1
|
Zhang C, Tan J, He J, Hu Q, Li J, Xie J. Effect of lysine on the cysteine-xylose Maillard reaction to form flavor compounds. Food Chem 2025; 469:142529. [PMID: 39733566 DOI: 10.1016/j.foodchem.2024.142529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/17/2024] [Accepted: 12/14/2024] [Indexed: 12/31/2024]
Abstract
To understand flavor formation mechanisms in complex meat-like Maillard systems, effect of lysine on cysteine-xylose reaction to form flavors was studied. GC-MS and GC-O analyses found lysine of 1 times cysteine concentration led to the greatest amount of sulfur-containing meaty compounds while more additional lysine caused more pyrazine compounds. LC-MS analysis showed lysine competed with cysteine to form the early-stage intermediate of Lys-Amadori compounds and accelerated conversion of 2-threityl-thiazolidine-4-carboxylic acids to Cys-Amadori compounds from the cysteine-xylose reaction. Reaction rates based on UV 294 and 420 nm absorbance, browning color, and consumption of cysteine and xylose suggested addition of lysine continuously accelerated the Maillard reaction at intermediate and final stages. Pearson correlation analysis revealed less reaction rates and Lys-Amadori compounds formed could cause more meaty compounds and thereby exposed formation pathways of important aroma compounds. This work can provide guidance for optimizing meat or meat product composition to improve meat flavor.
Collapse
Affiliation(s)
- Chenping Zhang
- School of Light Industry Science and Engineering, School of Food Science and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jia Tan
- School of Light Industry Science and Engineering, School of Food Science and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jinxin He
- School of Light Industry Science and Engineering, School of Food Science and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Qingqing Hu
- School of Light Industry Science and Engineering, School of Food Science and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Juan Li
- School of Light Industry Science and Engineering, School of Food Science and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jianchun Xie
- School of Light Industry Science and Engineering, School of Food Science and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China..
| |
Collapse
|
2
|
Li T, Yang C, Zhang L. Novel insight into Amadori compounds: Fate of Amadori compounds in food supply chain. Compr Rev Food Sci Food Saf 2025; 24:e70149. [PMID: 40091644 DOI: 10.1111/1541-4337.70149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 03/19/2025]
Abstract
Amadori compounds, pivotal intermediates in the Maillard reaction, act as flavor enhancer, browning precursor, and functional component. Amadori compounds consisting of diverse amino and carbonyl groups might show distinct flavor attributes and functional activities. Food production involves many supply chain stages where thermal treatment might produce Amadori compounds, and processing techniques and circumstances might affect the generation and stability of Amadori compounds. Moreover, gastrointestinal digestion might also influence the stability of Amadori compounds. To date, there is a lack of comprehensive review on the impact of various supply chain stages and digestion on Amadori compounds. This paper reviewed all reported Amadori compounds derived from diverse reducing sugars (glucose, xylose, ribose, maltose) and amino-containing compounds (common and specific amino acids, peptides), and compared differences in synthetic efficiency, flavor property, and functional activity among them; aggregated qualitative techniques; encapsulated quantitative techniques including indirect quantification and direct quantification, and intuitively compared strengths and weaknesses of these techniques; and outlined influence of processing, cooking, storage, and digestion on formation and stability of Amadori compounds. Appropriate processing techniques and conditions favored the generation and stability of Amadori compounds. Baking, frying, and roasting greatly facilitated Amadori compounds accumulation compared to steaming and boiling. Prolonged cooking at relatively low temperature favored Amadori compounds accumulation, whereas high-temperature cooking for a short duration resulted in fewer accumulation. Amadori compounds showed greater digestion resistance and could be absorbed by the intestine. This review offers scientific instruction for producing high-quality products with abundant Amadori compounds, or extracting plentiful Amadori compounds from processed foods as versatile food additives.
Collapse
Affiliation(s)
- Tingting Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Cheng Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lianfu Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Du W, Ma Q, Li Y, Bai S, Huang Y, Cui W, Accoroni C, Fan B, Wang F. Effects of unsaturated C18 fatty acids on "glucose-glutathione" Maillard reaction: Comparison and formation pathways of initial stage and meaty flavor compounds. Food Res Int 2025; 201:115645. [PMID: 39849734 DOI: 10.1016/j.foodres.2024.115645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/30/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
To explore the effect of oleic acid, linoleic acid, and linolenic acid on "glucose-glutathione" Maillard reaction initial stage and meaty flavor compounds formation pathways, glutathione-Amadori compound was synthesized, and identified by Q/TOF and NMR. Depending on the concentration of glutathione and glutathione-Amadori compound quantified by UPLC-MS/MS, the unsaturated C18 fat acids inhibited glutathione Amadori compound formation or accelerated degradation, and oleic acid inhibited most markedly. The results showed that 65 volatile compounds were detected by GC-MS-O in four model systems. Particularly, following the addition of unsaturated C18 fatty acids, the content of meaty flavor compounds sequentially decreased from oleic acid to linoleic acid and then to linolenic acid. The CAMOLA (carbohydrate module labeling) demonstrated the 2-methylthiophene, 2-thiophenecarboxaldehyde, 4-mercaptophenol, 2-acetylthiazole, and thieno[3,2-b]thiophene formation pathways. Particularly, we found for the first time that the skeleton of 4-mercaptophenol generated from glucose. The volatile compounds of reaction systems were discriminated by heatmap and PCA analysis. These results highlights the effect of lipid composition on Maillard reaction and contributes to the control of savory flavor.
Collapse
Affiliation(s)
- Wenbin Du
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qianli Ma
- The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yang Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuang Bai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yatao Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Food Science Technology Nutrition and Health (CangZhou) CAAS, CangZhou, HeBei 061019, China
| | - Weiye Cui
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Cecilia Accoroni
- National Institute of Agricultural Technology (INTA), Oliveros, Santa Fe 2115, Argentina
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
4
|
Zhang Y, Li J, Zeng Z, Wei X, Brunton NP, Yang Y, Gao P, Xing J, Li P, Liu F, Liu R, Li Q, Liu H, Li J. Exploring the freshness biomarker and volatiles formation in stored pork by means of lipidomics and volatilomics. Food Res Int 2025; 200:115476. [PMID: 39779125 DOI: 10.1016/j.foodres.2024.115476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/08/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Raw pork is prone to oxidation and rancidity as it contains a high level of unsaturated lipid molecules. Reliable biomarkers to benchmark pork freshness and their formation have not been systematically investigated. The results indicated that the peroxide values, TVB-N and rancid volatiles dramatically increased in pork during the storage period (4 °C, 0-9 d). Concentrations of most volatile compounds with carbonyl groups were increased markedly in pork during storing, including hexanal, acetic acid, and hexadecanoic acid methyl ester. Lipidomics, volatilomics and chemometrics methods were used to discriminate the freshness of pork, among which acetic acid and PC O-20:3 emerged as the most reliable freshness biomarkers. Phospholipids and neutral lipids, including phosphatidylcholines (PC), triglycerides (TG), and phosphatidylethanolamine (PE), played a crucial role in the formation of rancid volatiles and the decreased freshness. This work will provide technical supports for the efficient storage and preservation of raw meat.
Collapse
Affiliation(s)
- Yuping Zhang
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Bionanotechnology Institute, Ludong University, Yantai 264025, China
| | - Jingyu Li
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Bionanotechnology Institute, Ludong University, Yantai 264025, China
| | - Zixu Zeng
- Yantai Institute of Technology, Yantai 264025, China
| | - Xiangru Wei
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Nigel P Brunton
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Yanqing Yang
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Bionanotechnology Institute, Ludong University, Yantai 264025, China
| | - Peng Gao
- Thermo Fisher Scientific, Beijing 100102, China
| | | | - Pi Li
- Thermo Fisher Scientific, Beijing 100102, China
| | - Fangjie Liu
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Bionanotechnology Institute, Ludong University, Yantai 264025, China
| | - Rui Liu
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Bionanotechnology Institute, Ludong University, Yantai 264025, China
| | - Qianqian Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Huan Liu
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Bionanotechnology Institute, Ludong University, Yantai 264025, China.
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
5
|
Ping C, Liu Y, Bi J, Cai X, Li X, Qiao M. Identification of characteristic flavor quality of ceramic-pot sealed meat after reheating based on HS-GC-IMS, bionic sensory combined chemometrics. Food Chem X 2024; 23:101640. [PMID: 39105100 PMCID: PMC11298606 DOI: 10.1016/j.fochx.2024.101640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
This study investigated the impacts of microwave reheating (MR), boil reheating (BR), and steam reheating (SR) on the flavor profile of Ceramic-Pot Sealed Meat (CPSM). Electronic nose and tongue revealed that the microwaving was superior in preserving the original olfactory and gustatory profiles of CPSM compared to the other methods. Headspace- Gas chromatography- ion mobility spectrometry (HS-GC-IMS) detected 48 compounds, encompassing 15 alcohols, 11 aldehydes, 9 ketones, 7 esters, 2 alkenes, and 2 others, 1 acid. Spectral and clustering analysis revealed a significant rise in the content of Warmed-over flavor compounds after boil reheating, culminating in pronounced flavor distortion and a decline in sensory scores. Relative odor activity value (ROAV) and chemometrics identified nine substances as the principal flavor compounds responsible to flavor distortion. In conclusion, all reheating methods induce changes in the original flavor characteristics profiles of CPSM. However, microwave reheating offers superior preservation of the flavor characteristics of CPSM.
Collapse
Affiliation(s)
- Chunyuan Ping
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Yuanqi Liu
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Jicai Bi
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Xuemei Cai
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Xiang Li
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
- Culinary College, Sichuan Tourism University, Chengdu 610100, China
| | - Mingfeng Qiao
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| |
Collapse
|
6
|
Zhang C, Wang X, Liu Y, Wang J, Xie J. Characteristics of meat flavoring prepared using hydrolyzed plant protein mix by three different heating processes. Food Chem 2024; 446:138853. [PMID: 38422645 DOI: 10.1016/j.foodchem.2024.138853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/13/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
Meat flavoring was prepared using mainly enzymatic hydrolysate of plant protein mix, VB1, cysteine, and glucose by three heating processes, including A (80 °C-140 min), B (two-stage, 80 °C-30 min/120 °C-30 min), and C (120 °C-40 min). The A-, B-, and C-heated samples exhibited the strongest fatty and weakest meaty, the strongest meaty and kokumi, and the strongest roasted and bitterness characteristics, respectively. PLS-DA for free amino acids with TAVs and that for SPME/GC-MS results with GC-O and OAVs, suggested three amino acids and eight flavor compounds contributed significantly in differentiating taste or aroma attributes of the three heated samples. Molecular weight distribution and degree of amino substitution suggested 1-5 kDa peptides contributed to kokumi taste. Overall, C- and A-heating exhibited the highest rates in Maillard reaction and lipid oxidation, respectively, while those of B heating were between these two heating processes and responsible for better flavor of meat flavoring.
Collapse
Affiliation(s)
- Chenping Zhang
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xuan Wang
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yang Liu
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jianan Wang
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jianchun Xie
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
7
|
Luo D, Tian B, Li J, Zhang W, Bi S, Fu B, Jing Y. Mechanisms underlying the formation of main volatile odor sulfur compounds in foods during thermal processing. Compr Rev Food Sci Food Saf 2024; 23:e13389. [PMID: 39031671 DOI: 10.1111/1541-4337.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 07/22/2024]
Abstract
Volatile sulfur compounds (VSCs) significantly influence food flavor and garner considerable attention in flavor research due to their low sensory thresholds, diverse odor attributes, and high reactivity. Extensive research studies have explored VSC formation through thermal processes such as the Maillard reaction, thermal pyrolysis, oxidation, and enzymatic reactions. However, understanding of the specific reaction mechanisms and processes remains limited. This is due to the dispersed nature of existing studies, the undefined intermediates involved, and the complexity of the matrices and processing conditions. Given these limitations, the authors have shifted their focus from foods to sulfides. The structure, source, and chemical characteristics of common precursors (sulfur-containing amino acids and derivatives, thiamine, thioglucoside, and lentinic acid) and their corresponding reactive intermediates (hydrogen sulfide, thiol, alkyl sulfide, alkyl sulfenic acid, and thial) are provided, and the degradation mechanisms, reaction rules, and matrix conditions are summarized based on their chemical characteristics. Additionally, the VSC formation processes in several typical foods during processing are elucidated, adhering to these identified rules. This article provides a comprehensive overview of VSCs, from precursors and intermediates to end products, and is crucial for understanding the mechanisms behind VSC formation and managing the flavor qualities of processed foods.
Collapse
Affiliation(s)
- Dongsheng Luo
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Binqiang Tian
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Jingxin Li
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Wentao Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Shuang Bi
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Bo Fu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Yanqiu Jing
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
8
|
Yuan H, Wu H, Qiao M, Tang W, Dong P, Deng J. Characterization of Flavor Profile of Sauced Pork from Different Regions of China Based on E-Nose, E-Tongue and Gas Chromatography-Ion Mobility Spectroscopy. Molecules 2024; 29:1542. [PMID: 38611821 PMCID: PMC11013253 DOI: 10.3390/molecules29071542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
This study aimed to investigate the volatile flavor compounds and tastes of six kinds of sauced pork from the southwest and eastern coastal areas of China using gas chromatography-ion mobility spectroscopy (GC-IMS) combined with an electronic nose (E-nose) and electronic tongue (E-tongue). The results showed that the combined use of the E-nose and E-tongue could effectively identify different kinds of sauced pork. A total of 52 volatile flavor compounds were identified, with aldehydes being the main flavor compounds in sauced pork. The relative odor activity value (ROAV) showed that seven key volatile compounds, including 2-methylbutanal, 2-ethyl-3, 5-dimethylpyrazine, 3-octanone, ethyl 3-methylbutanoate, dimethyl disulfide, 2,3-butanedione, and heptane, contributed the most to the flavor of sauced pork (ROAV ≥1). Multivariate data analysis showed that 13 volatile compounds with the variable importance in projection (VIP) values > 1 could be used as flavor markers to distinguish six kinds of sauced pork. Pearson correlation analysis revealed a significant link between the E-nose sensor and alcohols, aldehydes, terpenes, esters, and hetero-cycle compounds. The results of the current study provide insights into the volatile flavor compounds and tastes of sauced pork. Additionally, intelligent sensory technologies can be a promising tool for discriminating different types of sauced pork.
Collapse
Affiliation(s)
- Haibin Yuan
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China; (H.Y.); (M.Q.); (W.T.)
- Faculty of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Huachang Wu
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China;
| | - Mingfeng Qiao
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China; (H.Y.); (M.Q.); (W.T.)
| | - Wanting Tang
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China; (H.Y.); (M.Q.); (W.T.)
| | - Ping Dong
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China; (H.Y.); (M.Q.); (W.T.)
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China;
| | - Jing Deng
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China; (H.Y.); (M.Q.); (W.T.)
| |
Collapse
|
9
|
Duché G, Sanderson JM. The Chemical Reactivity of Membrane Lipids. Chem Rev 2024; 124:3284-3330. [PMID: 38498932 PMCID: PMC10979411 DOI: 10.1021/acs.chemrev.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.
Collapse
Affiliation(s)
- Genevieve Duché
- Génie
Enzimatique et Cellulaire, Université
Technologique de Compiègne, Compiègne 60200, France
| | - John M Sanderson
- Chemistry
Department, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
10
|
Du W, Wang Y, Ma Q, Li Y, Wang B, Bai S, Fan B, Wang F. The number and position of unsaturated bonds in aliphatic aldehydes affect meat flavorings system: Insights on initial Maillard reaction stage and meat flavor formation from thiazolidine derivatives. Curr Res Food Sci 2024; 8:100719. [PMID: 38533489 PMCID: PMC10963188 DOI: 10.1016/j.crfs.2024.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Nonanal, (E)-2-nonenal, (E,E)-2,4-nonadienal, and (E,Z)-2,6-nonadienal were used to study the effect of number and position of the unsaturated bond in aliphatic aldehydes on meat flavorings. Cysteine-Amadori and thiazolidine derivatives were synthesized, identified by UPLC-TOF/MS and NMR, and quantitatively by UPLC-MS/MS. The polyunsaturated aldehydes exhibited higher inhibition than monounsaturated aldehydes, and monounsaturated aldehydes exhibited higher inhibition than saturated aldehydes, mainly manifested by the inhibition of the cysteine-Amadori formation and acceleration of the thiazolidine derivatives formation. The effect of unsaturated bonds position in aliphatic aldehydes on the initial Maillard reaction stage was similar. The cysteine played an important role in catalyzing the reaction of aliphatic aldehydes. A total of 109 volatile compounds derived by heating prepared thiazolidine derivatives degradation were detected by GC-MS. Formation pathways of volatile compounds were proposed by retro-aldol, oxidation, etc. Particularly, a route to form thiazole by the decarboxylation reaction of thiazolidine derivatives which derivatives from formaldehyde reacting with cysteine was proposed.
Collapse
Affiliation(s)
- Wenbin Du
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, 100193, China
| | - Yutang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, 100193, China
| | - Qianli Ma
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yang Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, 100193, China
| | - Bo Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, 100193, China
| | - Shuang Bai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, 100193, China
| |
Collapse
|
11
|
Li M, Sun M, Ren W, Man L, Chai W, Liu G, Zhu M, Wang C. Characterization of Volatile Compounds in Donkey Meat by Gas Chromatography-Ion Mobility Spectrometry (GC-IMS) Combined with Chemometrics. Food Sci Anim Resour 2024; 44:165-177. [PMID: 38229857 PMCID: PMC10789554 DOI: 10.5851/kosfa.2023.e67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/22/2023] [Accepted: 10/05/2023] [Indexed: 01/18/2024] Open
Abstract
Volatile compounds (VOCs) are an important factor affecting meat quality. However, the characteristic VOCs in different parts of donkey meat remain unknown. Accordingly, this study represents a preliminary investigation of VOCs to differentiate between different cuts of donkey meat by using headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) combined with chemometrics analysis. The results showed that the 31 VOCs identified in donkey meat, ketones, alcohols, aldehydes, and esters were the predominant categories. A total of 10 VOCs with relative odor activity values ≥1 were found to be characteristic of donkey meat, including pentanone, hexanal, nonanal, octanal, and 3-methylbutanal. The VOC profiles in different parts of donkey meat were well differentiated using three- and two-dimensional fingerprint maps. Nine differential VOCs that represent potential markers to discriminate different parts of donkey meat were identified by chemometrics analysis. These include 2-butanone, 2-pentanone, and 2-heptanone. Thus, the VOC profiles in donkey meat and specific VOCs in different parts of donkey meat were revealed by HS-GC-IMS combined with chemometrics, whcih provided a basis and method of investigating the characteristic VOCs and quality control of donkey meat.
Collapse
Affiliation(s)
- Mengmeng Li
- School of Agricultural Science and
Engineering, School of Materials Science and Engineering, Liaocheng Research
Institute of Donkey High-Efficiency Breeding and Ecological Feeding,
Liaocheng University, Liaocheng 252000, China
| | - Mengqi Sun
- School of Agricultural Science and
Engineering, School of Materials Science and Engineering, Liaocheng Research
Institute of Donkey High-Efficiency Breeding and Ecological Feeding,
Liaocheng University, Liaocheng 252000, China
| | - Wei Ren
- School of Agricultural Science and
Engineering, School of Materials Science and Engineering, Liaocheng Research
Institute of Donkey High-Efficiency Breeding and Ecological Feeding,
Liaocheng University, Liaocheng 252000, China
| | - Limin Man
- School of Agricultural Science and
Engineering, School of Materials Science and Engineering, Liaocheng Research
Institute of Donkey High-Efficiency Breeding and Ecological Feeding,
Liaocheng University, Liaocheng 252000, China
| | - Wenqiong Chai
- School of Agricultural Science and
Engineering, School of Materials Science and Engineering, Liaocheng Research
Institute of Donkey High-Efficiency Breeding and Ecological Feeding,
Liaocheng University, Liaocheng 252000, China
| | - Guiqin Liu
- School of Agricultural Science and
Engineering, School of Materials Science and Engineering, Liaocheng Research
Institute of Donkey High-Efficiency Breeding and Ecological Feeding,
Liaocheng University, Liaocheng 252000, China
| | - Mingxia Zhu
- School of Agricultural Science and
Engineering, School of Materials Science and Engineering, Liaocheng Research
Institute of Donkey High-Efficiency Breeding and Ecological Feeding,
Liaocheng University, Liaocheng 252000, China
| | - Changfa Wang
- School of Agricultural Science and
Engineering, School of Materials Science and Engineering, Liaocheng Research
Institute of Donkey High-Efficiency Breeding and Ecological Feeding,
Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
12
|
Wang T, Han D, Zhao L, Huang F, Yang P, Zhang C. Binding of Selected Aroma Compounds to Myofibrillar Protein, Sarcoplasmic Protein, and Collagen during Thermal Treatment: Role of Conformational Changes and Degradation of Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17860-17873. [PMID: 37883668 DOI: 10.1021/acs.jafc.3c02618] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
To investigate the effects of conformational changes and thermal degradation of myofibrillar protein (MP), sarcoplasmic protein (SP), and collagen (CO) on the binding ability for aroma compounds during heating. Using SDS-PAGE, HPLC, and LC-MS/MS, a consistent rise in the total concentration of peptides and free amino acids formed by the thermal degradation of proteins was observed. The surface hydrophobicity, total sulfhydryl content, particle size, and secondary structure content of proteins changed significantly over time. Furthermore, the aroma binding ability of proteins was determined by gas chromatography-mass spectrometry. The results revealed an increase in binding ability during 5 or 10 min of heating due to protein unfolding and the accumulation of degradation products. However, the binding ability decreased due to protein aggregation with prolonged heating. Notably, all proteins exhibited strong affinity toward (E)-2-octenal, (E,E)-2,4-decadienal, 2-methyl-3-furanthiol, and dimethyl trisulfide. The binding ability of MP and SP was similar but differed significantly from that of CO, which had lower binding ability for hexanal, (E)-2-octenal, (E,E)-2,4-decadienal, and dimethyl trisulfide compared to MP and SP.
Collapse
Affiliation(s)
- Tianze Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dong Han
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Laiyu Zhao
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Feng Huang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ping Yang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Yihai Kitchen (Tianjing) Investment Co., Ltd., Tianjin 300461, China
| |
Collapse
|
13
|
Du W, Wang Y, Yan Q, Bai S, Huang Y, Li L, Mu Y, Shakoor A, Fan B, Wang F. The number and position of unsaturated bonds in aliphatic aldehydes affect the cysteine-glucose Maillard reaction: Formation mechanism and comparison of volatile compounds. Food Res Int 2023; 173:113337. [PMID: 37803647 DOI: 10.1016/j.foodres.2023.113337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 10/08/2023]
Abstract
Nonanal, (E)-2-nonenal, (E,E)-2,4-nonadienal, and (E,Z)-2,6-nonadienal were used to reveal the effect of the number and position of unsaturated bond in aliphatic aldehydes on Maillard reaction for the generation of 88 stewed meat-like volatile compounds. The results showed that (E,E)-2,4-nonadienal and (E,Z)-2,6-nonadienal exhibited greater inhibition of the cysteine reaction with glucose than nonanal and (E)-2-nonenal. However, the positions of the unsaturated bonds in aliphatic aldehydes in the Maillard reaction stage were similar. A carbohydrate module labeling approach was used to present the formation pathways of 34 volatile compounds derived from the Maillard reaction with aliphatic aldehyde systems. The number and position of unsaturated bonds in aliphatic aldehydes generate multiple pathways of flavor compound formation. 2-Propylfuran and (E)-2-(2-pentenyl)furan resulted from aliphatic aldehydes. 5-Butyldihydro-2(3H)-furanone and 2-methylthiophene were produced from the Maillard reaction. 2-Furanmethanol, 2-thiophenecarboxaldehyde, and 5-methyl-2-thiophenecarboxaldehyde were derived from the interaction of aliphatic aldehydes and the Maillard reaction. In Particular, the addition of aliphatic aldehydes changed the formation pathway of 2-propylthiophene, thieno[3,2-b]thiophene, and 2,5-thiophenedicarboxaldehyde. Heatmap and PLS-DA analysis could discriminate volatile compound compositions of the five systems and screen the marker compounds differentiating volatile compounds.
Collapse
Affiliation(s)
- Wenbin Du
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yutang Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qinghong Yan
- Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China
| | - Shuang Bai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yatao Huang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Long Li
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuwen Mu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ashbala Shakoor
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Bei Fan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
14
|
Zhou T, Xia X, Cui H, Hayat K, Zhang X, Ho CT. Promotion or Inhibition Effects of Exogenous Glutathione-Degraded Amino Acids on the Formation of 2,3-Butanedione and Pyrazines via Varied Pathways of Interaction with α-Dicarbonyl Compounds Derived from N-(1-Deoxy-d-xylulos-1-yl)-alanine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14312-14321. [PMID: 37737140 DOI: 10.1021/acs.jafc.3c04424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The contribution of glutathione (GSH) and free amino acids degraded from GSH to the generation of pyrazines and 2,3-butanedione was illustrated during their interaction in the thermal treatment of the Amadori compound of alanine and xylose (ARP). GSH-degraded amino acids, glutamic acid (Glu), cysteine (Cys), and glycine (Gly), but not pyroglutamic acid (pGlu), could effectively capture α-dicarbonyls to facilitate the formation of pyrazines when ARP was heated with GSH. Deoxypentosones, the precursors of 2,3-butanedione, were largely consumed in the ARP-GSH model by the interaction with GSH and its degradative Cys compared with the ARP model. The addition of GSH and deoxypentosones inhibited the further degradation of deoxypentosones, resulting in less formation of 2,3-butanedione and other α-dicarbonyl compounds. Meanwhile, the reaction between GSH-degraded Cys and deoxypentosones to form sulfur-containing compounds such as thiols accelerated the consumption of deoxypentosones; thereby, the formation of 2,3-butanedione was severely interfered. However, this inhibition was compensated for by the GSH-degraded Gly through the addition between Gly and MGO and the subsequent deamination. The involvement of exogenous GSH could simultaneously boost the yields of 2,3-butanedione and pyrazines compared with those of ARP heated alone. As the degree of GSH degradation strengthened in the ARP-thermal-degraded GSH models, the yields of both pyrazines and 2,3-butanedione steadily increased.
Collapse
Affiliation(s)
- Tong Zhou
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Xue Xia
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Heping Cui
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio 45056, United States
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
15
|
Wang Y, Zhang H, Li K, Luo R, Wang S, Chen F, Sun Y. Dynamic changes in the water distribution and key aroma compounds of roasted chicken during roasting. Food Res Int 2023; 172:113146. [PMID: 37689908 DOI: 10.1016/j.foodres.2023.113146] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 09/11/2023]
Abstract
The effects of roasting times (0, 2, 4, 6, 8, 10, 12, and 14 min) on the dynamic changes of the water distribution and key aroma compounds in roasted chicken during the electric roasting process were studied. In total, 36 volatile compounds were further determined by GC-MS and 11 compounds, including 1-octen-3-ol, 1-heptanol, hexanal, decanal, (E)-2-octenal, acetic acid hexyl ester, nonanal, 2-pentylfuran, heptanal, (E, E)-2,4-decadienal and octanal, were confirmed as key aroma compounds. The relaxation time of T22 and T23 was increased first and then decreased, while the M22 and M23 in roasted chicken were decreased and increased with increasing roasting time, respectively. The fluidity of the water in the chicken during the roasting process was decreased, and the water with a high degree of freedom migrated to the water with a low degree of freedom. In addition, the L*, a*, b*, M23 and all amino acids were positively correlated with all the key aroma compounds, while T22, M22 and moisture content were negatively correlated with all the key aroma compounds.
Collapse
Affiliation(s)
- Yongrui Wang
- College of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Heyu Zhang
- College of Agriculture, Ningxia University, Yinchuan 750021, China
| | - KenKen Li
- College of Food and Wine, Ningxia University, Yinchuan 750021, China
| | - Ruiming Luo
- College of Food and Wine, Ningxia University, Yinchuan 750021, China
| | - Songlei Wang
- College of Food and Wine, Ningxia University, Yinchuan 750021, China.
| | - Fang Chen
- School of Primary Education, Chongqing Normal University, Chongqing 400700, China
| | - Ye Sun
- Quality Control Office, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
16
|
Liu Z, Huang Y, Kong S, Miao J, Lai K. Selection and quantification of volatile indicators for quality deterioration of reheated pork based on simultaneously extracting volatiles and reheating precooked pork. Food Chem 2023; 419:135962. [PMID: 37004364 DOI: 10.1016/j.foodchem.2023.135962] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023]
Abstract
This study was to screen and quantify characteristic volatiles tied to the quality deterioration of reheated pork via simultaneously reheating (75 °C, 30 min) and collecting headspace volatiles of precooked pork (100 °C, 10 min; stored: 0 °C, 0-14 d) for GC-MS analysis. The concentrations of hexanal (6.05 ± 0.86-12.05 ± 0.44 mg/kg), (E)-2-octenal (1.54 ± 0.16-3.07 ± 0.08 mg/kg), (E,E)-2,4-heptadienal (1.52 ± 0.44-2.58 ± 0.31 mg/kg) and 8 other selected volatiles in reheated pork increased as the storage time of the precooked counterparts increased. The increase rate of hexanal was 2.9-199 times faster than that of other volatiles based on zero-order reaction fitting (R2 = 0.876-0.997). Results from clustering analysis of these volatiles were consistent with their formation pathways tied to lipid autooxidation. This simple approach, reheating and collecting volatiles of precooked meat concurrently, introduces a new possibility for standardizing volatile analysis of precooked meats required being reheated before consumption.
Collapse
Affiliation(s)
- Zhijie Liu
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China; School of Food Science and Bioengineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali South Rd, Changsha, Hunan 410114, China
| | - Yiqun Huang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali South Rd, Changsha, Hunan 410114, China.
| | - Shanshan Kong
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China
| | - Junjian Miao
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Keqiang Lai
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
17
|
Characterization of the relationship between lipids and volatile compounds in donkey, bovine, and sheep meat by UHPLC–ESI–MS and SPME–GC–MS. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Fu Y, Cao S, Yang L, Li Z. Flavor formation based on lipid in meat and meat products: A review. J Food Biochem 2022; 46:e14439. [PMID: 36183160 DOI: 10.1111/jfbc.14439] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/26/2022] [Accepted: 09/19/2022] [Indexed: 01/14/2023]
Abstract
Meat product is popular throughout the world due to its unique taste. Flavor is one of the most important quality characteristics of meat products and also is a key influencing factor in the overall acceptability of meat products. The flavor of meat products is formed by precursors undergoing a series of complex reactions. During meat product processing, lipids are hydrolyzed by lipase to produce flavor precursors such as free fatty acid, then further oxidized to form volatile flavor compounds. This review summarizes lipolysis, lipid oxidation, and interaction of lipid with Maillard reaction and amino acid during meat products processing and storage as well as influencing factors on lipid degradation including raw meat (source of meat, feeding pattern, and castration), processing methods (thermal processing, nonthermal processing, salting, and fermentation) and additives. Meanwhile, the volatile compounds produced by lipids in meat products including aldehydes, alcohols, ketones, and hydrocarbons are summed up. Analytical methods of volatile compounds and the application of lipidomics analysis in mechanisms of flavor formation of meat products are also reviewed. PRACTICAL APPLICATIONS: Flavor is one of the most important quality characteristics of meat products, which influences the acceptability of meat products for consumption. Lipids play an important role in the flavor formation of meat products. Understanding the relationship between flavor compounds and changes in lipid compositions during the processing and storage of meat products will be helpful to control the quality of meat products.
Collapse
Affiliation(s)
- Yinghua Fu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Shenyi Cao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Li Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Zhenglei Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
19
|
Wang YR, Wang SL, Luo RM. Evaluation of key aroma compounds and protein secondary structure in the roasted Tan mutton during the traditional charcoal process. Front Nutr 2022; 9:1003126. [PMID: 36330139 PMCID: PMC9622931 DOI: 10.3389/fnut.2022.1003126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/20/2022] [Indexed: 09/11/2023] Open
Abstract
The traditional charcoal technique was used to determine the changes in the key aroma compounds of Tan mutton during the roasting process. The results showed that the samples at the different roasting time were distinguished using GC-MS in combination with PLS-DA. A total of 26 volatile compounds were identified, among which 14 compounds, including (E)-2-octenal, 1-heptanol, hexanal, 1-hexanol, heptanal, 1-octen-3-ol, 1-pentanol, (E)-2-nonenal, octanal, 2-undecenal, nonanal, pentanal, 2-pentylfuran and 2-methypyrazine, were confirmed as key aroma compounds through the odor activity values (OAV) and aroma recombination experiments. The OAV and contribution rate of the 14 key aroma compounds were maintained at high levels, and nonanal had the highest OAV (322.34) and contribution rate (27.74%) in the samples after roasting for 10 min. The content of α-helix significantly decreased (P < 0.05), while the β-sheet content significantly increased (P < 0.05) during the roasting process. The content of random coils significantly increased in the samples roasted for 0-8 min (P < 0.05), and then no obvious change was observed. At the same time, β-turn content had no obvious change. Correlation analysis showed that the 14 key aroma compounds were all positively correlated with the content of α-helix and negatively correlated with the contents of β-sheet and random coil, and also positively correlated with the content of β-turn, except hexanal and 2-methypyrazine. The results are helpful to promoting the industrialization of roasted Tan mutton.
Collapse
Affiliation(s)
- Yong-Rui Wang
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Song-Lei Wang
- College of Food and Wine, Ningxia University, Yinchuan, China
| | - Rui-Ming Luo
- College of Food and Wine, Ningxia University, Yinchuan, China
| |
Collapse
|
20
|
Feng L, Cui H, Chen P, Hayat K, Zhang X, Ho CT. Promoted Formation of Pyrazines and Sulfur-Containing Volatile Compounds through Interaction of Extra-Added Glutathione or Its Constituent Amino Acids and Secondary Products of Thermally Degraded N-(1-Deoxy-d-ribulos-1-yl)-Glutathione. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9095-9105. [PMID: 35838405 DOI: 10.1021/acs.jafc.2c02949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An Amadori rearrangement product (ARP) derived from ribose (Rib) and glutathione (GSH) was prepared and identified as N-(1-deoxy-d-ribulos-1-yl)-glutathione by ultraperformance liquid chromatography-tandem mass spectrometry and NMR. Thermal treatment of the ARP aqueous solution was conducted, and a relatively high temperature was found to accelerate the degradation of the ARP. The concentration of furans formed at 120 °C was more than 6.39 times that at 100 °C, and especially, the high temperature favored the formation of furfural and 4-hydroxy-5-methyl-3(2H)-furanone through deoxyosone dehydration. The promoting role of extra-added GSH or its constituent amino acids was investigated in the volatile formation during thermal processing of the ARP. Both, the added GSH and its constituent amino acids, could timely capture glyoxal (GO) and methylglyoxal (MGO) to facilitate Strecker degradation, which improved pyrazine formation. Compared with glycine and glutamic acid, cysteine was the most effective extra-added amino acid to react with GO and MGO to produce pyrazine and methylpyrazine. More importantly, the cysteine degraded from extra-added GSH effectively accelerated the generation of sulfur-containing volatile compounds through the reaction of cysteine degradation products with furans and shorter-chain α-dicarbonyl compounds.
Collapse
Affiliation(s)
- Linhui Feng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Heping Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Pusen Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio 45056, United States
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
21
|
Wang Y, Xie J, Zhang C, Xu Y, Yang X. Effect of lipid on formation of Maillard and
lipid‐Maillard
meaty flavour compounds in heated cysteine‐xylose‐methyl linoleate system. FLAVOUR FRAG J 2022. [DOI: 10.1002/ffj.3710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yutong Wang
- School of Light Industry Beijing Technology and Business University (BTBU) Beijing China
| | - Jianchun Xie
- School of Light Industry Beijing Technology and Business University (BTBU) Beijing China
| | - Chenping Zhang
- School of Light Industry Beijing Technology and Business University (BTBU) Beijing China
| | - Yuxia Xu
- School of Light Industry Beijing Technology and Business University (BTBU) Beijing China
| | - Xuelian Yang
- School of Food and Health Beijing Technology and Business University (BTBU) Beijing China
| |
Collapse
|
22
|
Maillard reaction chemistry in formation of critical intermediates and flavour compounds and their antioxidant properties. Food Chem 2022; 393:133416. [DOI: 10.1016/j.foodchem.2022.133416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/26/2022] [Accepted: 06/04/2022] [Indexed: 12/28/2022]
|
23
|
Sohail A, Al-Dalali S, Wang J, Xie J, Shakoor A, Asimi S, Shah H, Patil P. Aroma compounds identified in cooked meat: A review. Food Res Int 2022; 157:111385. [DOI: 10.1016/j.foodres.2022.111385] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 01/10/2023]
|
24
|
Li J, Xu Y, Du W, Jin L, Ren P, Ren F, Xie JC. Comparative analysis of aroma compounds in Chinese traditional dry-rendered fat by HS/GC-IMS, SPME/GC-MS, and SPME/GC-O. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Jin Y, Yuan X, Zhao W, Li H, Zhao G, Liu J. The SLC27A1 Gene and Its Enriched PPAR Pathway Are Involved in the Regulation of Flavor Compound Hexanal Content in Chinese Native Chickens. Genes (Basel) 2022; 13:genes13020192. [PMID: 35205238 PMCID: PMC8872575 DOI: 10.3390/genes13020192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
The role of hexanal in flavor as an indicator of the degree of oxidation of meat products is undeniable. However, the genes and pathways of hexanal formation have not been characterized in detail. In this study, we performed differential gene expression analysis and weighted gene co-expression network analysis (WGCNA) on groups of Tiannong partridge chickens with different relative hexanal content in order to find the genes involved in the formation of hexanal and the specific pathways of hexanal formation. Then we confirmed the relationship of these candidate genes with hexanal using Jingxing Yellow chicken and Wenchang chicken. In this study, WGCNA revealed a module of co-expressed genes that were highly associated with the volatile organic compound hexanal. We also compared transcriptome gene expression data of samples from chicken groups with high and low relative contents of hexanal and identified a total of 651 differentially expressed genes (DEGs). Among them, 356 genes were up regulated, and 295 genes were downregulated. The different biological functions associated with the DEGs, hub genes and hexanal were identified by functional analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations. Among all the hub genes in the significant module identified by WGCNA, more were enriched in the PPAR signaling pathway, the proteasome pathway, etc. Additionally, we found that DEGs and hub genes, including SLC27A1, ACOX3, NR4A1, VEGFA, JUN, EGR1, CACNB1, GADD45A and DUSP1, were co-enriched in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, p53 signaling pathway and mitogen-activated protein kinases (MAPK) signaling pathway, etc. Transcriptome results of the Jingxing Yellow chicken population showed that the SLC27A1 gene was significantly associated with hexanal and enriched in the PPAR pathway. Our study provides a comprehensive insight into the key genes related to hexanal content, and can be further explored by functional and molecular studies.
Collapse
Affiliation(s)
- Yuxi Jin
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Xiaoya Yuan
- State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Science, Beijing 100193, China;
| | - Wenjuan Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China; (W.Z.); (H.L.)
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China; (W.Z.); (H.L.)
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Science, Beijing 100193, China;
- Correspondence: (G.Z.); (J.L.)
| | - Jianfeng Liu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
- Correspondence: (G.Z.); (J.L.)
| |
Collapse
|
26
|
Maillard reaction of food-derived peptides as a potential route to generate meat flavor compounds: A review. Food Res Int 2022; 151:110823. [PMID: 34980374 DOI: 10.1016/j.foodres.2021.110823] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/27/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022]
Abstract
Plant-based meat analogues (PBMA) are promising foods to address the global imbalance between the supply and demand for meat products caused by the increasing environmental pressures and growing human population. Given that the flavor of PBMA plays a crucial role in consumer acceptance, imparting meat-like flavor is of great significance. As a natural approach to generate meat-like flavor, the Maillard reaction involving food-derived peptides could contribute to the required flavor compounds, which has promising applications in PBMA formulations. In this review, the precursors of meat-like flavor are summarized followed by a discussion of the reactions and mechanisms responsible for generation of the flavor compounds. The preparation and analysis techniques for food-derived Maillard reacted peptides (MRPs) as well as their taste and aroma properties are discussed. In addition, the MRPs as meat flavor precursors and their potential application in the formulation of PBMA are also discussed. The present review provides a fundamental scientific information useful for the production and application of MRPs as meat flavor precursors in PBMA.
Collapse
|
27
|
Inhibition of acrylamide by glutathione in asparagine/glucose model systems and cookies. Food Chem 2020; 329:127171. [DOI: 10.1016/j.foodchem.2020.127171] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/19/2020] [Accepted: 05/25/2020] [Indexed: 11/21/2022]
|
28
|
Du W, Zhen D, Wang Y, Cheng J, Xie J. Characterization of the key odorants in grilled mutton shashlik with or without suet brushing during grilling. FLAVOUR FRAG J 2020. [DOI: 10.1002/ffj.3621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wenbin Du
- Beijing Laboratory of Food Quality and Safety Beijing Technology and Business University (BTBU) Beijing China
| | - Dawei Zhen
- Department of Chemistry and Biology Stevens Institute of Technology Hoboken NJ USA
| | - Yutong Wang
- Beijing Laboratory of Food Quality and Safety Beijing Technology and Business University (BTBU) Beijing China
| | - Jie Cheng
- Institute of Quality Standard and Testing Technology for Agro‐products of CAAS Beijing China
| | - Jianchun Xie
- Beijing Laboratory of Food Quality and Safety Beijing Technology and Business University (BTBU) Beijing China
| |
Collapse
|