1
|
Wang X, Wang L, Yu J, Teng Y, Xiang X, Zhang D, Kang L, Niu Y, Feng X, Chen L. Effect of electron beam irradiation on the quality of chicken during post-mortem ageing. Food Chem 2025; 480:143869. [PMID: 40120307 DOI: 10.1016/j.foodchem.2025.143869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/15/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
The effects of electron beam irradiation (0, 4, and 8 kGy) on the quality of fresh chicken breast muscle during post-mortem ageing (0, 1, 3, and 5 days) were evaluated. The results suggested that the pH value and water-holding capacity of the chicken breast muscle were reduced, and the water was migrated. The color of the chicken breast muscle improved after irradiation, with decreased in L* and b* values and increased in a* values and oxymyoglobin content. Furthermore, irradiation significantly lowered shear force, raised the myofibrillar fragmentation index (MFI), and enhanced chicken breast tenderness. RT-qPCR and western blotting analyses showed that electron beam irradiation influenced the tenderness of chicken breast muscle by regulating apoptosis through mitochondrial, death receptor, and ERS pathways during post-mortem ageing. In conclusion, these results suggested that electron beam irradiation improved tenderness through apoptosis and changed chicken breast quality (such as color, pH, and moisture).
Collapse
Affiliation(s)
- Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Linya Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jiangtao Yu
- Yangling Hesheng Irradiation Technologies Co., Ltd., Yangling 712100, China
| | - Yifeng Teng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xiaomei Xiang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Dan Zhang
- Yangling Hesheng Irradiation Technologies Co., Ltd., Yangling 712100, China
| | - Luyao Kang
- Yangling Hesheng Irradiation Technologies Co., Ltd., Yangling 712100, China
| | - Yabin Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Lin Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
2
|
Zhai P, Huang S, Yin M, Wang X, Jiang Q. Improving freeze-thaw stability of black carp (Mylopharyngodon piceus) fillets by light salting combined with vacuum packaging:Emphasis on oxidative and structural properties. Food Chem 2025; 479:143776. [PMID: 40073558 DOI: 10.1016/j.foodchem.2025.143776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
Effect of light salting and vacuum packaging on the quality characteristics of black carp fillets and its underlying mechanisms were studied under repeated freeze-thaw conditions. The content of frozen water decreased from 73.51% to 59.20% in lightly salted fillets (group S) and to 52.50% in lightly salted and vacuum packaged fillets (group V) after 7 freeze-thaw cycles. Vacuum packaging retarded discoloration and lipid oxidation in lightly salted fillets. After 3 or more freeze-thaw cycles, the thiobarbituric acid reactive substances value in group V was less than half that in group S (p < 0.05). Overall, the combination of light salting and vacuum packaging improved the freeze-thaw stability of black carp fillets, as manifested by high water-binding index, low thawing loss, high springiness, low lipid oxidation degree, and high structural integrity. The finding could provide a new and crucial reference for improving the quality of frozen freshwater fish.
Collapse
Affiliation(s)
- Panpan Zhai
- College of Food Science and Technology, Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
| | - Shiyu Huang
- College of Food Science and Technology, Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
| | - Mingyu Yin
- College of Food Science and Technology, Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
| | - Qingqing Jiang
- College of Food Science and Technology, Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China; Hunan Xiweijia Biotechnology Co. Ltd., Yueyang 414000, China.
| |
Collapse
|
3
|
Yang Q, Xie J, Zhang Y, Tian Y, Song L, Zhao Y, Xiong J, Liu R, Rong J, Xiong S, Hu Y. Structural evaluation and formation regularities of garlic clove-like meat in prefabricated grass carp. Food Chem 2025; 478:143606. [PMID: 40049140 DOI: 10.1016/j.foodchem.2025.143606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/24/2025] [Accepted: 02/23/2025] [Indexed: 04/06/2025]
Abstract
Moderately marinated fish meat forms a garlic clove-like structure after cooking. However, this structure's formation mechanism and influencing factors are unclear. Therefore, this study explored the changes in protein components and potential protein markers during the formation of garlic clove-like structure. Results showed that the contents of free hydroxyproline, lysylpyridinoline, and hydroxylysylpyridinoline first increased and then decreased, the contents of decorin and elastin decreased, and TCA-soluble peptides increased slightly during the formation process of garlic clove-like structure. The Z-disk, M-line, and H bands in the myofibrils disappeared, and the myofibrils were interconnected. This was attributed to the effect of endogenous proteases (MMP, calpain, etc.) on myofibrils, collagen fibers, and proteoglycans. Proteomics data showed that the abundance of type I collagen chains, myosin, actin, and telethonin increased while proteoglycans decreased. Among them, telethonin on the Z-disk can be used as a potential protein biomarker for the formation of garlic clove-like structure.
Collapse
Affiliation(s)
- Qin Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Junhong Xie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuting Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yiling Tian
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Liang Song
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116000, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Jian Xiong
- Angel Yeast Co., Ltd., Yichang, Hubei 443000, China
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jianhua Rong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shanbai Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yang Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
4
|
Luo X, Ren G, Yang Q, An Y, Zhang J, Shirshin EA, Xiong S, Hu Y. Investigation of the protective mechanisms of liquid nitrogen spray freezing and TGase cross-linking on the structural characteristics of surimi gels during frozen storage. Food Chem 2025; 484:144343. [PMID: 40267675 DOI: 10.1016/j.foodchem.2025.144343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/30/2025] [Accepted: 04/13/2025] [Indexed: 04/25/2025]
Abstract
This study explored the mechanism of liquid nitrogen spray freezing and transglutaminase cross-linking in maintaining surimi gels' structure during storage. Results revealed that structure changes were, on the one hand, related to the growth and recrystallization of ice crystals during storage. Low cross-linking gels with air freezing exhibited minimum value after 20 days of storage, with hardness decreasing by 38.02 %, while -80 °C liquid nitrogen spray freezing combined with 62.99 % cross-linked effectively preserved structure by maintaining uniform ice crystal distribution and preventing microstructural fractures, limiting the hardness decrease to 18.32 %. On the other hand, structure changes were closely associated with protein variations. There were 766 differential proteins identified in the CKb vs. CKa comparison. The enhanced texture retention of 62.99 % cross-linked during storage, in contrast to low cross-linked gel, was probably associated with higher concentrations of structural proteins like A0A3N0XRS8 and A0A3N0YCS0 as well as calcium-related proteins like A0A3N0XCW2 and A0A3N0Y0G9.
Collapse
Affiliation(s)
- Xiaoying Luo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Guoyan Ren
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Qin Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yueqi An
- College of Health Science and Engineering, Hubei University, Wuhan, Hubei 430062, China
| | - Juntao Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Evgeny A Shirshin
- Department of Physics, M. V. Lomonosov Moscow State University, Leninskie gory 1/2, 119991 Moscow, Russia
| | - Shanbai Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yang Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
5
|
Hu Y, Quan Z, Wang Z, Luo Y, Guo X, Dong X, Zhou D, Zhu B. Uncovering quality changes in oysters (Crassostrea hongkongensis) during frozen storage based on lipidomics and proteomics. Food Chem 2025; 483:144230. [PMID: 40209363 DOI: 10.1016/j.foodchem.2025.144230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/21/2025] [Accepted: 04/05/2025] [Indexed: 04/12/2025]
Abstract
This study investigated quality changes in oysters during frozen storage through physicochemical analysis, quantitative lipidomics, and quantitative proteomics. Results showed that the quality of oysters progressively deteriorated with increasing freezing time and temperature, as evidenced by color darkening, texture softening, reduced water-holding capacity, and increased TVB-N levels. Simultaneously, protein oxidation and lipid oxidation were observed, resulting in increased carbonyl, disulfide bonds, dityrosine, TBARS, and Schiff base content, and decreased free sulfhydryl groups. Lipidomics analysis revealed oxidation and hydrolysis of polyunsaturated lipids in oysters during storage, with PC being preferentially oxidized. Proteomics analysis revealed extensive oxidation and degradation of structural proteins, particularly MHC and filamin-C. Correlation analysis further highlighted oxidative degradation of polyunsaturated lipids and structural proteins as major contributors to the quality decline of oysters during frozen storage. This study sheds light on the mechanisms of quality deterioration in frozen oysters and provides valuable guidance for enhancing their preservation quality.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Shenzhen Key Laboratory of Food Nutrition and Health, GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Zhengze Quan
- Shenzhen Key Laboratory of Food Nutrition and Health, GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Zonghan Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Ying Luo
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Xiuping Dong
- Shenzhen Key Laboratory of Food Nutrition and Health, GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Dayong Zhou
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
6
|
Li H, Fan X, Guo X, Yan W, Yu X, Deng X, Zhang J. Changes in meat quality of Esox Lucius during postmortem storage: Based on the lysosomal-mitochondrial apoptotic pathway. Food Chem 2025; 463:141522. [PMID: 39383794 DOI: 10.1016/j.foodchem.2024.141522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
In this study, we explored the correlation between the lysosome-mitochondrial apoptosis pathway and fish softening, as well as the correlation between ferritin degradation and lysosomal iron changes. The results indicated that ferritin levels gradually decreased, lysosomal iron first increased and then decreased and tended to stabilize, and lysosomal membrane stability significantly decreased (p < 0.05). Spearman's analysis suggested that an increase in lysosomal iron was associated with ferritin degradation. Lysosomal instability promoted the release of cathepsin D, thereby increasing the release of Bid and Bax, and inhibiting the expression of Bcl-2. Subsequently, caspase-9/-3 was activated. In addition, transmission electron microscopy revealed ultrastructural damage to mitochondria and cell nuclei, which are morphological features of apoptosis during post-mortem storage. Moreover, TUNEL staining confirmed the occurrence of apoptosis. We concluded that the lysosome- mitochondrial apoptosis pathway was active during the storage of Esox Lucius, in which ferritin degradation and increased lysosomal iron were key factors inducing lysosomal damage, and cathepsin D released by lysosomes was a key factor connecting lysosomes and mitochondria.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xuemei Fan
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xin Guo
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Wenbo Yan
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xinyao Yu
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xiaorong Deng
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Jian Zhang
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
7
|
Zhang L, Yu Y, Tan C, Nie S, Wen Q, Tu Z. Exploration of changes in sensory, physicochemical properties and microbial metabolic activities of grass carp meat with five thermal processing treatments during refrigerated storage. Food Chem X 2024; 23:101662. [PMID: 39148526 PMCID: PMC11324995 DOI: 10.1016/j.fochx.2024.101662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/30/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024] Open
Abstract
This study aimed to employed the effects of five thermal processing methods, namely steaming (SM), boiling (BO), frying (FY), roasting (RO), and vacuum sealing (SV), on the sensory, physicochemical properties, and microbial composition of grass carp meat during refrigerated storage, alongside unheated raw meat (RW) as control. The results showed that thermal treatment improved the sensory quality and shelf life of refrigerated grass carp meat, and their shelf life was RW < BO
Collapse
Affiliation(s)
- Lu Zhang
- National R&D Center for Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yaqin Yu
- National R&D Center for Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Chunming Tan
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Shi Nie
- National R&D Center for Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Qinghui Wen
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zongcai Tu
- National R&D Center for Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
- Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
8
|
Li J, Liu Y, Yang H, Cai L, Nong W, Guan W. The Activation of Endogenous Proteases in Shrimp Muscle Under Water-Free Live Transport. Foods 2024; 13:3472. [PMID: 39517256 PMCID: PMC11545398 DOI: 10.3390/foods13213472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Water-free transportation (WFT) causes shrimp (Penaeus vannamei) flesh quality deterioration. However, the roles of endogenous protease-induced protein hydrolysis have been neglected in the research. In the present study, calpain zymography, gelatinase zymography, the hematoxylin-eosin staining method, and other methods were applied to investigate the response of various endogenous proteases (cathepsin, calpain, and gelatinase), the myofibril fragmentation index (MFI), and the microscopic morphology of shrimp muscle during WFT in comparison with the shrimp under the conventional water transportation strategy (WT). The results showed that the total activity of proteases in shrimp muscle increased significantly (p ≤ 0.05) after simulated transportation. Cathepsins and gelatinases were activated during WFT. No significant (p > 0.05) changes of the activity of caspase-3 and the muscle cell apoptosis rate were detected in shrimp muscle cells after WFT. In addition, the MFI increased and the gap among muscle fiber bundles enlarged after WFT. Compared with WFT, no significant (p > 0.05) effect on the activities of calpain, gelatinase, and caspase-3 in the muscle of shrimp was found after WT, and only the activity of cathepsin L significantly increased (p ≤ 0.05). Based on the findings, we concluded that the activation of various endogenous proteases was induced during WFT.
Collapse
Affiliation(s)
- Jia Li
- Department of Food Science, Guangxi University, Nanning 530004, China; (J.L.); (Y.L.); (H.Y.)
| | - Yuxin Liu
- Department of Food Science, Guangxi University, Nanning 530004, China; (J.L.); (Y.L.); (H.Y.)
| | - Huanhuan Yang
- Department of Food Science, Guangxi University, Nanning 530004, China; (J.L.); (Y.L.); (H.Y.)
| | - Luyun Cai
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo 315100, China;
| | - Wenqian Nong
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Weiliang Guan
- Department of Food Science, Guangxi University, Nanning 530004, China; (J.L.); (Y.L.); (H.Y.)
| |
Collapse
|
9
|
Yang RQ, Chen YL, Lin D, Cao KY, Sun LC, Zhang LJ, Yoshida A, Cao MJ. Collaborative Effect of Matrix Metalloproteinases on Type I Collagen Degradation and Muscle Softening in Sea Bass ( Lateolabrax japonicus) during Cold Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39367843 DOI: 10.1021/acs.jafc.4c04461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Matrix metalloproteinases (MMPs) play critical roles in the degradation of collagens, while their mechanism remains unclear. In the present study, the involvement of matrix metalloproteinases (MMPs) in collagen degradation of sea bass muscle during cold storage was explored. Immunohistochemical staining results showed significant degradation of type I collagen in the connective tissue of muscle endomysium during cold storage, thus affecting the muscle structural integrity and quality. Western blot analysis revealed an increment in the α1 chain and a decrease in the β and γ chains of type I collagen. Immunofluorescence staining showed that MMP-2, MMP-9, and MMP-13 were distributed in the endomysium surrounding the muscle fibers. Additionally, the catalytic domains of MMP-2, MMP-9, and MMP-13 with biological activities were successfully expressed. The degradation trend of type I collagen by MMPs under 4 °C was similar to that of muscle collagen during cold storage, suggesting that the degradation of type I collagen was attributed to the cooperative action of the MMPs. In conclusion, our study elucidated that the MMPs-engaged degradation of type I collagen is quite possibly the leading cause of sea bass muscle softening during cold storage.
Collapse
Affiliation(s)
- Ru-Qing Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yu-Lei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Duanquan Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Kai-Yuan Cao
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Le-Chang Sun
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Ling-Jing Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Asami Yoshida
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Min-Jie Cao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
10
|
Yu Y, Wei Y, Chen S, Wang Y, Huang H, Li C, Wang D, Shi W, Li J, Zhao Y. Correlation analysis of phosphorylation of myofibrillar protein and muscle quality of tilapia during storage in ice. Food Chem 2024; 451:139502. [PMID: 38701732 DOI: 10.1016/j.foodchem.2024.139502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
In this study, the correlation between protein phosphorylation and deterioration in the quality of tilapia during storage in ice was examined by assessing changes in texture, water-holding capacity (WHC), and biochemical characteristics of myofibrillar protein throughout 7 days of storage. The hardness significantly decreased from 471.50 to 252.17 g, whereas cooking and drip losses significantly increased from 26.5% to 32.6% and 2.9% to 9.1%, respectively (P < 0.05). Myofibril fragmentation increased, while myofibrillar protein sulfhydryl content and Ca2+-ATPase activity decreased from 119.33 to 89.29 μmol/g prot and 0.85 to 0.46 μmolPi/mg prot/h, respectively (P < 0.05). Correlation analysis revealed that the myofibrillar protein phosphorylation level was positively correlated with hardness and Ca2+-ATPase activity but negatively correlated with WHC. Myofibrillar protein phosphorylation affects muscle contraction by influencing the dissociation of actomyosin, thereby regulating hardness and WHC. This study provides novel insights for the establishment of quality control strategies for tilapia storage based on protein phosphorylation.
Collapse
Affiliation(s)
- Ye Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Ya Wei
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Hui Huang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Di Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Li
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China.
| |
Collapse
|
11
|
Yan D, Xu W, Yu Q, You J, Gao R, Bao Y. Pre-rigor salting improves gel strength and water-holding of surimi gel made from snakehead fish (Channa argus): The role of protein oxidation. Food Chem 2024; 450:139269. [PMID: 38613961 DOI: 10.1016/j.foodchem.2024.139269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
The purpose of this study was to determine the effect of pre-rigor salting on the quality characteristics of surimi gels prepared from snakehead fish muscle. Pre-rigor and post-rigor muscle were mixed with 0.3% or 3% NaCl (w/w) and made into surimi gels, respectively. Results showed that pre-rigor muscle had a higher content of ATP, longer sarcomere, higher pH and greater protein solubility. Metabolic profile suggested that pre-rigor muscle had higher content (a 28-fold increase) of antioxidants such as butyryl-l-carnitine. Transmission electron microscopy showed more damage of mitochondria in post-rigor muscle. Surimi paste from pre-rigor meat chopped with 3% NaCl generally showed greater radical scavenging ability and had higher content of free sulfhydryl. Surimi gel made from pre-rigor muscle salted with 3% NaCl showed a larger gel strength (3.18 kg*mm vs. 2.22 kg*mm) and better water-holding (86% vs. 80%) than that of post-rigor group. Based on these findings, we hypothesized that: In addition to other factors such as pH, degree of denaturation, etc., less protein oxidation in pre-rigor salted surimi also contributes to the improved gel properties.
Collapse
Affiliation(s)
- Dan Yan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Wanjun Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Qingqing Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Juan You
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
12
|
Lu YS, Yao GX, Yu J, Qiu J, Qian YZ, Huang XY, Xu YY. Optimization and Detection of Freshness Biomarkers of Atlantic Salmon Subjected to Different Vacuum Packaging Conditions during Storage at 0 °C by Metabolomics and Molecular Docking. Foods 2024; 13:2714. [PMID: 39272480 PMCID: PMC11394979 DOI: 10.3390/foods13172714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The freshness of Atlantic salmon is influenced mainly by tissue metabolism, which in turn is affected by storage time and conditions. The alterations in taste profiles and nutritional values of salmon when packaged using vacuum methods have not been fully understood, and the factors contributing to these changes require further research. In this work, the extraction method for flavor nutrients from salmon was optimized via the Plackett-Burman (PB) test. A sensitive and rapid targeted metabolomics method for the simultaneous determination of 34 nutrients was successfully established via ultra-performance liquid chromatography-triple quadrupole/linear ion trap composite mass spectrometry (UHPLC-QTRAP/MS), and various nutritional compositions during storage at 0 °C under different vacuum conditions (0 kPa or -90 kPa) for 4 and 8 days were analyzed. Results showed that storage time had a significant effect on salmon metabolism. The total amino acids decreased by 62.95% and 65.89% at 0 kPa and -90 kPa, respectively. Notably, a marked reduction in histidine after 8 days at -90 kPa may have diminished bitterness, while decreased levels of umami-tasting amino acids like glutamine and aspartic acid affected the overall flavor profile. Overall, the packaging conditions at 0 °C and 0 kPa were more suitable for the preservation of most nutrients in salmon. Pathway enrichment analysis revealed that the reduction in substances was mainly related to the alanine, aspartate, and glutamate metabolism pathways. Alanine, inosine, and histidine, whose levels changed significantly, can bind to the typical umami taste receptor TIR1/TIR3 and can be biomarkers to monitor and determine the freshness or spoilage of salmon after 4-8 days of storage. This study revealed the changes in small-molecule nutrients in salmon during storage under different packaging conditions, which provides a reference for the packaging preservation technology of fresh salmon and new ideas for the evaluation of salmon quality and determination of freshness.
Collapse
Affiliation(s)
- Yu-Shun Lu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Gui-Xiao Yao
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiang Yu
- Faculty of Printing and Packaging and Digital Media, Xi'an University of Technology, Xi'an 710048, China
| | - Jing Qiu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yong-Zhong Qian
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuan-Yun Huang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Yan-Yang Xu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
13
|
Zhang S, Song Z, Gu J, Guo X, Wan Y, Tian H, Wang X. Effect of Soy Protein Isolate on the Quality Characteristics of Silver Carp Surimi Gel during Cold Storage. Foods 2024; 13:2370. [PMID: 39123561 PMCID: PMC11311264 DOI: 10.3390/foods13152370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
This study mainly investigated the effect of soy protein isolate (SPI) on the gel quality of silver carp surimi under different storage conditions (storage temperatures of 4 °C, -20 °C, and -40 °C, and storage times of 0, 15, and 30 d). The results found that 10% SPI could inhibit the growth of ice crystals, improve the water distribution, enhance the water holding capacity of the gels, and strengthen the interaction between surimi and proteins. Compared to the control group, the composite silver carp surimi gel exhibited superior quality in texture, chemical interactions, and rheological properties during cold storage. Fourier transform infrared spectroscopy revealed an increasing trend in α-helix and β-turn content and a decreasing trend of β-sheet and random coil content. As storage time increased, the gel deterioration during cold storage inhibitory effect of the treatment group was superior to the control group, with the best results observed at -40 °C storage conditions. Overall, SPI was a good choice for maintaining the quality of silver carp surimi gel during cold storage, which could significantly reduce the changes in the textural properties during cold storage with improved water holding capacity.
Collapse
Affiliation(s)
- Songxing Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (Z.S.); (J.G.)
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Zeyu Song
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (Z.S.); (J.G.)
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Junhao Gu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (Z.S.); (J.G.)
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Xueqian Guo
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 201306, China;
| | - Yangling Wan
- Wilmar Shanghai Biotechnology Research and Development Center Co., Ltd., Shanghai 200120, China;
| | - Huaixiang Tian
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (Z.S.); (J.G.)
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| |
Collapse
|
14
|
Chen H, Ge Y, Yang T, Wang S, Liu N, Sun Y, Zhou D, Xi R, Sun G. Quality changes of whitespotted conger ( Conger myriaster) based physicochemical changes and label-free proteomics analysis during frozen storage. Curr Res Food Sci 2024; 8:100779. [PMID: 38939611 PMCID: PMC11208945 DOI: 10.1016/j.crfs.2024.100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/13/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024] Open
Abstract
Whitespotted conger (Conger myriaster) muscle proteins were susceptible to oxidative denaturation during frozen storage. The objective of this study was to investigate the alterations in quality through physicochemical analysis and proteomics after whitespotted conger stored at temperatures of -18 °C and -60 °C. The microstructural observation revealed the noticeable variations such as increased interstitial space and fractured muscle fibre with extension of frozen storage time, and the muscle fibre of whitespotted conger stored at -60 °C were more intact than those stored at -18 °C. The raised TVB-N value indicated that the freshness of whitespotted conger decreased during 120-day frozen storage period. Analysis of myofibrillar protein content and SDS-PAGE demonstrated that compared to -18 °C, lower storage temperature (-60 °C) could better maintain the structure of whitespotted conger muscle by inhibiting protein degradation and oxidation. To reveal the mechanism of protein degradation, label-free quantitative proteomic analysis was performed through LC-MS/MS. The structural proteins including domain-associated proteins and actin-related proteins were up-regulated during frozen storage, but the phosphoglycerate kinase, phosphoglycerate mutase, and fructose-bisphosphate aldolase were down-regulated. Storage at -18 °C accelerated the up- or down-regulation of those differentially abundant proteins. According to KEGG analysis, up- or down-regulated pathways such as glycolysis/gluconeogenesis, carbon metabolism, biosynthesis of amino acids, and calcium signalling pathway mainly accounted for the protein degradation and quality reduction of whitespotted conger at low temperature. These results provided a theoretical basis for improving the quality stability of whitespotted conger during frozen storage.
Collapse
Affiliation(s)
- Hui Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106# Nanjing Road, Shinan District, Qingdao, 266071, Shandong Province, China
| | - Yinggang Ge
- College of Life Science and Technology, Xinjiang University, 777# Huarui Street, Shuimogou District, Urumqi, 830046, Xinjiang Province, China
| | - Ting Yang
- Department of Basic Medicine, School of Medicine, Qingdao Huanghai University, 1145# Linghai Road, West Coast New District, Qingdao, 266427, Shandong Province, China
| | - Shanshan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106# Nanjing Road, Shinan District, Qingdao, 266071, Shandong Province, China
| | - Nan Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106# Nanjing Road, Shinan District, Qingdao, 266071, Shandong Province, China
| | - Yong Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106# Nanjing Road, Shinan District, Qingdao, 266071, Shandong Province, China
| | - Deqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106# Nanjing Road, Shinan District, Qingdao, 266071, Shandong Province, China
| | - Rui Xi
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106# Nanjing Road, Shinan District, Qingdao, 266071, Shandong Province, China
| | - Guohui Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106# Nanjing Road, Shinan District, Qingdao, 266071, Shandong Province, China
| |
Collapse
|
15
|
Atanassova S, Yorgov D, Stratev D, Veleva P, Stoyanchev T. Near-Infrared Spectroscopy for Rapid Differentiation of Fresh and Frozen-Thawed Common Carp ( Cyprinus carpio). SENSORS (BASEL, SWITZERLAND) 2024; 24:3620. [PMID: 38894411 PMCID: PMC11175329 DOI: 10.3390/s24113620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
This study aimed to investigate near-infrared spectroscopy (NIRS) in combination with classification methods for the discrimination of fresh and once- or twice-freeze-thawed fish. An experiment was carried out with common carp (Cyprinus carpio). From each fish, test pieces were cut from the dorsal and ventral regions and measured from the skin side as fresh, after single freezing at minus 18 °C for 15 ÷ 28 days and 15 ÷ 21 days for the second freezing after the freeze-thawing cycle. NIRS measurements were performed via a NIRQuest 512 spectrometer at the region of 900-1700 nm in Reflection mode. The Pirouette 4.5 software was used for data processing. SIMCA and PLS-DA models were developed for classification, and their performance was estimated using the F1 score and total accuracy. The predictive power of each model was evaluated for fish samples in the fresh, single-freezing, and second-freezing classes. Additionally, aquagrams were calculated. Differences in the spectra between fresh and frozen samples were observed. They might be assigned mainly to the O-H and N-H bands. The aquagrams confirmed changes in water organization in the fish samples due to freezing-thawing. The total accuracy of the SIMCA models for the dorsal samples was 98.23% for the calibration set and 90.55% for the validation set. For the ventral samples, respective values were 99.28 and 79.70%. Similar accuracy was found for the PLS-PA models. The NIR spectroscopy and tested classification methods have a potential for nondestructively discriminating fresh from frozen-thawed fish in as methods to protect against fish meat food fraud.
Collapse
Affiliation(s)
- Stefka Atanassova
- Department of Agricultural Engineering, Faculty of Agriculture, Trakia University, Students Campus, 6000 Stara Zagora, Bulgaria; (D.Y.); (P.V.)
| | - Dimitar Yorgov
- Department of Agricultural Engineering, Faculty of Agriculture, Trakia University, Students Campus, 6000 Stara Zagora, Bulgaria; (D.Y.); (P.V.)
| | - Deyan Stratev
- Department of Food Quality and Safety, Faculty of Veterinary Medicine, Trakia University, Students Campus, 6000 Stara Zagora, Bulgaria; (D.S.); (T.S.)
| | - Petya Veleva
- Department of Agricultural Engineering, Faculty of Agriculture, Trakia University, Students Campus, 6000 Stara Zagora, Bulgaria; (D.Y.); (P.V.)
| | - Todor Stoyanchev
- Department of Food Quality and Safety, Faculty of Veterinary Medicine, Trakia University, Students Campus, 6000 Stara Zagora, Bulgaria; (D.S.); (T.S.)
| |
Collapse
|
16
|
Jia S, Jia Z, An J, Ding Y, Chang J, Wang Y, Zhou X. Insights into the fish protein degradation induced by the fish-borne spoiler Pseudomonas psychrophila and Shewanella putrefaciens: From whole genome sequencing to quality changes. Int J Food Microbiol 2024; 416:110675. [PMID: 38479336 DOI: 10.1016/j.ijfoodmicro.2024.110675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
The aim of this study is evaluating the protein degradation capacity of specific spoilage organisms (SSOs) Pseudomonas psychrophila and Shewanella putrefaciens in fish flesh during chilled storage and revealing the underlying genes by whole-genome sequencing (WGS). Biochemical and physical tests were performed on fish flesh inoculated with P. psychrophila and S. putrefaciens individually, including textural properties, myofibrillar fragmentation index, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) profiles, free amino acid composition, total volatile basic nitrogen (TVB-N), trichloroacetic acid (TCA) soluble peptides, and muscle microstructure. Results showed that P. psychrophila and S. putrefaciens exhibited a strong capacity for decomposing the fish protein, and the deterioration of fish flesh texture was primarily attributed to P. psychrophila. The genes from SSOs associated with the production of proteases were identified by whole genome sequencing and serine protease may be the primary enzyme secreted by SSOs involved in the degradation of fish protein. Therefore, the present study has shed light on the mechanisms of protein degradation induced by SSOs, thereby offering valuable insights for the development of effective quality control strategies.
Collapse
Affiliation(s)
- Shiliang Jia
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; Jinghai Group Co., Ltd, Weihai 264307, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China
| | - Zhifang Jia
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China
| | - Jun An
- Natural Medicine Institute of Zhejiang YangShengTang Co., Ltd., Hangzhou 310024, China.
| | - Yicheng Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China
| | - Jie Chang
- Jinghai Group Co., Ltd, Weihai 264307, China
| | - Yanbo Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China.
| |
Collapse
|
17
|
Fei L, Ma Z, Yue A, Cui P, Qiu Y, Lyu F, Zhang J. Effect of low-voltage electrostatic field-assisted partial freezing on large yellow croaker protein properties and metabolomic analysis during storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2359-2371. [PMID: 37985177 DOI: 10.1002/jsfa.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/15/2023] [Accepted: 11/21/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Large yellow croaker is highly perishable during storage because of high protein and moisture content. The degradation of the fish is mainly attributed to microbial growth and enzyme activity, so it is important to find an efficient storage method to extend its shelf life. METHODOLOGY This study investigated the effect of a low-voltage electrostatic field combined with partial freezing treatment on the physicochemical properties of myofibrillar protein (MP) and metabolomic analysis of large yellow croaker during preservation. The samples in chilled storage (C), partial freezing storage (PF) and 6 kV/m low-voltage electrostatic field partial freezing storage (LVEF-PF) were analyzed during an 18 day storage period. RESULTS In comparison with the C and PF groups, LVEF-PF delayed the oxidation of MP by inhibiting the formation of carbonyl groups (2.25 nmol/mg pro), and maintaining higher sulfhydryl content (29.73 nmol/mg pro). Fourier transform infrared (FTIR) spectroscopy and fluorescence spectroscopy analysis also demonstrated that the LVEF-PF treatment maintained the stability of the protein structure by increasing the a-helix ratio (19.88%) and reducing the random coil ratio (17.83%). Scanning electron microscopy showed that, compared with the LVEF-PF group, there was more degeneration and aggregation of MP in the C and PF groups after 18 days' storage. The results of untargeted metabolomic analysis showed that 415 kinds of differential metabolites were identified after storage, and the difference levels of differential metabolites were least between the samples treated with LVEF-PF stored on the ninth day and the fresh samples. The main differential metabolic pathways during storage were amino acid metabolism and lipid metabolism. CONCLUSION The LVEF-PF treatment could maintain the stability of myofibrillar protein in large yellow croaker during storage. These results showed a potential application of the LVEF-PF method for aquatic product preservation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lifeng Fei
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Ze Ma
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Aodong Yue
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Pengbo Cui
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yue Qiu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Fei Lyu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jianyou Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
18
|
Liu Y, Tan Y, Luo Y, Li X, Hong H. Evidence of myofibrillar protein oxidation and degradation induced by exudates during the thawing process of bighead carp fillets. Food Chem 2024; 434:137396. [PMID: 37708574 DOI: 10.1016/j.foodchem.2023.137396] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/06/2023] [Accepted: 09/02/2023] [Indexed: 09/16/2023]
Abstract
Oxidation of myofibrillar proteins (MPs) is considered as an important reason for the quality deterioration of frozen stored fish fillets, but the impact of the thawing process on the oxidation and thereby property changes of MPs has been largely neglected. In this study, we incubated MPs for 24 h at 4 °C with thawing exudates collected from fish fillets stored at -20 °C for 0-5 months to mimic the thawing process. Exudates treatment induced the increased content of carbonyls, Schiff bases, and dityrosine, structural changes, and the decreased water-holding capacity of MPs. SDS-PAGE and LC-MS/MS results indicated that exudates caused the degradation of MPs with the potential involvement of lipid oxidation products, hemoglobin, and proteases. Prolonged frozen storage decreased antioxidant enzyme activity and increased lipid oxidation products in exudates, which might be the reason for exudates from fillets frozen for longer periods can cause more severe oxidation and degradation of MPs.
Collapse
Affiliation(s)
- Yueyue Liu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xingmin Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
19
|
Gao S, Zhuang S, Zhang L, Lametsch R, Tan Y, Li B, Hong H, Luo Y. Proteomic evidence of protein degradation and oxidation in brined bighead carp fillets during long-term frozen storage. Food Chem 2024; 433:137312. [PMID: 37672946 DOI: 10.1016/j.foodchem.2023.137312] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/16/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023]
Abstract
Protein degradation and oxidation are two major alterations during the storage of processed bighead carp fillets. This study conducted a comparative analysis of degraded and oxidized products as well as oxidation sites in fresh, frozen and brined frozen bighead carp fillets. Frozen storage played a dominant role in protein degradation and oxidation, and brining promoted these changes. In brined frozen samples, the decreased SDS-PAGE band intensities for tropomyosin, troponin, and myosin light chain were mainly due to their degradation. Myosin heavy chain fast skeletal muscle was the most oxidized and degraded protein during storage, with modifications such as monooxidation, protein-lipid peroxidation adducts, and α-aminoadipic semialdehydes formation. Amino acids in the tail portion of myosin were prone to oxidation than the head portions. Our results provided comprehensive insights into protein degradation and oxidation in bighead carp during storage, helping to assess the specific fate of oxidative products in future dietary investigations.
Collapse
Affiliation(s)
- Song Gao
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shuai Zhuang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Longteng Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - René Lametsch
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bo Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
20
|
Yang F, Teng J, Liu J, Yu D, Gao P, Yu P, Jiang Q, Xu Y, Xia W. Texture maintenance and degradation mechanism of ice-stored grass carp (Ctenopharyngodon idella): A scope of intramuscular connective tissue. Food Chem 2024; 432:137256. [PMID: 37643518 DOI: 10.1016/j.foodchem.2023.137256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Although intramuscular connective tissue (IMCT) is low in fish, its impact on texture cannot be ignored due to its special location. Therefore, this study was aimed to investigate the contribution of IMCT degradation to fish softening and its mechanism induced by endogenous proteases. Results showed that IMCT honeycomb-like structure collapsed entirely on the 10th day of ice storage, along with a decrease of shear force by 36.5%. Meanwhile, IMCT and myofibrils (MF) degradation accelerated softening by 25.1% and 15.3% during 10 days of ice storage, respectively. Next, IMCT deterioration was indicated to be highly correlated with decorin degradation (0.956**), followed by elastin (0.928**) and collagen (0.904**). Ulteriorly, endogenous collagenase was shown to degrade IMCT crucial components, while endogenous cathepsins had little effect. In conclusion, this study confirmed that IMCT played an essential role in maintaining fish texture and was mainly degraded by endogenous collagenase.
Collapse
Affiliation(s)
- Fang Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jialu Teng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jixuan Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Pei Gao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Peipei Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yanshun Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wenshui Xia
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
21
|
Huang Z, Guan W, Lyu X, Chen R, Wu Y, Zheng G, Mao L. Impacts of long-time transportation on whiteleg shrimp (Penaeus vannamei) muscle quality and underlying biochemical mechanisms. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7590-7599. [PMID: 37421411 DOI: 10.1002/jsfa.12841] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/02/2023] [Accepted: 07/08/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Shrimp is widely consumed around the world. Since muscle is the primary edible component of shrimp, muscle quality (particularly texture) has a direct impact on the economic value of shrimp products. However, reports on the shrimp muscle quality influenced by transportation are rather limited, and the underlying mechanism remains unknown. RESULTS During the simulated transportation, the water pH and total ammonia-nitrogen content and un-ionized ammonia contents were elevated. Furthermore, reductions in shrimp muscle water-holding capacity, hardness, and shear value with intensive myofibrillar protein degradation were detected. Simulated transportation decreased the pH and glycogen content of shrimp muscle while increasing lactic dehydrogenase activity and lactate content, resulting in an elevated level of free calcium ions and increased μ-calpain and general proteolytic activities. Water exchange could improve the water quality and reduce the mortality of shrimp during transportation, as well as decrease muscle textural softening by alleviating these stress responses. CONCLUSIONS Maintaining water quality and, in particular, reducing ammonia are critical to improving shrimp survival and muscle quality during live transportation. This study is of great significance for the better maintenance of the textural properties of shrimp meat. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhihai Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Weiliang Guan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xiamin Lyu
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Renchi Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yingyin Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Gaohai Zheng
- Bureau of Agriculture and Rural Affairs of Sanmen County, Taizhou, China
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
22
|
Li H, Wang Q, Li W, Xia X. Cryoprotective Effect of NADES on Frozen-Thawed Mirror Carp Surimi in Terms of Oxidative Denaturation, Structural Properties, and Thermal Stability of Myofibrillar Proteins. Foods 2023; 12:3530. [PMID: 37835183 PMCID: PMC10572836 DOI: 10.3390/foods12193530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Quality degradation due to the formation and growth of ice crystals caused by temperature fluctuations during storage, transportation, or retailing is a common problem in frozen surimi. While commercial antifreeze is used as an ingredient in frozen surimi, its high sweetness does not meet the contemporary consumer demand for low sugar and low calories. Therefore, the development of new green antifreeze agents to achieve an enhanced frozen-thawed stability of surimi has received more attention. The aim of this study was to develop a cryoprotectant (a mixture of citric acid and trehalose) to enhance the frozen-thawed stability of surimi by inhibiting the oxidative denaturation and structural changes of frozen-thawed mirror carp (Cyprinus carpio L.) surimi myofibrillar protein (MP). The results showed that the amounts of free amine, sulfhydryl, α-helix, intrinsic fluorescence intensity, and thermal stability in the control significantly decreased after five F-T cycles, while the Schiff base fluorescence intensity, amounts of disulfide bonds and surface hydrophobicity significantly increased (p < 0.05). Compared to sucrose + sorbitol (SS), the natural deep eutectic solvents (NADES) effectively inhibited protein oxidation. After five F-T cycles, the α-helix content and Ca2+-ATPase activity of the NADES samples were 4.32% and 80.0%, respectively, higher, and the carbonyl content was 17.4% lower than those of the control. These observations indicate that NADES could inhibit oxidative denaturation and enhance the structural stability of MP.
Collapse
Affiliation(s)
| | | | | | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (Q.W.); (W.L.)
| |
Collapse
|
23
|
Bao Y, Zhang Y, Xu W. Effects of Different Freezing Rate and Frozen Storage Temperature on the Quality of Large-Mouth Bass ( Micropterus salmoides). Molecules 2023; 28:5432. [PMID: 37513304 PMCID: PMC10385098 DOI: 10.3390/molecules28145432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
In order to clarify the individual role of freezing and frozen storage on the quality of fish, fillets of large-mouth bass (Micropterus salmoides) were subjected to different freezing rates (freezing with -18 °C (A), -60 °C (B), and -60 °C with forced air circulation at 2 m/s (C), respectively) followed by frozen storage at -18 °C for 30 and 90 days. Another two groups were frozen at -60 °C, followed by storage at -40 °C (D) and -60 °C (E), respectively. Results showed that water-holding and TVBN were mainly affected by storage time. No significant changes were found in free thiol content among treatments. A greater freezing rate and lower storage temperature generally led to lower TBARS. GC × GC-TOFMS revealed a total of 66 volatile compounds, which were related to lipid oxidation. PLS-DA showed that fresh samples were separated from the frozen-thawed ones, and fillets in groups D and E were relatively close to fresh fillets in the composition of oxidation-related volatiles. In conclusion, freezing rate and storage temperature had a significant impact on lipid oxidation and protein denaturation in the fillets of large-mouth bass, while protein oxidation was more affected by freezing rate.
Collapse
Affiliation(s)
- Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yaqi Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wanjun Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
24
|
Li N, Xie J, Chu YM. Degradation and evaluation of myofibril proteins induced by endogenous protease in aquatic products during storage: a review. Food Sci Biotechnol 2023; 32:1005-1018. [PMID: 37215253 PMCID: PMC10195969 DOI: 10.1007/s10068-023-01291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Myofibril proteins degradation constitutes an important factor in quality deterioration, procedural activation or inhibition of endogenous protease potential regulates autolytic proteolysis-induced softening of post mortem fish muscle. Based on the brief introduction of myofibril proteins degradation in fish skeletal muscle, a detailed description of the main myofibril degradation properties and the distinct role played by endogenous proteases were proposed, which reflects the limitations and challenges of the current research on myofibril hydrolysis mechanisms based on the varied surrounding conditions. In addition, the latest researches on the evaluation method of myofibril proteins degradation were comprehensively reviewed. The potential use of label-free proteomics combined with bioinformatics was also emphasized and has become an important means to in-depth understand protein degradation mechanism.
Collapse
Affiliation(s)
- Na Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306 China
- College of Food and Tourism, Shanghai Urban Construction Vocational College, Shanghai, 201415 China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306 China
- National Experimental Teaching Demonstration Center for Food Science and
Engineering, Shanghai Ocean University, Shanghai, 201306 China
- Shanghai Engineering Research Center of Aquatic Product Processing and
Preservation, Shanghai, 201306 China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment
Performance and Energy Saving Evaluation, Shanghai, 201306 China
| | - Yuan Ming Chu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306 China
- National Experimental Teaching Demonstration Center for Food Science and
Engineering, Shanghai Ocean University, Shanghai, 201306 China
| |
Collapse
|
25
|
Korkmaz K. The Effect of Sodium Bicarbonate Injection on the Physico-Chemical Quality of Post-Harvest Trout. Foods 2023; 12:2437. [PMID: 37444175 DOI: 10.3390/foods12132437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The muscle hardness of fish is an important parameter associated with meat quality, and the post-mortem decrease in the pH of fish tissue pH affects its physical properties. We hypothesized that maintaining a high pH in fish tissue after death would prevent protein denaturation and consequent textural deterioration. This study aimed to determine the effectiveness of sodium bicarbonate (SBC) injections in preventing tissue softening caused by low pH after death in trout. We injected varying molar concentrations of SBC in rainbow trout (Oncorhynchus mykiss; 0 M, 0.5 M, 0.75 M, and 1 M) after harvest, and the product quality was assessed at 0, 24, 48, 72, and 96 h of ice storage. Quality was evaluated using proximate analyses for color, pH, water holding capacity (WHC), texture profile, and rigor index. The 0 M group had the lowest pH, and the 0.75 M group had the highest pH at all time points during storage. We observed improved tissue texture during storage in fish treated with 0.75 and 1 M SBC. The texture profile analysis showed higher hardness, frangibility, and stickiness in the tail than in the other regions. These varying results can be explained by significant differences between parts of the fish and sampling point selection. We also observed the highest pH and WHC values in the groups injected with 0.75 and 1 M SBC during storage.
Collapse
Affiliation(s)
- Koray Korkmaz
- Fatsa Faculty of Marine Sciences, Department of Fisheries Engineering Technology, Ordu University, 52400 Ordu, Turkey
| |
Collapse
|
26
|
Zhuang S, Liu Y, Gao S, Tan Y, Hong H, Luo Y. Mechanisms of fish protein degradation caused by grass carp spoilage bacteria: A bottom-up exploration from the molecular level, muscle microstructure level, to related quality changes. Food Chem 2023; 403:134309. [DOI: 10.1016/j.foodchem.2022.134309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 10/14/2022]
|
27
|
Yu D, Zhao W, Wan X, Wu L, Zang J, Jiang Q, Xu Y, Xia W. The protective pattern of chitosan-based active coating on texture stabilization of refrigerated carp fillets from the perspective of proteolysis. Food Chem 2023; 404:134633. [DOI: 10.1016/j.foodchem.2022.134633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/17/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
28
|
Recent advance in the investigation of aquatic “blue foods” at a molecular level: A proteomics strategy. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Effect of species, muscle location, food processing and refrigerated storage on the fish allergens, tropomyosin and parvalbumin. Food Chem 2022; 402:134479. [DOI: 10.1016/j.foodchem.2022.134479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022]
|
30
|
Xiao H, Yu J, Song L, Hu M, Guo H, Xue Y, Xue C. Characterization of flesh firmness and ease of separation in the fermentation of sea bass in terms of protein structure, texture, and muscle tissue structural changes. Food Res Int 2022; 162:111965. [DOI: 10.1016/j.foodres.2022.111965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 11/29/2022]
|
31
|
Huang Q, Jiao X, Yan B, Zhang N, Huang J, Zhao J, Zhang H, Chen W, Fan D. Changes in physicochemical properties of silver carp (Hypophthalmichthys molitrix) surimi during chilled storage: The roles of spoilage bacteria. Food Chem 2022; 387:132847. [DOI: 10.1016/j.foodchem.2022.132847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/26/2022] [Accepted: 03/27/2022] [Indexed: 11/04/2022]
|
32
|
Biochemical Changes of Nile Tilapia ( Oreochromis niloticus) Meat during Ice Storage: A Comparison between Slurry Ice vs Flake Ice. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2107412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
33
|
Effect of CO 2 on the spoilage potential of Shewanella putrefaciens target to flavour compounds. Food Chem 2022; 397:133748. [PMID: 35905618 DOI: 10.1016/j.foodchem.2022.133748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022]
Abstract
To investigate the regulation mechanism of CO2 (0% CO2, 20% CO2, 60% CO2, and 100% CO2) on the spoilage potential of S. putrefaciens target to flavour compounds, the metabolic activity of S. putrefaciens and the changes in flavour compounds extracted from inoculated large yellow croakers were evaluated. Results showed that CO2 significantly reduced biofilm formation capacity and suppressed synthesis of intracellular adenosine triphosphate (ATP). The production of unpleasant flavour compounds, such as total volatile basic nitrogen (TVB-N), trimethylamine (TMA), inosine (HxR), hypoxanthine (Hx), histidine, lysine, histamine, putrescine, 1-octen-3-ol, hexanal and benzaldehyde, was inhibited by CO2. The hydrolysis and oxidation of lipid in CO2-treated samples were alleviated and unsaturated fatty acids (UFAs) were in a higher percentage. In summary, CO2 efficiently reduced the spoilage potential of S. putrefaciens and contributed to better flavour quality of samples during 4 °C storage. A more effective inhibition by 100% CO2 was observed.
Collapse
|
34
|
Lan W, Du J, Liu L, Pu T, Zhou Y, Xie J. SA-SI Treatment: a Potential Method to Maintain the Quality and Protein Properties on Mackerel (Pneumatophorus japonicus) During Chilling Storage. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02827-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
35
|
Zhang R, Jia W, Shi L. A Comprehensive Review on the Development of Foodomics-Based Approaches to Evaluate the Quality Degradation of Different Food Products. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2077362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an, China
| |
Collapse
|
36
|
Pan C, Sun K, Yang X, Wang D, Hu X, Chen S. Insights on Litopenaeus vannamei quality deterioration during partial freezing storage from combining traditional quality studies and label-free based proteomic analysis. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Oxidative Stress Contributes to Cytoskeletal Protein Degradation of Esox lucius through Activation of Mitochondrial Apoptosis during Postmortem Storage. Foods 2022; 11:foods11091308. [PMID: 35564031 PMCID: PMC9104736 DOI: 10.3390/foods11091308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022] Open
Abstract
This study investigated the role of oxidative stress in the mitochondrial apoptotic pathways and structural protein degradation of fish during postmortem storage by measuring oxidative stress levels, mitochondrial antioxidant enzyme activity, mitochondrial dysfunction, apoptotic factors, and structural protein degradation (n = 3). The results revealed that reactive oxygen species (ROS) increased gradually within the first 12 h and then decreased (p < 0.05) in mitochondria. Lipid peroxidation was increased, and superoxide dismutase, catalase, and glutathione peroxidase activities were decreased in mitochondria (p < 0.05). Furthermore, oxidative stress induced mitochondrial membrane opening, mitochondrial swelling, as well as the depolarization of mitochondrial potential. This led to an increase in the release of cytochrome c from mitochondria and caspase-3 activation. Ultimately, oxidative stress promoted small protein degradation (troponin-T and desmin) and induced myofibril susceptibility to proteolysis. These observations confirmed that oxidative stress mediated the activation of mitochondrial apoptotic factors-promoted protein degradation, initiating the deterioration of fish muscle through the mitochondrial apoptotic pathway.
Collapse
|
38
|
Shen J, Jiang Q, Zhang W, Xu Y, Xia W. Assessment of gelatinolytic proteinases in chilled grass carp (Ctenopharyngodon idellus) fillets: characterization and contribution to texture softening. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1919-1926. [PMID: 34514605 DOI: 10.1002/jsfa.11529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/25/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Texture softening is always a problem during chilling of grass carp fillets. To solve this problem and provide for better quality of flesh, understanding the mechanism of softening is necessary. Gelatinolytic proteinases are suspected to play an essential role in the disintegration of collagen in softening of fish flesh. In the present study, the types and contribution of gelatinolytic proteinases in chilled fillets were investigated. RESULTS Four active bands (G1, 250 kDa; G2, 68 kDa; G3, 66 kDa; G4, 29 kDa) of gelatinolytic proteinases were identified in grass carp fillets by gelatin zymography. The effect of inhibitors and metal ions revealed that G1 was possibly a serine proteinase, G2 and G3 were calcium-dependent metalloproteinases and G4 was a cysteine proteinase. The effect of the inhibitors phenylmethanesulfonyl fluoride (PMSF), l-3-carboxy-trans-2,3-epoxy-propionyl-l-leucine-4-guanidinobutylamide (E-64) and 1,10-phenanthroline (Phen) on chilled fillets revealed that gelatinolytic proteinase activities were significantly suppressed. Collagen solubility indicated that metalloproteinase and serine proteinase played critical roles in collagen breakdown during the first 3 days, and cysteine proteinase revealed its effect after 3 days. Meanwhile, during chilled storage for 11 days, the final values of shear force increased 19.68% and 24.33% in PMSF and E-64 treatments when compared to control fillets respectively, whereas the increase after Phen treatment was 49.89%. CONCLUSION Our study concluded that the disintegration of collagen in post-mortem softening of grass carp fillets was mainly mediated by metalloproteinase and to a lesser extent by serine proteinase and cysteine proteinase. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiandong Shen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Wei Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| |
Collapse
|
39
|
Seasonal Pattern of the Effect of Slurry Ice during Catching and Transportation on Quality and Shelf Life of Gilthead Sea Bream. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The objective of the present study was the evaluation of the effect of slurry ice, as an alternative cooling medium during harvesting and transportation, on the quality parameters (e.g., microbiological stability, sensory attributes, physicochemical changes) and shelf life of fish. The effect of seasonal variability of seawater temperature on fish preservation using the tested cooling media was also investigated. Gilthead sea bream (Sparus aurata) was slaughtered and transported in different mixtures of conventional flake ice and slurry ice for 24 h. Three mixtures of ice were tested as T: slaughtered in flake ice and transported in flake ice (control), TC: slaughtered in slurry ice and transported in flake ice, T50: slaughtered and transported in slurry ice 50%–flake ice 50%. Samples were subsequently stored isothermally at 0 °C for shelf-life evaluation. Three independent experiments were performed at three different periods, i.e., January, April, and September, referring to a sea water temperature range of 13.3–26.8 °C. Higher sea water temperatures at catching led to lower microbial growth rates and proteolytic enzyme activities and longer shelf life of refrigerated whole fish. The partial replacement of conventional flake ice with slurry ice improved the quality and extended the shelf life of fish at 0 °C by 2–7 days. The results of the study support that the use of slurry ice may enable better quality maintenance and significant shelf-life extension of whole gilthead sea bream.
Collapse
|
40
|
Shen J, Zhang W, Gao P, Xu Y, Xia W. The role of endogenous serine proteinase on disintegration of collagen fibers from grass carp (Ctenopharyngodon idellus). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Bian C, Cheng H, Yu H, Mei J, Xie J. Effect of multi-frequency ultrasound assisted thawing on the quality of large yellow croaker (Larimichthys crocea). ULTRASONICS SONOCHEMISTRY 2022; 82:105907. [PMID: 34998136 PMCID: PMC8799743 DOI: 10.1016/j.ultsonch.2021.105907] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/18/2021] [Accepted: 12/30/2021] [Indexed: 05/02/2023]
Abstract
The effects of mono-, dual- and tri-frequency ultrasound-assisted thawing (UAT) on the physicochemical quality, water-holding capacity, moisture migration and distribution and myofibrillary structure of frozen large yellow croaker (Larimichthys crocea) were detected. The results indicated that multifrequency UAT treatment significantly increased the thawing rate, maintained the stability of myofibrils and reduced the lipid oxidation. The multifrequency UAT samples had better water-holding capacity (higher water-holding capacity values, lower thawing loss and cooking loss) and physicochemical quality (higher hardness, springiness, resilience, chewiness and lower total volatile basic nitrogen (TVB-N) values, thiobarbituric acid reactive substances (TBARS) values), higher immobilized water content, and lower free water content. Therefore, the results provide a further understanding of the quality stability of frozen large yellow croaker treated by the multifrequency UAT.
Collapse
Affiliation(s)
- Chuhan Bian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Hao Cheng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Huijie Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| |
Collapse
|
42
|
Wang Z, Zhou H, Zhou K, Tu J, Xu B. An underlying softening mechanism in pale, soft and exudative - Like rabbit meat: The role of reactive oxygen species - Generating systems. Food Res Int 2022; 151:110853. [PMID: 34980389 DOI: 10.1016/j.foodres.2021.110853] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/02/2021] [Accepted: 11/27/2021] [Indexed: 01/01/2023]
Abstract
This work investigated the role of reactive oxygen species (ROS) - generating systems on the softening of the pale, soft and exudative-like (PSE-like) rabbit meat during aging. PSE-like meat was induced by incubation of post-mortem rabbit Longissimus thoracis et lumborum at 37 °C for 3 h. During aging, PSE-like meat samples had higher values in peroxides value, thiobarbituric acid-reactive substances, metmyoglobin percentage, ferrylmyoglobin content, non-heme iron content, hydroxyl radical content and ROS concentration compared with the normal ones, suggesting that PSE-like incubation could activate lipid-oxidizing system, myoglobin-mediated oxidation system, together with metal-catalyzed oxidation system. Additionally, higher protein carbonyl content was observed in PSE-like meat, along with a significant loss in sulfhydryl group. The results of SDS-PAGE suggested that more serious protein degradation occurred in PSE-like meat. It is plausible that the activated ROS-generating system played an underlying role in the softening texture during the aging period of PSE-like meat.
Collapse
Affiliation(s)
- Zhaoming Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hui Zhou
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kai Zhou
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Juncai Tu
- Department of Wine, Food and Molecular Biosciences, Lincoln University, P O Box 84, Lincoln 7647, Christchurch, New Zealand
| | - Baocai Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; State Key Laboratory of Meat Processing and Quality Control, Nanjing, 211806, China.
| |
Collapse
|
43
|
Liu Y, Zhang L, Gao S, Zheng Y, Tan Y, Luo Y, Li X, Hong H. Proteomic analysis of exudates in thawed fillets of bighead carp (Hypophthalmichthys nobilis) to understand their role in oxidation of myofibrillar proteins. Food Res Int 2022; 151:110869. [PMID: 34980404 DOI: 10.1016/j.foodres.2021.110869] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/21/2021] [Accepted: 12/02/2021] [Indexed: 11/04/2022]
Abstract
For frozen fillets, the formation of ice crystals destroys the integrity of cell and organelle membranes and causes the release of enzymes that are capable of catalyzing oxidation of myofibrillar proteins (MPs). Exudates from fresh, freeze-thaw (F-T) treated, and frozen stored fillets that were contained those enzymes were collected to explore the protein composition and changes in abundance of the main protein oxidation-related enzymes. Results indicated that enzymes with oxidative capacity were up-regulated and some antioxidant enzymes were down-regulated in exudates collected from 5 months frozen fillets. Changes in abundance of MPs in exudates suggested that degradation of MPs in thawed fillets was a comprehensive result of the F-T treatment, enzymatic degradation, and protein oxidation. The oxidative capacity of exudates was confirmed because incubation with exudates enhanced carbonyls and Schiff bases contents in MPs. Overall, the results of our study suggested that enzymes in exudates were a potential factor in protein oxidation in thawed fillets.
Collapse
Affiliation(s)
- Yueyue Liu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Longteng Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Song Gao
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanyan Zheng
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xingmin Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
44
|
Wang XY, Xie J. Comparison of Physicochemical Changes and Water Migration of Acinetobacter johnsonii, Shewanella putrefaciens, and Cocultures From Spoiled Bigeye Tuna ( Thunnus obesus) During Cold Storage. Front Microbiol 2021; 12:727333. [PMID: 34777276 PMCID: PMC8586447 DOI: 10.3389/fmicb.2021.727333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/11/2021] [Indexed: 11/23/2022] Open
Abstract
This study investigates the physicochemical changes and water migration of Acinetobacter johnsonii (A), Shewanella putrefaciens (S), and cocultured A. johnsonii and S. putrefaciens (AS) inoculated into bigeye tuna during cold storage. The physicochemical indexes [fluorescence ratio (FR), total volatile base nitrogen (TVB-N), thiobarbituric acid (TBA), trimethylamine (TMA), peroxide value (POV), and pH] of bigeye tuna increased cold storage. A significant decrease in trapped water was found in the AS samples, and direct monitoring of the water dynamics was provided by low-field nuclear magnetic resonance. Samples inoculated with A. johnsonii and S. putrefaciens also induced the degradation of myofibrillar proteins and weakness of some Z-lines and M-lines. Higher values of physicochemical indexes and water dynamics were shown in the coculture of S. putrefaciens and A. johnsonii than in the other groups. Therefore, this paper reveals that the coculture of A. johnsonii and S. putrefaciens resulted in a bigeye tuna that was more easily spoiled when compared to the single culture. This study provides insight into the spoilage potential of A. johnsonii and S. putrefaciens during cold storage, which further assists in the application of appropriate technologies to keep the freshness of aquatic foods.
Collapse
Affiliation(s)
- Xin-Yun Wang
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
45
|
Jiao X, Yan B, Huang J, Zhao J, Zhang H, Chen W, Fan D. Redox Proteomic Analysis Reveals Microwave-Induced Oxidation Modifications of Myofibrillar Proteins from Silver Carp ( Hypophthalmichthys molitrix). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9706-9715. [PMID: 34342990 DOI: 10.1021/acs.jafc.1c03045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To provide an insight into the oxidation behavior of cysteines in myofibrillar proteins (MPs) during microwave heating (MW), a quantitative redox proteomic analysis based on the isobaric iodoacetyl tandem mass tag technology was applied in this study. MPs from silver carp muscles were subjected to MW and water bath heating (WB) with the same time-temperature profiles to eliminate the thermal differences caused by an uneven energy input. Altogether, 422 proteins were found to be differentially expressed after thermal treatments as compared to that with no heat treatment. However, MW triggered a larger number of proteins and cysteine sites for oxidation. Myosin heavy chain, myosin-binding protein C, nebulin, α-actinin-3-like, and titin were found to be highly susceptible to oxidation under microwave irradiation. Notably, MW caused such modifications at cysteine site 9 in the head of myosin, revealing the enhancement mechanism of MP gelation by excess cysteine cross-linking during microwave processing. Furthermore, Gene Ontology and functional enrichment analyses suggested that the two thermal treatments resulted in some differences in ion binding, muscle cell development, and protein-containing complex assembly. Overall, this study is the first to report the redox proteomic changes caused by MW and WB treatments, thus providing a further understanding of the microwave-induced oxidative modifications of MPs.
Collapse
Affiliation(s)
- Xidong Jiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianlian Huang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- Fujian Provincial Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Xiamen 361022, China
- Fujian Anjoy Food Share Co. Ltd., Xiamen 361022, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Daming Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
46
|
Marchetti MD, Gomez PL, Yeannes MI, Garcia Loredo AB. Effect of salting procedures on quality of hake (Merluccius hubbsi) fillets. Heliyon 2021; 7:e07703. [PMID: 34401584 PMCID: PMC8353488 DOI: 10.1016/j.heliyon.2021.e07703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/29/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022] Open
Abstract
The influence of salting procedures on the proximate analysis, mechanical parameters, and color of hake (Merluccius hubbsi) was investigated. Three procedures were comparatively evaluated: dry salting (DS), mixed salting (MS) and brining (BS). MS samples had the highest fat content, a considerable protein content and an equilibrium salt content similar to BS. MS samples had a great water loss, as DS method, but hardness and other mechanical parameters were similar to that obtained with BS, i.e. significantly lower than DS. All samples showed color parameters significantly different as compared to fresh hake, turning more red-orange as the salting time increased. Lightness diminished, a∗ values increased and b∗ values did not show a clear trend throughout the salting time. Principal component analysis (PCA) described the relationship between some variables (zNaCl, color, and mechanical parameters) with salting time. High Pearson's correlation coefficients were found between zNaCl and hardness, springiness, cohesiveness and a∗ parameter (r = 0.76, p < 0.001; r = 0.93, p < 0.0001; r = 0.95, p < 0.001 and r = 0.93, p < 0.0001, respectively). Luminosity was negatively correlated with zNaCl (r = -0.87, p = 0.0001). The correlation curves showed nonlinear relationships (R2adj between 83.7 % and 97.4 %), which could be used to predict quality attributes of hake fillets as a function of salting time. This work contributed to know the effect of different salting procedures on the quality attributes of a species widely available in the Southwest Atlantic Ocean.
Collapse
Affiliation(s)
- Marion Daniela Marchetti
- Preservación y Calidad de Alimentos, INCITAA, Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Juan B. Justo 4302 (7600), Mar del Plata, Buenos Aires, Argentina.,Member of Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, (C1425FQB) Ciudad Autónoma de Buenos Aires, Argentina
| | - Paula Luisina Gomez
- Member of Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, (C1425FQB) Ciudad Autónoma de Buenos Aires, Argentina.,Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, (C1428EGA) Ciudad Autónoma de Buenos Aires, Argentina
| | - María Isabel Yeannes
- Preservación y Calidad de Alimentos, INCITAA, Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Juan B. Justo 4302 (7600), Mar del Plata, Buenos Aires, Argentina.,Member of Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, (C1425FQB) Ciudad Autónoma de Buenos Aires, Argentina
| | - Analia Belen Garcia Loredo
- Preservación y Calidad de Alimentos, INCITAA, Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Juan B. Justo 4302 (7600), Mar del Plata, Buenos Aires, Argentina.,Member of Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, (C1425FQB) Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
47
|
Ntzimani A, Angelakopoulos R, Semenoglou I, Dermesonlouoglou E, Tsironi T, Moutou K, Taoukis P. Slurry ice as an alternative cooling medium for fish harvesting and transportation: Study of the effect on seabass flesh quality and shelf life. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2021.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Strateva M, Penchev G, Stratev D. Histological, Physicochemical and Microbiological Changes in the Carp (Cyprinus carpio) Muscles after Freezing. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1882633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Mariyana Strateva
- Department of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Georgi Penchev
- Department of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Deyan Stratev
- Department of Food Hygiene and Control, Veterinary Legislation and Management, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
49
|
Shen J, Yu D, Gao P, Xu Y, Jiang Q, Xia W. Relevance of collagen solubility and gelatinolytic proteinase activity for texture softening in chilled grass carp (
Ctenopharyngodon idellus
) fillets. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jiandong Shen
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi214122China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi214122China
| | - Dawei Yu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi214122China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi214122China
| | - Pei Gao
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi214122China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi214122China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi214122China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi214122China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi214122China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi214122China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi214122China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi214122China
| |
Collapse
|
50
|
Wu H, Xiao S, Yin J, Zhang J, Richards MP. Impact of lipid composition and muscle microstructure on myoglobin-mediated lipid oxidation in washed cod and pig muscle. Food Chem 2020; 336:127729. [PMID: 32768914 DOI: 10.1016/j.foodchem.2020.127729] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 11/29/2022]
Abstract
The roles of lipid oxidation substrates and muscle microstructure in lipid oxidation were investigated in two muscle models (cod and pig). Added myoglobin (Mb) promoted lipid oxidation in washed cod muscle (WCM) but not in washed pig muscle (WPM). The differing microstructure of WCM e.g. more exposed fat cells or membrane of muscle cells compared to the "denseness" or "wrapped" structure of WPM, may have contributed to the better ability of Mb to facilitate lipid oxidation in the WCM. Added phospholipids with polyenoic indexes of 282 and 24 activated Mb as an oxidant similarly in WPM while added neutral lipids and added free fatty acids had little effect. It is suggested that muscle microstructure and accessibility of Mb to phospholipids play critical roles in relation to Mb-mediated lipid oxidation while the degree of unsaturation in the phospholipids was less important.
Collapse
Affiliation(s)
- Haizhou Wu
- National Center of Meat Quality, Safety Control, Jiangsu Innovation Center of Meat Production, Processing, College of Food Science, Technology, Nanjing Agricultural University, Nanjing 210095, PR China; Department of Animal Sciences, Meat Science & Muscle Biology Laboratory, University of Wisconsin-Madison, 1805 Linden Drive, Madison, WI 53706, United States
| | - Shulan Xiao
- National Center of Meat Quality, Safety Control, Jiangsu Innovation Center of Meat Production, Processing, College of Food Science, Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jie Yin
- Department of Animal Sciences, Meat Science & Muscle Biology Laboratory, University of Wisconsin-Madison, 1805 Linden Drive, Madison, WI 53706, United States
| | - Jianhao Zhang
- National Center of Meat Quality, Safety Control, Jiangsu Innovation Center of Meat Production, Processing, College of Food Science, Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Mark P Richards
- Department of Animal Sciences, Meat Science & Muscle Biology Laboratory, University of Wisconsin-Madison, 1805 Linden Drive, Madison, WI 53706, United States.
| |
Collapse
|