1
|
Li X, Yang R, Bai Z, Gan P, Zeng T, Liu M, Yuan J. Development of QuEChERS based on the Z-Sep+and DLLME method for analysis of PBDEs in chicken eggs by GC-MS/MS. Food Chem 2024; 467:142361. [PMID: 39662244 DOI: 10.1016/j.foodchem.2024.142361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
A sensitive, straightforward, and environmentally sustainable method was developed and validated for the quantification of 13 PBDEs in chicken eggs using gas chromatography coupled with triple quadrupole mass spectrometry (GC-MS/MS). The QuEChERS approach, combined with dispersive liquid-liquid microextraction (DLLME), was applied for sample preparation. Egg samples were extracted with acetonitrile and purified using Z-Sep + adsorbent. Tetrachloroethane was selected as the extraction solvent for the DLLME step. All PBDEs exhibited strong linearity, with R > 0.999 within the range of 0.20-10.0 ng/mL, and the limits of quantification (LOQ) were determined to be 10.0 pg/g. Apparent recoveries of PBDEs ranged from 85.2 % to 105.7 %. A total of 119 chicken eggs were analyzed using the developed method. BDE-47 and BDE-99 showed relatively high detection rates of 38.6 % and 24.4 %, respectively. The hazard quotient (HQ) values for BDE-47, BDE-99, and BDE-153 congeners remained well below 1.0, indicating no significant health risk from egg consumption.
Collapse
Affiliation(s)
- Xiaojing Li
- Guangzhou Center for Disease Control and Prevention, Guanzhou 510440, Guangdong, China.
| | - Rong Yang
- Guangzhou Center for Disease Control and Prevention, Guanzhou 510440, Guangdong, China
| | - Zhijun Bai
- Guangzhou Center for Disease Control and Prevention, Guanzhou 510440, Guangdong, China
| | - Pingsheng Gan
- Guangzhou Center for Disease Control and Prevention, Guanzhou 510440, Guangdong, China
| | - Tao Zeng
- Guangzhou Center for Disease Control and Prevention, Guanzhou 510440, Guangdong, China
| | - Miao Liu
- Guangzhou Center for Disease Control and Prevention, Guanzhou 510440, Guangdong, China
| | - Jun Yuan
- Guangzhou Center for Disease Control and Prevention, Guanzhou 510440, Guangdong, China
| |
Collapse
|
2
|
Wang S, Hu X, Wu W, Wang D, Li P, Zhang Z. Dual-template magnetic molecularly imprinted polymers for selective extraction and sensitive detection of aflatoxin B1 and benzo(α)pyrene in environmental water and edible oil. Food Chem 2024; 459:140234. [PMID: 38991449 DOI: 10.1016/j.foodchem.2024.140234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
The coexistence of multiple contaminates in the environment and food is of growing concern due to their extremely hazard as a well-known class I carcinogen, like aflatoxin B1 (AFB1) and benzo(α)pyrene (BaP). AFB1 and BaP are susceptible to coexistence in environmental water and edible oil, posing a significant potential risk to environmental monitoring and food safety. The remaining challenges in detecting multiple contaminates include unsatisfied sensitivity, insufficient targets selectivity, and interferences in complex matrices. Here, we developed dual-template magnetic molecularly imprinted polymers (DMMIPs) for selective extraction of dual targets in complex matrices from the environment and food. The DMMIPs were fabricated by surface imprinting with vinyl-functionalized Fe3O4 as carrier, 5,7-dimethoxycoumarin and pyrene as dummy templates, and methacrylamide as functional monomer. The DMMIPs showed excellent adsorption ability (12.73-15.80 mg/g), imprinting factors (2.01-2.58), and reusability of three adsorption-desorption cycles for AFB1 and BaP. The adsorption mechanism including hydrogen bond, electrostatic interaction and van der Waals force was confirmed by physical characterization and DFT calculation. Applying DMMIPs in magnetic solid phase extraction (MSPE) followed by high-performance liquid chromatography (HPLC) analysis enabled detection limits of 0.134 μg/L for AFB1 and 0.107 μg/L for BaP. Recovery rates for water and edible oil samples were recorded as 86.2%-110.3% with RSDs of 4.1%-11.9%. This approach demonstrates potential for simultaneous identification and extraction of multiple contaminants in environmental and food.
Collapse
Affiliation(s)
- Shenling Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Hongshan Laboratory, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Lab for Biotoxin Test, Wuhan 430062, PR China
| | - Xiaofeng Hu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Hongshan Laboratory, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Lab for Biotoxin Test, Wuhan 430062, PR China
| | - Wenqin Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Hongshan Laboratory, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Lab for Biotoxin Test, Wuhan 430062, PR China
| | - Du Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Hongshan Laboratory, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Lab for Biotoxin Test, Wuhan 430062, PR China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Hongshan Laboratory, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Lab for Biotoxin Test, Wuhan 430062, PR China
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Hongshan Laboratory, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Lab for Biotoxin Test, Wuhan 430062, PR China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, PR China.
| |
Collapse
|
3
|
Liu T, Zhang L, Pan L, Yang D. Polycyclic Aromatic Hydrocarbons' Impact on Crops and Occurrence, Sources, and Detection Methods in Food: A Review. Foods 2024; 13:1977. [PMID: 38998483 PMCID: PMC11240991 DOI: 10.3390/foods13131977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) represent a category of persistent organic pollutants that pose a global concern in the realm of food safety due to their recognized carcinogenic properties in humans. Food can be contaminated with PAHs that are present in water, air, or soil, or during food processing and cooking. The wide and varied sources of PAHs contribute to their persistent contamination of food, leading to their accumulation within these products. As a result, monitoring of the levels of PAHs in food is necessary to guarantee the safety of food products as well as the public health. This review paper attempts to give its readers an overview of the impact of PAHs on crops, their occurrence and sources, and the methodologies employed for the sample preparation and detection of PAHs in food. In addition, possible directions for future research are proposed. The objective is to provide references for the monitoring, prevention, and in-depth exploration of PAHs in food.
Collapse
Affiliation(s)
- Tengfei Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Taihu Area Institute of Agricultural Sciences, Suzhou 215106, China
| | - Li Zhang
- Suzhou Vocational University Center for Food Safety and Nutrition, Suzhou 215104, China
| | - Leiqing Pan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Daifeng Yang
- Jiangsu Taihu Area Institute of Agricultural Sciences, Suzhou 215106, China
| |
Collapse
|
4
|
Habschied K, Kartalović B, Kovačević D, Krstanović V, Mastanjević K. Effect of Temperature Range and Kilning Time on the Occurrence of Polycyclic Aromatic Hydrocarbons in Malt. Foods 2023; 12:454. [PMID: 36765985 PMCID: PMC9913933 DOI: 10.3390/foods12030454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Kilning is an integral part of malt production; it ensures grain and enzyme preservation. Kilning temperatures can range between 80 and 220 °C, depending on the type of malt that is being produced. Polycyclic aromatic hydrocarbons (PAHs) are prone to appear at higher temperatures and are generally designated as undesirable in food and beverages. Sixteen PAHs are framed in legislation, but there is a lack of scientific data related to PAHs in malt, malt-related foods (bread, cookies) and beverages (whisky, malted non-alcoholic beverages). The aim of this paper was to assess and quantify the occurrence of different PAHs in malts exposed to different kilning temperatures (50-210°) over a variable time frame. The results indicate that some of the PAHs detected at lower temperatures disappear when malt is exposed to high temperatures (>100 °C). Phenanthrene was no longer detected at 100 °C and indeno [1,2,3-cd] pyrene at 130 °C, while fluorene, anthracene and benzo (a) anthracene were not quantified at 170 °C. The results of this research can be implemented in food safety legislation since foods available to children utilize malted flour (bread, cookies, bakery goods, etc.) due to its enzymatic activity or as a colour additive.
Collapse
Affiliation(s)
- Kristina Habschied
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 20, 31000 Osijek, Croatia
| | - Brankica Kartalović
- Scientific Veterinary Institute Novi Sad, Rumenački put 20, 21000 Novi Sad, Serbia
| | - Dragan Kovačević
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 20, 31000 Osijek, Croatia
| | - Vinko Krstanović
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 20, 31000 Osijek, Croatia
| | - Krešimir Mastanjević
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 20, 31000 Osijek, Croatia
| |
Collapse
|
5
|
Preparation of magnetic molybdenum disulfide for the extraction of neonicotinoid insecticides from environmental water samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Time-saving and accurate analysis of BaP, BaA, Chr and BbF in milks and oils by three-way fluorescence spectrometry. Food Chem 2022; 381:132309. [DOI: 10.1016/j.foodchem.2022.132309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/24/2021] [Accepted: 01/29/2022] [Indexed: 11/19/2022]
|
7
|
Luo X, Wang X, Du M, Xu X. Dispersive Liquid-Liquid Microextraction Followed by HS-SPME for the Determination of Flavor Enhancers in Seafood Using GC-MS. Foods 2022; 11:foods11101507. [PMID: 35627077 PMCID: PMC9140692 DOI: 10.3390/foods11101507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
The determination of flavor compounds using headspace solid-phase microextraction (HS-SPME) combined with gas chromatography–mass spectrometry (GC-MS) can be severely interfered with by complex food matrices in food systems, especially solid samples. In this study, dispersive liquid-liquid microextraction (DLLME) was applied prior to HS-SPME to efficiently reduce the matrix effect in solid seafood samples. The method had high sensitivity (the quantification limits of maltol and ethyl maltol were 15 and 5 μg/kg, respectively), an excellent linear relationship (R2 ≥ 0.996), and the sample recovery rate was 89.0–118.6%. The relative standard deviation (RSD %) values for maltol and ethyl maltol were lower than 10%. Maltol (from 0.7 to 2.2 μg/g) and ethyl maltol (from 0.9 to 34.7 μg/g) in seafood were detected in the selected samples by the developed method. Finally, DLLME coupled with HS-SPME effectively removed the influence of sample matrix and improved the sensitivity of the method. The developed method was applicable in the analysis of flavor enhancers in complex matrix foods.
Collapse
|
8
|
Yang L, Wu S, Wei J, Deng J, Hou X, Hao E, Zhang L, Li P. A sensitive and simple HPLC-FLD-based method for the measurement of intracellular glucose uptake. Food Chem 2022; 372:131218. [PMID: 34624783 DOI: 10.1016/j.foodchem.2021.131218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/20/2022]
Abstract
Glucose is a primary source of energy used in most organisms. Thus, development of reliable approaches to measure intracellular glucose uptake is an important research issue. 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-d-glucose (2-NBDG), as a fluorescent glucose derivative, has been widely used to track intracellular glucose uptake by fluorescence imaging and measuring in mammalian cells. However, the avoid-less cross-interference of intrinsic autofluorescence background and tested fluorescent compounds limits its ability to provide trustworthy information on intracellular glucose uptake. By the extraction, separation and detection of 2-NBDG, a simple, sensitive and accurate HPLC-FLD method was established and validated for the measurement of intracellular glucose uptake in HepG2 cells. The developed method has been employed successfully to assess the glucose uptake activity of anti-diabetic drugs and fluorescent natural products. A fit-for-purpose partial validation was further performed for quantification and comparison of glucose uptake in AML12, LO2 hepatocytes, L6 myoblasts and 3T3-L1 preadipocytes.
Collapse
Affiliation(s)
- Lele Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Sijia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Jiagang Deng
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaotao Hou
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Erwei Hao
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Lei Zhang
- Laboratory Animal Center, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| |
Collapse
|
9
|
Li Q, Li G, Fan L, Yu Y, Liu J. Click reaction triggered turn-on fluorescence strategy for highly sensitive and selective determination of steroid hormones in food samples. Food Chem 2021; 374:131565. [PMID: 34875430 DOI: 10.1016/j.foodchem.2021.131565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/18/2021] [Accepted: 11/07/2021] [Indexed: 11/04/2022]
Abstract
The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction has becoming noticeable in the field of analytical chemistry. Mild reaction conditions, simple operation, high efficiency, and good regioselectivity make this classical click reaction a perfect strategy for chemical derivatization. Herein, we proposed a promising click fluorescent labeling method with high selectivity for the determination of five steroid hormones in food samples. The labeling strategy depends on the reaction between 3-Azido-7-hydroxycoumarin and the alkynyl group of steroid hormones, which shows a turn-on fluorescence response in the presence of copper (I). The formed fluorescent products were detected by HPLC-FLD. Under the optimized conditions, the proposed method presented excellent performance with good linearity (R2 ≥ 0.9998) and low detection limit (1.8-7.3 μg L-1). Further, satisfactory recoveries were obtained to be 82-107% in spiked meats with relative standard deviations (RSDs) ≤ 5.7%. Finally, the established method was successfully applied for the determination of steroid hormones in meat, indicating the potential prospect of the click reaction in chemical derivatization.
Collapse
Affiliation(s)
- Qianyu Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Lihua Fan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yanxin Yu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jin Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
10
|
Zhou P, Wang R, Fan R, Yang X, Mei H, Chen H, Wang H, Wang Z, Wang X. Magnetic amino-functionalized metal-organic frameworks as a novel solid support in ionic liquids-based effervescent tablets for efficient extraction of polycyclic aromatic hydrocarbons in milks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112482. [PMID: 34224969 DOI: 10.1016/j.ecoenv.2021.112482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Herein, a kind of novel multi-layer core-shell nanocomposites (NSPN) was prepared by employing SiO2 and polyvinylpyrrolidone (PVP) polymers as modifiers and amino-functionalized metal-organic frameworks (NH2-MIL101(Fe)) as coating. It was referred to as the NSPN and ILs-based effervescence-assisted dispersive solid-phase microextraction, hereafter abbreviated as NIE-DSM. In terms of extraction efficiency, SiO2 and PVP as modifiers and NH2-MIL(Fe) as coating onto the surface of NiFe2O4 cores played a synergistically enhancing effect on adsorption/extraction. Effervescent tablets were prepared by integrating the NSPN magnetic nanoparticles as adsorbents with imidazolium-based ionic liquids (ILs) as extractants as well as acidic and alkaline sources. Under vigorous dispersion of CO2 bubbles, the NIE-DSM method realized the goal of rapidly diffusing and separating the adsorbent/extractant (~3 min) without needing conventional vortexing or centrifugation step. Consequently, the NIE-DSM approach combined dispersion and adsorption/extractant in a synchronous way. Under optimized conditions, the NIE-DSM/HPLC-FLD method gave low limits of detection (0.008-0.034 μg kg-1) and satisfactory extraction recoveries (74.1-101.6%) for five polycyclic aromatic hydrocarbons (PAHs; fluorene, anthracene, pyrene, chrysene and benzo(a)pyrene) in milk samples. The intra-day and inter-day precision, expressed as relative standard deviations, was < 5.9% and 6.5%, respectively, demonstrating a high precision. Owing to no requirement for electrical power, this method shows great potential for outdoor monitoring of trace-level PAHs in food matrices.
Collapse
Affiliation(s)
- Peipei Zhou
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health and Management, Center for Health Assessment, Wenzhou Medical University, Wenzhou 325035, China
| | - Rui Wang
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health and Management, Center for Health Assessment, Wenzhou Medical University, Wenzhou 325035, China
| | - Ru Fan
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health and Management, Center for Health Assessment, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoran Yang
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health and Management, Center for Health Assessment, Wenzhou Medical University, Wenzhou 325035, China
| | - He Mei
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health and Management, Center for Health Assessment, Wenzhou Medical University, Wenzhou 325035, China
| | - Huaiyu Chen
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health and Management, Center for Health Assessment, Wenzhou Medical University, Wenzhou 325035, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Zhenfeng Wang
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health and Management, Center for Health Assessment, Wenzhou Medical University, Wenzhou 325035, China
| | - Xuedong Wang
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health and Management, Center for Health Assessment, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
11
|
Farajzadeh MA, Kiavar L, Pezhhanfar S. Development of a method based on dispersive liquid-liquid microextraction followed by partial vaporization of the extract for ultra-preconcentration of some pesticide residues in fruit juices. J Chromatogr A 2021; 1653:462427. [PMID: 34332315 DOI: 10.1016/j.chroma.2021.462427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
A new simple and efficient method has been developed for the ultra-preconcentration of multiclass pesticide residues including penconazole, chlorpyrifos, ametryn, clodinafop-propargyl, diniconazole, oxadiazon, and fenpropathrin from some fruit juice samples based on evaporation of the sedimented organic phase obtained from dispersive liquid-liquid microextraction. The enriched target analytes were analyzed by gas chromatography-flame ionization detection. In the microextraction procedure, a mixture of iso-propanol as a disperser and 1,2-dibromoethane as an extraction solvent is quickly injected into an aqueous phase containing the analytes and centrifuged. Afterward, the sedimented phase is transferred into a special shaped vaporization vessel and vaporized with nitrogen gas stream until remaining about 2 µL of it. Eventually, 1 µL of the remained sedimented phase is removed and analyzed by separation system. The optimum extraction and disperser solvents were found to be 1,2-dibromoethane and iso-propanol, respectively. In addition, the optimum pH range was 6-8, and nitrogen gas stream at a flow rate of 90 mL min-1 in a downward oriented vessel was applied. Eventually, the limits of detection and quantification were obtained in the ranges of 45-78 and 149-261 ng L-1, respectively. Relative standard deviations at the concentrations of 300, 500 and 1000 ng L-1 of each analyte were ranged between 2.2% and 5.8% for intra-day (n = 6) precision. Inter-day (n = 3) precision at a concentration of 500 ng L-1 of each analyte was obtained in the range of 4.9-7.1%. In addition, enrichment factors and extraction recoveries were ranged from 1382-2246 and 55-89%, respectively. Finally, the method was successfully utilized in analysis of the target pesticides in the selected juices.
Collapse
Affiliation(s)
- Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Engineering Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Laleh Kiavar
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Sakha Pezhhanfar
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Sampaio GR, Guizellini GM, da Silva SA, de Almeida AP, Pinaffi-Langley ACC, Rogero MM, de Camargo AC, Torres EAFS. Polycyclic Aromatic Hydrocarbons in Foods: Biological Effects, Legislation, Occurrence, Analytical Methods, and Strategies to Reduce Their Formation. Int J Mol Sci 2021; 22:6010. [PMID: 34199457 PMCID: PMC8199595 DOI: 10.3390/ijms22116010] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 01/01/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are chemical compounds comprised of carbon and hydrogen molecules in a cyclic arrangement. PAHs are associated with risks to human health, especially carcinogenesis. One form of exposure to these compounds is through ingestion of contaminated food, which can occur during preparation and processing involving high temperatures (e.g., grilling, smoking, toasting, roasting, and frying) as well as through PAHs present in the soil, air, and water (i.e., environmental pollution). Differently from changes caused by microbiological characteristics and lipid oxidation, consumers cannot sensorially perceive PAH contamination in food products, thereby hindering their ability to reject these foods. Herein, the occurrence and biological effects of PAHs were comprehensively explored, as well as analytical methods to monitor their levels, legislations, and strategies to reduce their generation in food products. This review updates the current knowledge and addresses recent regulation changes concerning the widespread PAHs contamination in several types of food, often surpassing the concentration limits deemed acceptable by current legislations. Therefore, effective measures involving different food processing strategies are needed to prevent and reduce PAHs contamination, thereby decreasing human exposure and detrimental health effects. Furthermore, gaps in literature have been addressed to provide a basis for future studies.
Collapse
Affiliation(s)
- Geni Rodrigues Sampaio
- Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Doutor Arnaldo Ave, Sao Paulo 01246-904, Brazil; (G.M.G.); (S.A.d.S.); (A.C.C.P.-L.); (M.M.R.); (E.A.F.S.T.)
| | - Glória Maria Guizellini
- Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Doutor Arnaldo Ave, Sao Paulo 01246-904, Brazil; (G.M.G.); (S.A.d.S.); (A.C.C.P.-L.); (M.M.R.); (E.A.F.S.T.)
| | - Simone Alves da Silva
- Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Doutor Arnaldo Ave, Sao Paulo 01246-904, Brazil; (G.M.G.); (S.A.d.S.); (A.C.C.P.-L.); (M.M.R.); (E.A.F.S.T.)
- Organic Contaminant Core, Contaminant Centre, Adolfo Lutz Institute, 355 Doutor Arnaldo Ave, Sao Paulo 01246-000, Brazil;
| | - Adriana Palma de Almeida
- Organic Contaminant Core, Contaminant Centre, Adolfo Lutz Institute, 355 Doutor Arnaldo Ave, Sao Paulo 01246-000, Brazil;
| | - Ana Clara C. Pinaffi-Langley
- Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Doutor Arnaldo Ave, Sao Paulo 01246-904, Brazil; (G.M.G.); (S.A.d.S.); (A.C.C.P.-L.); (M.M.R.); (E.A.F.S.T.)
| | - Marcelo Macedo Rogero
- Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Doutor Arnaldo Ave, Sao Paulo 01246-904, Brazil; (G.M.G.); (S.A.d.S.); (A.C.C.P.-L.); (M.M.R.); (E.A.F.S.T.)
| | - Adriano Costa de Camargo
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| | - Elizabeth A. F. S. Torres
- Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Doutor Arnaldo Ave, Sao Paulo 01246-904, Brazil; (G.M.G.); (S.A.d.S.); (A.C.C.P.-L.); (M.M.R.); (E.A.F.S.T.)
| |
Collapse
|
13
|
Kamal El-Deen A, Shimizu K. Modified μ-QuEChERS coupled to diethyl carbonate-based liquid microextraction for PAHs determination in coffee, tea, and water prior to GC-MS analysis: An insight to reducing the impact of caffeine on the GC-MS measurement. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1171:122555. [PMID: 33756450 DOI: 10.1016/j.jchromb.2021.122555] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/24/2020] [Accepted: 01/14/2021] [Indexed: 12/21/2022]
Abstract
A fast, sensitive and eco-friendly method was developed for the determination of fifteen polycyclic aromatic hydrocarbons (PAHs) in different environmental matrices through gas chromatography mass spectrometry (GC-MS). The method utilizes a modified and miniaturized quick easy cheap effective rugged and safe (QuEChERS) clean up procedure coupled to an air-assisted dispersive liquid-liquid microextraction (AA-DLLME) for the enrichment of the concerned compounds. The AA-DLLME uses diethyl carbonate (DEC) as a green bio-based solvent for the microextraction. DEC is considered as biodegradable (with octanol/water coefficient < 3, resulting in low potential of bioaccumulation), classified as a green solvent and considered as one of the recommended solvent alternatives based on SSG results. The AA-DLLME procedure was optimized by One-Variable-at-A-Time (OVAT) succeeded by experimental design applying Central Composite Face-centered (CCF) design. The method linear calibration was found in the range of 10-120 µg/Kg for Benzo[a]pyrene and 5-100 µg/Kg for all other PAHs with low detection limits ranging from 0.01 to 2.10 µg/Kg. It could enrich the PAHs up to 166-folds. The combination of modified μ-QuEChERS with the green AA-DLLME could sharply decrease the caffeine amount on the final extract injected to the GC-MS instrument. The method was successfully applied to coffee, tea, and water samples with acceptable % recovery (>90%). Finally, the impact of our procedure to the environment from green analytical chemistry view was assessed by a novel metric system called AGREE, proving the greenness of our procedure.
Collapse
Affiliation(s)
- Asmaa Kamal El-Deen
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395 Fukuoka, Japan; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Kuniyoshi Shimizu
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395 Fukuoka, Japan.
| |
Collapse
|
14
|
Determination of teicoplanin in human plasma by reverse micelle mediated dispersive liquid-liquid microextraction with high performance liquid chromatography. J Chromatogr A 2021; 1643:462058. [PMID: 33756356 DOI: 10.1016/j.chroma.2021.462058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/07/2021] [Accepted: 03/07/2021] [Indexed: 11/22/2022]
Abstract
A reverse micelle mediated dispersive liquid-liquid microextraction (RM-DLLME) combined with high performance liquid chromatography-ultraviolet detector (HPLC-UV) was developed for extraction and determination of 5 A2 components of teicoplanin (TA2-1, TA2-2, TA2-3, TA2-4, TA2-5) in human plasma, and the mechanism of RM-DLLME was analysed and explored. In this method, 80 µL of the reverse micelle solution of cetylpyridinium chloride/n-hexanol (15 mmol/L) was used as the extraction solvent for the separation, extraction and enrichment of the teicoplanin in plasma sample. All factors affecting the extraction efficiencies of the target analytes, such as the amounts of acetonitrile and chloroform, the type and volume of reverse micelle solution, pH and volume of sample phase, dispersant, salt addition, extraction mode and time, centrifugation rate and time, were investigated and optimized. Under the optimum conditions, the 5 A2 components of teicoplanin achieved effective enrichment with the enrichment factors of 228-347 and obtained good linearity in the range of 0.8375-100.5 µg/mL with correlation coefficients higher than 0.9960. The limits of detection were ranged between 0.5025-3.015 µg/mL. Relative standard deviation values of the method precisions were lower than 10.6% and the average recoveries were in the range of 82.7-111.3%. The determination results of the method were demonstrated with favorable characteristics, such as high enrichment, good selectivity and sensitivity, satisfactory precision and accuracy, and this method could be employed to analysis of the teicoplanin in human plasma samples.
Collapse
|
15
|
Timofeeva I, Stepanova K, Bulatov A. In-a-syringe surfactant-assisted dispersive liquid-liquid microextraction of polycyclic aromatic hydrocarbons in supramolecular solvent from tea infusion. Talanta 2021; 224:121888. [PMID: 33379097 DOI: 10.1016/j.talanta.2020.121888] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/13/2022]
Abstract
In this work, an automated surfactant-assisted dispersive liquid-liquid microextraction approach based on in-a-syringe concept was developed for the first time. The procedure assumed mixing aqueous sample phase and hydrophilic emulsion containing hexanoic acid and sodium hexanoate in a syringe of flow system. Sodium hexanoate acted as an emulsifier in dispersive liquid-liquid microextraction process and it was required for the formation of supramolecular solvent phase. After spontaneous separation of phases in the syringe, the upper supramolecular solvent phase containing target analytes was withdrawn and analyzed. The procedure was applied to the determination of 13 polycyclic aromatic hydrocarbons in tea infusion by high performance liquid chromatography with fluorescence detection. It was shown that the supramolecular solvent provided effective extraction of polycyclic aromatic hydrocarbons and fast phase separation in the syringe without centrifugation. The enrichment factors were in the range of 38-46. The automated microextraction procedure lasted 4 min including syringe cleaning. Under optimal experimental conditions the linear detection ranges were found to be 0.05-50.00 μg L-1 with limits of detection calculated from a blank test, based on 3σ, 0.02-0.04 μg L-1. Recovery values in the range of 85-105% were achieved for tea infusion with a reproducibility expressed as RSD less than 4.1%.
Collapse
Affiliation(s)
- Irina Timofeeva
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University, St. Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya Nab., St. Petersburg, 199034, Russia.
| | - Kira Stepanova
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University, St. Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya Nab., St. Petersburg, 199034, Russia
| | - Andrey Bulatov
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University, St. Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya Nab., St. Petersburg, 199034, Russia
| |
Collapse
|
16
|
Deng W, Huang A, Zheng Q, Yu L, Li X, Hu H, Xiao Y. A density-tunable liquid-phase microextraction system based on deep eutectic solvents for the determination of polycyclic aromatic hydrocarbons in tea, medicinal herbs and liquid foods. Food Chem 2021; 352:129331. [PMID: 33652198 DOI: 10.1016/j.foodchem.2021.129331] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/24/2021] [Accepted: 02/07/2021] [Indexed: 12/24/2022]
Abstract
A novel density-tunable liquid-phase microextraction (DT-LPME) system was developed with high-density deep eutectic solvents (DESs) as extractant and low-density organic solvents as emulsifier and density regulator. DES-rich phase was induced to form in the bottom or in the top by adjusting the emulsifier amount. This system was used to directly extract polycyclic aromatic hydrocarbons (PAHs) from liquid and solid foods, and the obtained DES-rich phase was easy to be collected for quantification. The method (LPME with HPLC-fluorescence detector) has linearity (R2 > 0.9974), detection limits of 0.6-4.2 ng L-1 for liquid foods and 0.05-0.35 ng g-1 for solid foods, recoveries of 86.2-114.9%, and intra-day/inter-day RSDs below 6.6%. The method was applied to detect PAHs in real samples, and the PAHs residue was found in honey and five solid foods. The DT-LPME method is simple, fast, green and suitable for direct extraction of analytes from both liquid and solid samples.
Collapse
Affiliation(s)
- Wenwen Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; National 111 Center for Cellular Regulation and Molecular Pharmaceutics, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, Hubei, China
| | - Anqi Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Qutong Zheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Long Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xiao Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Hankun Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
| | - Yuxiu Xiao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| |
Collapse
|
17
|
Zhang Y, Chen X, Zhang Y. Analytical chemistry, formation, mitigation, and risk assessment of polycyclic aromatic hydrocarbons: From food processing to
in vivo
metabolic transformation. Compr Rev Food Sci Food Saf 2021; 20:1422-1456. [DOI: 10.1111/1541-4337.12705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/11/2020] [Accepted: 01/01/2021] [Indexed: 01/09/2023]
Affiliation(s)
- Yiju Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Xiaoqian Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| |
Collapse
|
18
|
Jamil LA, Sami HZ, Aghaei A, Moinfar S, Ataei S. Combination of modified ultrasound-assisted extraction with continuous sample drop flow microextraction for determination of pesticides in vegetables and fruits. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Vicente-Martínez Y, Caravaca M, Soto-Meca A. Non-chromatographic speciation of arsenic by successive dispersive liquid-liquid microextraction and in situ formation of an ionic liquid in water samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Difficulties with Use of Cocoa Bean Shell in Food Production and High Voltage Electrical Discharge as a Possible Solution. SUSTAINABILITY 2020. [DOI: 10.3390/su12103981] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cocoa and chocolate industries have huge problems with the utilization of waste generated during the production process. Waste material generated during production include cocoa pod husk, pulp, and cocoa bean shell. Cocoa shell is a by-product that has great potential because of its composition. It consists of dietary fibers, proteins, polyphenols, methylxanthines, etc. However, despite its favorable composition, cocoa shell often cannot be used directly in food production because it may contain components that are harmful for human health. Cocoa shell can carry mycotoxins, different microorganisms, polycyclic aromatic hydrocarbons, and heavy metals. High voltage electrical discharge presents a novel non-thermal method that has great potential for the decontamination of waste materials and can also be used for extraction of valuable compounds from cocoa shell.
Collapse
|