrical and Information Engineering of Jiangsu University, Zhenjiang 212013, China
| | - Chunjiang Zhao
- School of Electrical and Information Engineering of Jiangsu University, Zhenjiang 212013, China; Information Technology Research Center of Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
| | - Jun Sun
- School of Electrical and Information Engineering of Jiangsu University, Zhenjiang 212013, China
| | - Lei Shi
- School of Electrical and Information Engineering of Jiangsu University, Zhenjiang 212013, China
| | - Sunli Cong
- School of Electrical and Information Engineering of Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Hosseinikebria S, Khazaei M, Dervisevic M, Judicpa MA, Tian J, Razal JM, Voelcker NH, Nilghaz A. Electrochemical biosensors: The beacon for food safety and quality. Food Chem 2025; 475:143284. [PMID: 39956060 DOI: 10.1016/j.foodchem.2025.143284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/01/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025]
Abstract
Electrochemical biosensors transduce chemical reactions into measurable electrical signals by incorporating recognition components. Although they are capable of detecting a broad range of target molecules, their application in complex matrices, such as food, at minimum or no sample preparation, is challenging and requires the introduction of innovative and effective strategies. This review explores the recent advances in electrochemical biosensors for on-site food safety and quality analysis. We first discuss the presence of chemical contaminants and biohazards in food and the need for robust, rapid, low-cost, and point-of-care (POC) analytical techniques. We then address the critical aspects of sensitivity and selectivity of electrochemical biosensors in detecting chemical and biological contaminants in real food samples. We finally investigate the major drawbacks of these biosensors and provide future perspectives on the field.
Collapse
Affiliation(s)
| | - Masoud Khazaei
- Drug Delivery, Disposition, and Dynamics, Monash University, Parkville, VIC 3052, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Muamer Dervisevic
- Drug Delivery, Disposition, and Dynamics, Monash University, Parkville, VIC 3052, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Mia Angela Judicpa
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Junfei Tian
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Joselito M Razal
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Nicolas Hans Voelcker
- Drug Delivery, Disposition, and Dynamics, Monash University, Parkville, VIC 3052, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia; Materials Science and Engineering, Monash University, Clayton, Victoria 3168, Australia
| | - Azadeh Nilghaz
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia.
| |
Collapse
|
3
|
Ashiagbor K, Jayan H, Gao S, Amaglo NK, Adade SYSS, El-Seedi HR, Khalifa SAM, Zou X, Guo Z. Recent advances in photoelectric methods application for cooking oil quality and safety evaluation: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40219683 DOI: 10.1002/jsfa.14276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 04/14/2025]
Abstract
Cooking oil is used daily in consumed food and culinary applications; therefore, its safety and quality are very important. Notably, susceptibility to contamination at each processing stage poses threats to living organisms. This review discusses the parameters of oil quality, as well as the role of the various non-destructive photoelectric techniques with respect to its quality and safety, including near-infrared spectroscopy (NIR), mid-infrared spectroscopy, Fourier transform near-infrared spectroscopy, Raman spectroscopy and fluorescence spectroscopy. Data on cooking oil quality, such as values of the following parameters, notably peroxides, thiobarbituric acid, anisidine, iodine, trans-fat and fatty acid profile, carbonyl compounds, adulteration and total polar components, are also demonstrated. Photoelectric methods are rapid and efficient tools for the preliminary screening of cooking oil when aiming to determine its quality before its entry into the food chain. Primarily, NIR has been used to predict most of the cooking oil safety and quality parameters, and thus is considered as the most convenient non-destructive method to be recommended. Accordingly, deep insight into state-of-the-art photoelectric/spectral technologies and the varieties of techniques available provides an opportunity to detect and predict the safety parameters of products prior to their processing and distribution. In this review, we highlight these perspectives with particular emphasis on the cooking oil. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kwami Ashiagbor
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Heera Jayan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Shipeng Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Newton K Amaglo
- Department of Horticulture, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Hesham R El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Shaden A M Khalifa
- Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Psychiatry and Neurology Department, Capio Saint Göran's Hospital, Stockholm, Sweden
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Qu L, Lin Z, Liu F, Kong F, Zhang Y, Ni X, Zhang X, Zhao Y, Lu Q, Zou B. Research Progress on the Application of Metal Porphyrin Electrochemical Sensors in the Detection of Phenolic Antioxidants in Food. Polymers (Basel) 2025; 17:789. [PMID: 40292616 DOI: 10.3390/polym17060789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 04/30/2025] Open
Abstract
This paper reviews the application of metal porphyrin electrochemical sensors in the detection of phenolic antioxidants in food, focusing on the latest progress and innovative applications in this field. Phenolic antioxidants are widely used in food and can effectively prolong the shelf life of food, but their excessive use may cause potential harm to human health, so the detection of their content is very important. In recent years, electrochemical analysis technology has gradually become an emerging method for quantitative detection of phenolic antioxidants due to its advantages of sensitivity, simplicity and high selectivity. As a new type of sensor, metal porphyrin electrochemical sensors have been widely used in the detection of phenolic antioxidants in food due to their excellent electrochemical performance and high selectivity. By modifying metal nanomaterials, the detection performance of these sensors has been significantly improved. This paper first introduces the basic concepts and physicochemical properties of phenolic antioxidants, analyzes their potential hazards and discusses relevant regulations and limit requirements. Then, the existing analysis methods of phenolic antioxidants are compared, and the development trend of traditional detection methods and new detection technologies is reviewed. Subsequently, the application progress of electrochemical sensors in the detection of phenolic antioxidants is discussed in depth, its working principle is expounded and the research results are summarized. Finally, the innovative applications of metalloporphyrins and their nanocomposites in electrochemical sensors are introduced in detail. The unique advantages of metalloporphyrins in the detection of phenolic antioxidants in food are highlighted, and the future development direction is laid out.
Collapse
Affiliation(s)
- Liang Qu
- School of Food and Bioengineering, Wuhu Institute of Technology, Wuhu 241003, China
| | - Zhiyuan Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Feng Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fanzhuo Kong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuyang Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xing Ni
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xue Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yani Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qiongya Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
Mo Y, Shen Y. Electrochemical detection of heavy metals in rice, milk and tap water using free-standing carbon felt electrodes. Food Chem 2024; 460:140450. [PMID: 39089017 DOI: 10.1016/j.foodchem.2024.140450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/13/2024] [Accepted: 07/11/2024] [Indexed: 08/03/2024]
Abstract
In this work, a carbon felt (CF) was utilized to fabricate electrochemical sensors for the simultaneous detection of Cd2+, Pb2+ and Hg2+. The working conditions of CF sensors including thermal activation, electrolytes, and enrichment potentials and times were systematically investigated. Under the optimal detection conditions, the resulting sensors showed good linearity in the concentration ranges of 3-10,000, 2-10,000 and 5-10,000 μg/L for the detection of Cd2+, Pb2+ and Hg2+, corresponding to the detection limits of 1, 0.5, and 1 μg/L, respectively. Meanwhile, the resulting electrochemical sensor demonstrates excellent reproducibility and anti-interference. In addition, the CF electrodes maintain good stability even after 180 days of storage at room temperature. In real water, rice and milk samples, the CF electrodes have been successfully utilized for the detection of Cd2+, Pb2+ and Hg2+ and the results were in agreement with those obtained from the inductively coupled plasma mass spectrometry.
Collapse
Affiliation(s)
- Yetong Mo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Yi Shen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China; China-Singapore International Joint Research Institute, Guangzhou Knowledge City, Guangzhou 510663, People's Republic of China.
| |
Collapse
|
6
|
Zheng X, Lin H, Du D, Li G, Alam O, Cheng Z, Liu X, Jiang S, Li J. Remediation of heavy metals polluted soil environment: A critical review on biological approaches. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116883. [PMID: 39173222 DOI: 10.1016/j.ecoenv.2024.116883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/03/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Heavy metals (HMs) pollution is a globally emerging concern. It is difficult to cost-effectively combat such HMs polluted soil environments. The efficient remediation of HMs polluted soil is crucial to protect human health and ecological security that could be carried out by several methods. Amidst, biological remediation is the most affordable and ecological. This review focused on the principles, mechanisms, performances, and influential factors in bioremediation of HMs polluted soil. In microbial remediation, microbes can alter metallic compounds in soils. They transform these compounds into their metabolism through biosorption and bioprecipitation. The secreted microbial enzymes act as transformers and assist in HMs immobilization. The synergistic microbial effect can further improve HMs removal. In bioleaching, the microbial activity can simultaneously produce H2SO4 or organic acids and leach HMs. The production of acids and the metabolism of bacteria and fungi transform metallic compounds to soluble and extractable form. The key bioleaching mechanisms are acidolysis, complexolysis, redoxolysis and bioaccumulation. In phytoremediation, hyperaccumulator plants and their rhizospheric microbes absorb HMs by roots through absorption, cation exchange, filtration, and chemical changes. Then they exert different detoxification mechanisms. The detoxified HMs are then transferred and accumulated in their harvestable tissues. Plant growth-promoting bacteria can promote phytoremediation efficiency; however, use of chelants have adverse effects. There are some other biological methods for the remediation of HMs polluted soil environment that are not extensively practiced. Finally, the findings of this review will assist the practitioners and researchers to select the appropriate bioremediation approach for a specific soil environment.
Collapse
Affiliation(s)
- Xiaojun Zheng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongjun Lin
- Jiangsu Xianghe Agricultural Development Co. LTD, Lianyungang, Jiangsu 222048, China
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Guanlin Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ohidul Alam
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zheng Cheng
- Jiangsu Xianghe Agricultural Development Co. LTD, Lianyungang, Jiangsu 222048, China
| | - Xinlin Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shan Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Jian Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
7
|
Zeng S, Zhu H, Sohan ASMMF, Liu J, Wan X, Lin X, Yin B. A remote-controlled portable workstation for highly sensitive and real-time chemiluminescent detection of cadmium. Food Chem 2024; 452:139549. [PMID: 38762939 DOI: 10.1016/j.foodchem.2024.139549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/20/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024]
Abstract
The prevention of pollution requires real-time monitoring of cadmium (Cd2+) concentration in the food, as it has a dramatic impact on poultry and can pose a threat to human health. Here, we fabricate a portable workstation integrating a microfluidic chip that facilitates real-time monitoring of Cd2+ levels in real samples by utilizing the Luminol-KMnO4 chemiluminescence (CL) system. Interestingly, Cd2+ can significantly enhance the CL signal, resulting in sensitive detection of Cd2+ in the range of 0-0.18 mg/L with the limit of detection (LOD) of 0.207 μg/L. Furthermore, a remote-controlled unit is integrated into the portable workstation to form a remote-controlled portable workstation (RCPW) performing automated point-of-care testing (POCT) of Cd2+. The as-prepared strategy allows remote control of RCPW to avoid long-distance transportation of samples to achieve real-time target monitoring. Consequently, this system furnishes RCPW for monitoring Cd2+ levels in real samples, thereby holding potential for applications in preventing food pollution.
Collapse
Affiliation(s)
- Shiyu Zeng
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Haoyu Zhu
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - A S M Muhtasim Fuad Sohan
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jun Liu
- Suqian Product Quality Supervision and Inspection Institute, Suqian 223800, China
| | - Xinhua Wan
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaodong Lin
- University of Macau Zhuhai UM Science and Technology Research Institute, Zhuhai 519000, China.
| | - Binfeng Yin
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
8
|
Liu N, Ye W, Zhao G, Liu G. Development of smartphone-controlled and machine-learning-powered integrated equipment for automated detection of bioavailable heavy metals in soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133140. [PMID: 38061131 DOI: 10.1016/j.jhazmat.2023.133140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/28/2023] [Accepted: 11/28/2023] [Indexed: 02/08/2024]
Abstract
Rapid and accurate on-site detection of crop-absorbable cadmium (Cd) and lead (Pb) in soils is important for food security and human health. The automated soil sample pretreatment method, including the ultrasonic extraction of weakly acid-soluble heavy metals, suction-filtration, and UV photolysis, was proposed to achieve the high-efficiency preparation from soil sample to extract solution. Bismuth-film-modified glass carbon electrode combined with the homemade potentiostat was fabricated to implement the square-wave anodic stripping voltammetry (SWASV) measurements of soil extracts. The peak-information-acquisition algorithm was designed to automatically obtain peak heights and widths of Zn2+, Cd2+, Pb2+, Bi3+, and Cu2+ stripping currents, and then which were used as input variables for establishing machine-learning models to enhance the detection accuracy of SWASV to Cd2+ and Pb2+ under the coexistence of multiple heavy metal ions. Eventually, the smartphone-controlled integrated-automated detection equipment was developed and successfully applied to the automatic pretreatment of soil samples and the determination of weakly acid-soluble Cd2+ and Pb2+ in real soil samples. The detection speed was 75 min/sample, and the detection results were close to the standard method (BCR-ICP-MS). This equipment can provide powerful technical support for on-site rapid and accurate determination of crop-absorbable heavy metals in soils.
Collapse
Affiliation(s)
- Ning Liu
- Key Lab of Smart Agriculture Systems, Ministry of Education, China Agricultural University, Beijing 100083, PR China; Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs of China, China Agricultural University, Beijing 100083, PR China.
| | - Wenshuai Ye
- Key Lab of Smart Agriculture Systems, Ministry of Education, China Agricultural University, Beijing 100083, PR China; Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs of China, China Agricultural University, Beijing 100083, PR China
| | - Guo Zhao
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Gang Liu
- Key Lab of Smart Agriculture Systems, Ministry of Education, China Agricultural University, Beijing 100083, PR China; Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs of China, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
9
|
Sun R, Liu P, Dong Y, Yang Q, Ma Y. A dual-mode green emissive fluorescent probe for real-time detection of doxycycline in milk using a smartphone sensing platform. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6551-6560. [PMID: 37997770 DOI: 10.1039/d3ay01850d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Real-time quantitative analysis of tetracyclines is urgently needed to provide consumers with early warning of potential risks. Herein, we report a dual-mode green emissive fluorescent probe, which refers to the liquid mode and the solid mode of electrospun films doped with nitride-doped carbon nanosheets (NCNSs) for real-time detection of doxycycline (DOX). Highly fluorescent NCNSs were prepared by low-temperature solid treatment of urea and sodium citrate. With the addition of DOX, the green emission intensity of NCNSs at 475 nm can be obviously reduced. Method validation exhibited a good linear relationship in 0.05-150 μM between the fluorescence quenching of NCNSs and the concentration of DOX with a limit of detection (LOD) of 0.0127 μM. Furthermore, the immobilization of NCNSs in PAN carriers forming electrospun films stabilizes the green fluorescence of NCNSs. Additionally, electrospun films integrated into a smartphone were developed for real-time detection of DOX with LOD of 0.285 μM. Additionally, DOX in milk was monitored with satisfactory recoveries. Therefore, the integration of the smartphone and electrospun film provides a promising and convenient method for real-time identification of DOX in food analysis.
Collapse
Affiliation(s)
- Ruiqing Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| | - Ping Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| | - Yingjia Dong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| | - Yongchao Ma
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
10
|
Yu Y, Yang W, Li S, Gao Y, Wang L, Huang G. Efficient Adsorption and Electrochemical Detection of Cd 2+ with a Ternary MgZnFe-Layered Double Hydroxides Engineered Porous Biochar Composite. Molecules 2023; 28:7002. [PMID: 37894481 PMCID: PMC10609189 DOI: 10.3390/molecules28207002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Their unique layered structure, large specific surface area, good stability, high negative charge density between layers, and customizable composition give layered double hydroxides (LDHs) excellent adsorption and detection performance for heavy metal ions (HMIs). However, their easy aggregation and low electrical conductivity limit the practical application of untreated LDHs. In this work, a ternary MgZnFe-LDHs engineered porous biochar (MgZnFe-LDHs/PBC) heterojunction was proposed as a sensing and adsorption material for the effective detection and removal of Cd2+ from wastewater. The growth of MgZnFe-LDHs in the PBC pores not only reduces the accumulation of MgZnFe-LDHs, but also improves the electrical conductivity of the composite. The synergistic effect between MgZnFe-LDHs and PBC enables the composite to achieve a maximum adsorption capacity of up to 293.4 mg/g for Cd2+ in wastewater. Meanwhile, the MgZnFe-LDHs/PBC-based electrochemical sensor shows excellent detection performance for Cd2+, presenting a wide linear range (0.01 ng/L-1 mg/L), low detection limit (3.0 pg/L), good selectivity, and stability. The results indicate that MgZnFe-LDHs/PBC would be a potential material for detecting and removing Cd2+ from wastewater.
Collapse
Affiliation(s)
| | | | | | | | | | - Guoqin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, School of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
11
|
Song N, Zhai Z, Yang L, Zhang D, Zhou Z. Dual-emission dye@MIL-101(Al) composite as fluorescence sensor for the selective and sensitive detection towards arginine. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.124025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
12
|
Yuan L, Tian X, Fan Y, Sun Z, Zheng K, Zou X, Zhang W. TPB-DMTP@S-CDs/MnO 2 Fluorescence Composite on a Dual-Emission-Capture Sensor Module for Fingerprint Recognition of Organophosphorus Pesticides. Anal Chem 2023; 95:2741-2749. [PMID: 36689633 DOI: 10.1021/acs.analchem.2c03738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Residues of organophosphorus pesticides (OPs) raise considerable concern, while identifying OPs from unknown sources is still a challenge to onsite fluorescence techniques. Herein, a dual-emission-capture sensor module, based on a TPB-DMTP@S-CDs/MnO2 fluorescence composite, is developed for OP fingerprint recognition. TPB-DMTP@S-CDs/MnO2, synthesized by a hydrothermal method and self-assembly, is spectrographically validated as a dual-wavelength fluorescence source. OP-sensitive catalysis (acetylcholinesterase on acetylthiocholine chloride) is designed to regulate fluorescence by decomposing quenchable MnO2. A flexibly fabricated sensor module supports the optimal dual-wavelength fluorescence excitations and captures and converts fluorescence emissions into equivalent photocurrents for feasible access. The most prominent finding is that dual-fluorescence emissions alternatively respond to levels, species, and multi-pH pretreatments of OPs due to varied MnO2 sizes and distributions. Therefore, OP fingerprint recognition is conducted by refining the multidimensional information from fluorescence-triggered photocurrents and preset hydrolyzation using principal component analysis and the rule of maximum covariance. The recommended method provides a wide dynamic range (1 × 10-6 ∼ 12 μg mL-1), a good limit of detection (7.9 × 10-7 μg mL-1), 15-day stability, and good selectivity to guarantee fingerprint recognition. For laboratory and natural samples, this method credibly identifies a single kind of OPs from multiple species at trace levels (10-5 μg mL-1) and performs well in two-component and multicomponent analyses.
Collapse
Affiliation(s)
- Lei Yuan
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China.,College of Photoelectric Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaoyu Tian
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yushan Fan
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zongbao Sun
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kaiyi Zheng
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wen Zhang
- College of Photoelectric Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
13
|
Yuan L, Gan Z, Fan Y, Ding F, Xu X, Chen X, Zou X, Zhang W. Thermal-controlled active sensor module using enzyme-regulated UiO-66-NH 2/MnO 2 fluorescence probe for total organophosphorus pesticide determination. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129111. [PMID: 35643005 DOI: 10.1016/j.jhazmat.2022.129111] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/21/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
An enzyme-regulated UiO-66-NH2/MnO2 fluorescence sensor, fully functionalized with spectrometric capacities, is developed for budget-friendly total organophosphorus pesticides (OPs) determination. The fluorescence probe, UiO-66-NH2/MnO2, is hydrothermally synthesized and morphologically examined. A specialized enzyme-catalyzed reaction, which can be gradually inhibited by OPs, is designed with participations of alkaline phosphatase (ALP) and sodium L-ascorbyl-2-phosphate (AAP). The reaction product of ascorbic acid (AA) decomposes MnO2 and restores UiO-66-NH2 fluorescence, establishing a relationship between OPs level and fluorescence intensity. Interactions among UiO-66-NH2, MnO2, OPs, and AA are clarified. Stepwise optimizations are performed to the UiO-66-NH2/MnO2 probe, ensuring considerable advantages as OPs affinity and fluorescence quenching behavior over rival nanomaterials. Analytical advances are magnified by fabricating an active sensor module, with self-acting thermal regulation for optimal enzyme activity. Under 4 and 20 °C environment, regulation period is less than 40 and 100 s. In total OPs determination for laboratorial and real-vegetable samples, this method exhibits uniform and log-linear responses to common species of OPs in a range as 1.0 × 10-7~10 mg L-1, and limit of detection is established as 8.9 × 10-8 mg L-1. Proposed readouts are validated with certified HPLC and recovery test. Relative errors and recovery rates are found as 2.7-6.4% and 95.8-102.6%, respectively.
Collapse
Affiliation(s)
- Lei Yuan
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ziyu Gan
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yushan Fan
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fuyuan Ding
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuechao Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaojing Chen
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xiaobo Zou
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wen Zhang
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
14
|
Li J, Zuo M, Zhang W, Zou X, Sun Z. Diazo Coupling-Based Ultrasensitive SERS Detection of Capsaicin and Its Application in Identifying Gutter Oil. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Su X, Chen Z, Wang H, Yuan L, Zheng K, Zhang W, Zou X. Ratiometric immunosensor with DNA tetrahedron nanostructure as high-performance carrier of reference signal and its applications in selective phoxim determination for vegetables. Food Chem 2022; 383:132445. [PMID: 35182867 DOI: 10.1016/j.foodchem.2022.132445] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/18/2022] [Accepted: 02/10/2022] [Indexed: 12/26/2022]
Abstract
A ratiometric electrochemical immunosensor, based on DNA tetrahedron nanostructure (DTNS), is introduced for vegetable phoxim determination. DTNS spontaneously adheres onto gold-nanoparticle-modified electrode and forms stable three-dimensional structure, providing plenty of binding sites to the built-in reference, methylene blue (MB). Monoclonal antibody (m-Ab) is vertically linked onto DTNS vertex, selectively responses antigenic phoxim, and promotes the target signal of IPHO. Thus, a ratiometric indicator, IPHO/IMB, is sensibly established with the target signal (IPHO) and the reference signal (IMB). Modifications, mechanisms and advances of the proposed method are subsequently examined with morphological methods and electrochemical experiments. This method brings considerable advances in analytical behaviors. The ratiometric signal presents better performance than solo system in repeatability and long-time stability. As-fabricated sensor presents wide dynamic range as 0.1∼30 μg/L, and limit of detection is well defined as 0.003 μg/L (S/N = 3). Finally, this method is verified with real-vegetable-sample analysis, certified HPLC and recovery test.
Collapse
Affiliation(s)
- Xiaoyu Su
- Department of Food & Biological Engineering, Jiangsu University, China
| | - Zhiyu Chen
- Department of Food & Biological Engineering, Jiangsu University, China
| | - Huan Wang
- Department of Food & Biological Engineering, Jiangsu University, China
| | - Lei Yuan
- Department of Food & Biological Engineering, Jiangsu University, China
| | - Kaiyi Zheng
- Department of Food & Biological Engineering, Jiangsu University, China
| | - Wen Zhang
- Department of Food & Biological Engineering, Jiangsu University, China.
| | - Xiaobo Zou
- Department of Food & Biological Engineering, Jiangsu University, China
| |
Collapse
|
16
|
Ma T, Wang H, Wei M, Lan T, Wang J, Bao S, Ge Q, Fang Y, Sun X. Application of smart-phone use in rapid food detection, food traceability systems, and personalized diet guidance, making our diet more health. Food Res Int 2022; 152:110918. [DOI: 10.1016/j.foodres.2021.110918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/11/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022]
|
17
|
Wang X, Li L, Jiang H, Zhangsun H, Wang Q, Sun X, Wang L. Highly selective and sensitive fluorescence detection of tetracyclines based on novel tungsten oxide quantum dots. Food Chem 2021; 374:131774. [PMID: 34896945 DOI: 10.1016/j.foodchem.2021.131774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/10/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022]
Abstract
Tetracyclines (TCs) residues in animal products have attracted extensive concern due to their potential toxic to human health. Accordingly, it is urgent to develop an efficient method to determine TCs for providing consumers with risk pre-warning. Herein, a novel tungsten oxide quantum dots (WxOy QDs) fluorescence probe for tetracycline (TET) detection was constructed through ethanol-thermal method, which exhibited intense blue fluorescence under 365 nm UV light. Interestingly, blue-emitting WxOy QDs could be quenched obviously after the addition of TET, which may be attributed to the synergism of inner filter effect (IFE), fluorescence resonance energy transfer (FRET) and photo-induced electron transfer (PET). Thereby, the fluorescence method was established for TET detection based on WxOy QDs. Additionally, the presented method was demonstrated by monitoring TET in milk and milk powder with satisfactory recoveries. More importantly, this work offered good demonstration for the detection of food hazard factors.
Collapse
Affiliation(s)
- Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Longwen Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Hong Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Hui Zhangsun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Qinzhi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xinyu Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
18
|
Sun Z, Gao Y, Niu Z, Pan H, Xu X, Zhang W, Zou X. Programmable-Printing Paper-Based Device with a MoS 2 NP and Gmp/Eu-Cit Fluorescence Couple for Ratiometric Tetracycline Analysis in Various Natural Samples. ACS Sens 2021; 6:4038-4047. [PMID: 34672196 DOI: 10.1021/acssensors.1c01448] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Paper-based fluorescence devices, with smartphone aids, bring considerable operation convenience for tetracycline (TC) sensing. Nevertheless, they must meet the challenge in real determination against complicated backgrounds. Considering that, we present a programmable-printing paper-based device and then apply it to TC determination for various natural samples. MoS2 NPs and Gmp/Eu-Cit are synthetized as composite probes. A static quenching process is found with MoS2 NP fluorescence at 430 nm, while significant magnification of Gmp/Eu-Cit emission is obtained at 617 nm, establishing a valuable ratiometric indicator. Remarkably, two-stage programmable printing maximizes the proposed sensing capability. A transitive device, containing a gradually changing amount of a certain probe, is prepared to sense TC. With a homemade smartphone application and 3D-printed measurement chamber, the corresponding signals are examined to explore optimal setups. These setups are automatically processed to prepare the final-version device, not requiring manual operations. Benefitting from this interesting feature, the proposed device gains many rewards in performances. It effectively senses TC in a wide range from 12.7 nM to 80 μM and simultaneously provides naked eye-legible signals and smartphone-based readouts with confident selectivity and stability. This device is consequently applied for various samples of soil, river water, milk, and serum and meets well with HPLC-MS and recovery tests.
Collapse
Affiliation(s)
- Zongbao Sun
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Yunlong Gao
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Zeng Niu
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Haodong Pan
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Xuechao Xu
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Wen Zhang
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Xiaobo Zou
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| |
Collapse
|
19
|
Li L, Zhao W, Zhang J, Luo L, Liu X, Li X, You T, Zhao C. Label-free Hg(II) electrochemiluminescence sensor based on silica nanoparticles doped with a self-enhanced Ru(bpy) 32+-carbon nitride quantum dot luminophore. J Colloid Interface Sci 2021; 608:1151-1161. [PMID: 34735851 DOI: 10.1016/j.jcis.2021.10.106] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/07/2021] [Accepted: 10/17/2021] [Indexed: 01/05/2023]
Abstract
Herein, a label-free, self-enhanced electrochemiluminescence (ECL) sensing strategy for divalent mercury (Hg(II)) detection was presented. First, a novel self-enhanced ECL luminophore was prepared by combining the ECL reagent tris(2, 2'-bipyridyl) dichlororuthenium(II) hexahydrate (Ru(bpy)32+) and its co-reactant carbon nitride quantum dots (CNQDs) via electrostatic interactions. In contrast to traditional ECL systems where the emitter and its co-reactant underwent an intermolecular reaction, the self-enhanced ECL system exhibited a shortened electron-transfer distance and enhanced luminous efficiency because the electrons transferred from CNQDs to oxidized Ru(bpy)32+ via an intramolecular pathway. Furthermore, the as-prepared self-enhanced ECL material was encapsulated in silica (SiO2) nanoparticles to generate a Ru-QDs@SiO2 luminophore. Based on the different affinity of Ru-QDs@SiO2 nanoparticles for single-stranded DNA (ssDNA) and Hg(II)-triggered double-stranded DNA (dsDNA), a label-free ECL biosensor for Hg(II) detection was developed as follows: in the absence of Hg(II), ssDNA was adsorbed on Ru-QDs@SiO2 surface via hydrogen bond, electrostatic, and hydrophobic interaction. Thus, quenched ECL signal was observed. On the contrary, in the presence of Hg(II), stable dsDNA was formed and carried the ssDNA separating from Ru-QDs@SiO2 surface, resulting in most of Ru-QDs@SiO2 existing in their free state. Therefore, a recovered ECL intensity was obtained. On this basis, Hg(II) was measured by the proposed method in the range of 0.1 nM-10 μM, with a detection limit of 33 pM. Finally, Hg(II) spiked in water samples was measured to evaluate the practicality of the fabricated biosensor.
Collapse
Affiliation(s)
- Libo Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wanlin Zhao
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiayi Zhang
- Qingdao Hengxing University of Science and Technology, Qingdao, Shandong 266100, China
| | - Lijun Luo
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaohong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xia Li
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Chunjiang Zhao
- National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China.
| |
Collapse
|
20
|
Gan Z, Zhang W, Shi J, Xu X, Hu X, Zhang X, Wang X, Arslan M, Xiao J, Zou X. Collaborative compounding of metal-organic frameworks and lanthanide coordination polymers for ratiometric visual detection of tetracycline. DYES AND PIGMENTS 2021; 194:109545. [DOI: 10.1016/j.dyepig.2021.109545] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Issarangkura Na Ayutthaya P, Yeerum C, Kesonkan K, Kiwfo K, Grudpan K, Teshima N, Murakami H, Vongboot M. Lead Assays with Smartphone Detection Using a Monolithic Rod with 4-(2-Pyridylazo) Resorcinol. Molecules 2021; 26:5720. [PMID: 34577191 PMCID: PMC8466971 DOI: 10.3390/molecules26185720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022] Open
Abstract
A monolithic rod of polyurethane foam-[4-(2-pyridylazo) resorcinol] (PUF-PAR) as a simple chemical sensor for lead assays with smartphone detection and image processing was developed. With readily available simple apparatus such as a plastic cup and a stirrer rod, the monolithic PUF rod was synthesized in a glass tube. The monolithic PUF-PAR rod could be directly loaded by standard/sample solution without sample preparation. A one-shot image in G/B value from a profile plot in ImageJ for a sample with triplicate results via a single standard calibration approach was obtained. A linear single standard calibration was: [G/B value] = -0.038[µg Pb2+] + 2.827, R2 = 0.95 for 10-30 µg Pb2+ with a limit of quantitation (LOQ) of 33 µg L-1. The precision was lower than 15% RSD. The proposed method was tested by an assay for Pb2+ contents in drinking water samples from Bangkok. The results obtained by the proposed method agree with those of ICP-OES and with 100-120% recovery, demonstrating that the method is useful for screening on-site water monitoring.
Collapse
Affiliation(s)
- Piyanat Issarangkura Na Ayutthaya
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand; (P.I.N.A.); (C.Y.); (K.K.)
| | - Chonnipa Yeerum
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand; (P.I.N.A.); (C.Y.); (K.K.)
| | - Kullapon Kesonkan
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand; (P.I.N.A.); (C.Y.); (K.K.)
| | - Kanokwan Kiwfo
- Center of Excellence for Innovation in Analytical Science and Technology and Department of Chemistry, Faculty of Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kate Grudpan
- Center of Excellence for Innovation in Analytical Science and Technology and Department of Chemistry, Faculty of Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Norio Teshima
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan; (N.T.); (H.M.)
| | - Hiroya Murakami
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan; (N.T.); (H.M.)
| | - Monnapat Vongboot
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand; (P.I.N.A.); (C.Y.); (K.K.)
| |
Collapse
|
22
|
Li W, Zhang X, Hu X, Shi Y, Li Z, Huang X, Zhang W, Zhang D, Zou X, Shi J. A smartphone-integrated ratiometric fluorescence sensor for visual detection of cadmium ions. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124872. [PMID: 33387715 DOI: 10.1016/j.jhazmat.2020.124872] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
A novel fluorescence sensing platform was fabricated for visual detection of cadmium ions (Cd2+) with excellent stability and portability. In this protocol, dual-emission ratiometric fluorescence probe were constructed based on silicon oxide-coated copper nanoclusters (CuNCs@SiO2) as a signal reference and cadmium telluride quantum dots (CdTe QDs) as signal response, thereby greatly improving the accuracy of test results. The level of Cd2+ can be reported within a wide linear range from 0.010 mg·L-1 to 2.0 mg·L-1 with a sensitive detection limit of 1.1 μg·L-1 (2.75 μg·kg-1) and a quick sample-to-answer monitoring time of 6 min, which was quite qualified for regularly monitoring Cd2+. Moreover, aiming to attain portable analysis, the smartphone as colorimetric reader and analyzer were also utilized for rapidly analyzing Cd2+ by capturing the change in fluorescence color. Additionally, benefiting from the strong combination of 1, 10-phenanthroline (Phen) and Cd2+, the fluorescence probe showed excellent anti-interference activities for Cd2+ assay in complex oyster matrix. Overall, the sensing platform had significant stability, specificity and sensitivity, offering a promising potential for conveniently evaluating the quality of marine bivalves polluted with Cd2+.
Collapse
Affiliation(s)
- Wenting Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinai Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xuetao Hu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yongqiang Shi
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wen Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Di Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
23
|
Wang X, Xu Y, Li Y, Li Y, Li Z, Zhang W, Zou X, Shi J, Huang X, Liu C, Li W. Rapid detection of cadmium ions in meat by a multi-walled carbon nanotubes enhanced metal-organic framework modified electrochemical sensor. Food Chem 2021; 357:129762. [PMID: 33872870 DOI: 10.1016/j.foodchem.2021.129762] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/27/2021] [Accepted: 04/05/2021] [Indexed: 01/10/2023]
Abstract
This work presents an electrochemical device based on a composite modification of amine functionalized Zr(IV) metal-organic framework (UiO-66-NH2) and multi-walled carbon nanotubes (MWCNTs) for voltammetry determination of cadmium ions (Cd2+). The UiO-66-NH2@MWCNTs composites were prepared by one-pot hydrothermal reaction. The prepared sensor performs excellent performance, which was attributed to the synergism between UiO-66-NH2 with a special octahedral structure and enlarged surface area and MWCNTs with outstanding conductivity. Under optimal experiment condition, the fabricated sensor showed good linear relationship from 0.5 to 170 μg/L, with a detection limit of 0.2 μg/L. Finally, the sensor was successfully applied to detect Cd2+ in meat samples (N = 21) with relative standard deviation (RSD) lower than 4.5% and recovery of 95.1-107.5%, and the results were compared with certified method, there was no statistical significance difference between the developed sensor and certified method at a 95% confidence level.
Collapse
Affiliation(s)
- Xin Wang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Center of Analysis and Test, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yiwei Xu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yahui Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanxiao Li
- Center of Analysis and Test, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wen Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chao Liu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenting Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
24
|
Guo Z, Huang X, Li Z, Shi J, Zhai X, Hu X, Zou X. Employing CuInS 2 quantum dots modified with vancomycin for detecting Staphylococcus aureus and iron(iii). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1517-1526. [PMID: 33710200 DOI: 10.1039/d0ay02253e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This paper describes a near-infrared quantum dot (CuInS2 QD)/antibiotic (vancomycin) nanoparticle-based assay for the Staphylococcus aureus and iron(iii) detection. CuInS2 QDs with good biological tissue permeability and biocompatibility are combined with vancomycin through covalent interaction to form a detection system for two harmful factors. The detection principle of Staphylococcus aureus is mainly the fluorescence quenching caused by the accumulation of CuInS2@Van QDs on the surface of Staphylococcus aureus. The detection principles of the iron(iii) ion are mainly ascribed to the aggregation of quantum dots and the transfer of charges, which cause the fluorescence signal to change. The linear range of S. aureus and the Fe3+ ion is 103 to 108 CFU mL-1 and 10-90 μM, respectively. Their detection limits are 665 CFU mL-1 and 3.5 μM, respectively. The procedure was validated by the quantitation of Staphylococcus aureus and iron(iii) in spiked samples, and was found to demonstrate the feasibility of this method.
Collapse
Affiliation(s)
- Ziang Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Direct detection of Pb 2+ and Cd 2+ in juice and beverage samples using PDMS modified nanochannels electrochemical sensors. Food Chem 2021; 356:129632. [PMID: 33831833 DOI: 10.1016/j.foodchem.2021.129632] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/06/2021] [Accepted: 03/14/2021] [Indexed: 12/18/2022]
Abstract
Direct electrochemical detection in real food samples remains challenging due to the fouling and interference by abundant interference components. Herein, we report an electrochemical sensing platform based on binary assembly of silica nanochannels and polydimethylsiloxane that is able to detect Pb2+ and Cd2+ in real food samples without complex pretreatments. Using differential pulse anodic stripping voltammetry, the electrochemical detection consists of electro-deposition of metal species and subsequent anodic stripping in the modified silica-nanochannels. Under the optimized conditions, the linear ranges were obtained from 4 to 1500 μg L-1 for Pb2+ and 30 to 900 μg L-1 for Cd2+. The relative standard deviations were 2.9% and 3.6% for Pb2+ and Cd2+ of 300 μg L-1. Without tedious pretreatments, the quantitative detection of Pb2+ and Cd2+ in real juice and beverage samples was successfully performed, revealing that the developed sensor possesses excellent anti-interference and practicability properties for unprocessed food.
Collapse
|
26
|
Gan Z, Hu X, Xu X, Zhang W, Zou X, Shi J, Zheng K, Arslan M. A portable test strip based on fluorescent europium-based metal-organic framework for rapid and visual detection of tetracycline in food samples. Food Chem 2021; 354:129501. [PMID: 33735696 DOI: 10.1016/j.foodchem.2021.129501] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/01/2021] [Accepted: 02/26/2021] [Indexed: 12/27/2022]
Abstract
Residual tetracycline (TC) in animal food caused by abuse of antibiotics leads to many chronic diseases in the human body. The development of a simple and on-site visualization method for TC detection is need of the hour. Herein, a fluorescent europium-based metal-organic framework (Eu-MOF) sensor for visual and rapid detection of TC was developed. Eu-MOF displays a red emission being excited at 260 nm. Upon exposure to TC, significant fluorescence quenching was observed due to the inner filter effect and photoinduced electron transfer. Moreover, the developed sensor was applied for the detection of TC in milk and beef samples with recoveries of 96.1% to 106.3%, respectively. More importantly, a portable test strip based on Eu-MOF was manufactured. It is a highly selective and sensitive portable device for TC detection. The results can be distinguished immediately by naked eyes, making it become an excellent choice to detect TC in real-time application.
Collapse
Affiliation(s)
- Ziyu Gan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuetao Hu
- School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuechao Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wen Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kaiyi Zheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Arslan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
27
|
Mukherjee S, Bhattacharyya S, Ghosh K, Pal S, Halder A, Naseri M, Mohammadniaei M, Sarkar S, Ghosh A, Sun Y, Bhattacharyya N. Sensory development for heavy metal detection: A review on translation from conventional analysis to field-portable sensor. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Jia XX, Yao ZY, Gao ZX, Fan ZC. The Role of Suspension Array Technology in Rapid Detection of Foodborne Pollutants: Applications and Future Challenges. Crit Rev Anal Chem 2021; 52:1408-1421. [PMID: 33611988 DOI: 10.1080/10408347.2021.1882833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Food safety is an important livelihood issue, which has always been focused attention by countries and governments all over the world. As food supply chains are becoming global, food quality control is essential for consumer protection as well as for the food industry. In recent years, a great part of food analysis is carried out using new techniques for rapid detection. As the first biochip technology that has been approved by the Food and Drug Administration (FDA), there is an increasing interest in suspension array technology (SAT) for food and environmental analysis with advantages of rapidity, high accuracy, sensitivity, and throughput. Therefore, it is important for researchers to understand the development and application of this technology in food industry. Herein, we summarized the principle and composition of SAT and its application in food safety monitoring. The utility of SAT in detection of foodborne microorganisms, residues of agricultural and veterinary drugs, genetically modified food and allergens in recent years is elaborated, and the further development direction of SAT is envisaged.
Collapse
Affiliation(s)
- Xue-Xia Jia
- State Key Laboratory of Food Nutrition and Safety, China International Scientific & Technological Cooperation Base for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China.,Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P. R. China
| | - Zi-Yi Yao
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P. R. China
| | - Zhi-Xian Gao
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P. R. China
| | - Zhen-Chuan Fan
- State Key Laboratory of Food Nutrition and Safety, China International Scientific & Technological Cooperation Base for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| |
Collapse
|
29
|
Jia XX, Li S, Han DP, Chen RP, Yao ZY, Ning BA, Gao ZX, Fan ZC. Development and perspectives of rapid detection technology in food and environment. Crit Rev Food Sci Nutr 2021; 62:4706-4725. [PMID: 33523717 DOI: 10.1080/10408398.2021.1878101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Food safety become a hot issue currently with globalization of food trade and food supply chains. Chemical pollution, microbial contamination and adulteration in food have attracted more attention worldwide. Contamination with antibiotics, estrogens and heavy metals in water environment and soil environment have also turn into an enormous threat to food safety. Traditional small-scale, long-term detection technologies have been unable to meet the current needs. In the monitoring process, rapid, convenient, accurate analysis and detection technologies have become the future development trend. We critically synthesizing the current knowledge of various rapid detection technology, and briefly touched upon the problem which still exist in research process. The review showed that the application of novel materials promotes the development of rapid detection technology, high-throughput and portability would be popular study directions in the future. Of course, the ultimate aim of the research is how to industrialization these technologies and apply to the market.
Collapse
Affiliation(s)
- Xue-Xia Jia
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China.,State Key Laboratory of Food Nutrition and Safety, China International Scientific & Technological Cooperation Base for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, P.R. China
| | - Shuang Li
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Dian-Peng Han
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Rui-Peng Chen
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Zi-Yi Yao
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Bao-An Ning
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Zhi-Xian Gao
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Zhen-Chuan Fan
- State Key Laboratory of Food Nutrition and Safety, China International Scientific & Technological Cooperation Base for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, P.R. China
| |
Collapse
|
30
|
Liu MT, Zhao J, Li SP. Application of smartphone in detection of thin-layer chromatography: Case of salvia miltiorrhiza. J Chromatogr A 2021; 1637:461826. [PMID: 33387914 DOI: 10.1016/j.chroma.2020.461826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022]
Abstract
In this work, a smartphone-based device was constructed for thin-layer chromatography (TLC) detection and semi-quantitative analysis of the components of Salvia miltiorrhiza. The key construction and shooting parameters were investigated by the relative peak area and signal-to-noise ratio. The best conditions were as follows: shooting height, 17 cm; angle between the UV lamp and TLC plate, 58°; exposure compensation, 0~0.2 EV; and shutter speed under daylight and UV 365 nm, 1/50 s and 1/5 s, respectively. These ideal conditions could be replicated by smartphones from different brands with different versions of software. With good precision, repeatability and stability, the developed device was used for the semi-quantitative analysis of salvianolic acid B, rosmarinic acid, cryptotanshinone, tanshinone I, tanshinone IIA, and miltirone in the TLC analysis of 10 batches of S. miltiorrhiza. The results were compared with those obtained by a TLC densitometric scanner and two common types of image processing software, i.e., Gelanalyzer and ImageJ. Except for salvianolic acid B in the TLC densitometric scanner, all results were not significantly different among these methods, which suggested that smartphones might be a useful tool for the quality control of traditional Chinese medicines.
Collapse
Affiliation(s)
- Mei-Ting Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
31
|
de Sousa PAR, Squissato AL, Munoz RAA, Coelho LM, de Melo EI, da Silva RAB. Cloud-point extraction associated with voltammetry: preconcentration and elimination of the sample matrix for trace determination of methyl parathion in honey. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5801-5814. [PMID: 33319873 DOI: 10.1039/d0ay02057e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work presents the association of cloud point extraction (CPE) and electroanalysis for the selective and sensitive determination of methyl parathion (MP) in honey. The CPE step provided the pre-concentration of MP from a complex sample, in which the optimized extraction parameters (Triton X-100 concentration of 0.75% w/v, NaCl concentration of 1.0% w/v and heating time of 30 min) were investigated using a factorial design (23). The detection of MP was performed using a cathodically pre-treated boron-doped diamond (BDD) working electrode and square wave voltammetry (SWV), after a suitable dilution of the CPE extract in Britton-Robinson buffer pH 6.0 as the supporting electrolyte. MP presented three electrochemical processes over the BDD surface, but only the reduction peak at around -0.7 V was monitored for the MP determination (higher detectability). Improved reproducibility was reached by applying an in situ cleaning step (+2.0 V for 15 s) followed by a re-activation process (-2.0 V for 15 s) between measurements. Using the optimized variables, a linear range between 0.1 and 2.0 μmol L-1 was obtained for MP with a limit of detection of 0.006 μmol L-1, a 6-fold lower value when compared with the value attained without the CPE step. The experimental enrichment factor of MP was 6.1. Also, the optimized CPE allowed the determination of MP in honey samples with good accuracy (recovery between 94 and 106%), which was not possible using direct detection (without CPE) due to the matrix interference. This is the first paper that demonstrates the combination of CPE and electroanalysis for the determination of an organic compound.
Collapse
Affiliation(s)
- Priscila A R de Sousa
- Federal University of Goias, Av. Dr. Lamartine Pinto de Avelar, 1120, Catalão, GO, Brazil
| | | | | | | | | | | |
Collapse
|
32
|
Effects of pulsed electric field pretreatment on frying quality of fresh-cut lotus root slices. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109873] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
33
|
Trojanowicz M. Flow Chemistry in Contemporary Chemical Sciences: A Real Variety of Its Applications. Molecules 2020; 25:E1434. [PMID: 32245225 PMCID: PMC7146634 DOI: 10.3390/molecules25061434] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022] Open
Abstract
Flow chemistry is an area of contemporary chemistry exploiting the hydrodynamic conditions of flowing liquids to provide particular environments for chemical reactions. These particular conditions of enhanced and strictly regulated transport of reagents, improved interface contacts, intensification of heat transfer, and safe operation with hazardous chemicals can be utilized in chemical synthesis, both for mechanization and automation of analytical procedures, and for the investigation of the kinetics of ultrafast reactions. Such methods are developed for more than half a century. In the field of chemical synthesis, they are used mostly in pharmaceutical chemistry for efficient syntheses of small amounts of active substances. In analytical chemistry, flow measuring systems are designed for environmental applications and industrial monitoring, as well as medical and pharmaceutical analysis, providing essential enhancement of the yield of analyses and precision of analytical determinations. The main concept of this review is to show the overlapping of development trends in the design of instrumentation and various ways of the utilization of specificity of chemical operations under flow conditions, especially for synthetic and analytical purposes, with a simultaneous presentation of the still rather limited correspondence between these two main areas of flow chemistry.
Collapse
Affiliation(s)
- Marek Trojanowicz
- Laboratory of Nuclear Analytical Methods, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03–195 Warsaw, Poland;
- Department of Chemistry, University of Warsaw, Pasteura 1, 02–093 Warsaw, Poland
| |
Collapse
|