1
|
Wang H, Yuan J, Wu Y, Wen Y, Lin Y, Chen Y, Lin H. Bacillus amyloliquefaciens LY-1 culture broth enhances the storage properties of fresh litchi through acting on ROS metabolism. Food Chem 2025; 480:143811. [PMID: 40117812 DOI: 10.1016/j.foodchem.2025.143811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/17/2025] [Accepted: 03/07/2025] [Indexed: 03/23/2025]
Abstract
The impacts of Bacillus amyloliquefaciens LY-1 culture broth (BLCB) on the fruit storage properties and reactive oxygen species (ROS) metabolism of postharvest 'Wuye' litchis were studied. In comparation with control fruit, BLCB-treated litchis showed a lower fruit disease index, a higher rate of commercially acceptable fruit, higher amounts of pericarp pigments (total phenolics, anthocyanin, carotenoid, chlorophyll and flavonoid), higher chromaticity C, a*, b* and L* values but lower hue angle h° of fruit surface. Additionally, BLCB-treated litchis exhibited lower malonaldehyde (MDA) accumulation and superoxide anion radical (O2.-) production rate, higher APX, CAT and SOD activities, higher GSH and AsA amounts, higher reducing power, and higher ability of scavenging DPPH radical. Furthermore, the pericarp browning index and fruit disease index were positively correlated with O2.- production rate. These findings suggested that BLCB treatment increased the storability of postharvest litchi fruit through enhancing scavenging capacity of ROS and inhibiting overaccumulation of ROS.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Junhui Yuan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yijing Wu
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, Fujian 350108, China
| | - Yifan Wen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
2
|
Han X, Chen J, Wang Q, Zhang J, Mi J, Feng J, Du T, Wang J, Zhang W. Photodynamically activated chlorogenic acid-based antimicrobial packaging films for cherry preservation. Food Chem 2025; 479:143857. [PMID: 40088645 DOI: 10.1016/j.foodchem.2025.143857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/19/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Natural photosensitizers offer promising and sustainable solutions to the challenges of food preservation. This study investigates the potential of chlorogenic acid (CA), a naturally occurring phenolic compound with dual photoactive and antimicrobial properties. Under Xenon lamp irradiation (100 mW/cm2), CA at a concentration of 0.5 mg/mL demonstrated significant antimicrobial efficacy against both Staphylococcus aureus (106 CFU/mL) and Escherichia coli (105 CFU/mL). To enhance the practical applicability of CA for cherry preservation, CA was incorporated into agar (AG) films, which exhibited superior physicochemical and mechanical properties, including increased tensile strength and improved gas permeability. Implementation of CA-AG films prolonged the storage duration of cherries by 9 days through effective quality retention and suppression of microbial contamination. This research highlights the potential of CA as an environmentally friendly and functional solution for advanced food preservation technologies.
Collapse
Affiliation(s)
- Ximei Han
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China
| | - Jiayi Chen
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Qian Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jie Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jiaqi Mi
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jianxing Feng
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China.
| |
Collapse
|
3
|
Li N, Cheng Y, Li Z, Yue T, Yuan Y. An alginate-based edible coating containing lactic acid bacteria extends the shelf life of fresh strawberry (Fragaria × ananassa Duch.). Int J Biol Macromol 2024; 274:133273. [PMID: 38906346 DOI: 10.1016/j.ijbiomac.2024.133273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Edible coatings, formulated with sodium alginate and various strains of lactic acid bacteria, were evaluated for their effectiveness in extending the shelf life and mitigating microbial risks associated with strawberries. This study specifically employed strains of Lacticaseibacillus paracasei, Lacticaseibacillus rhamnosus, and Lacticaseibacillus plantarum as antimicrobial agents. Through physicochemical property analysis, the alginate-based antimicrobial coating proved most effective in reducing the strawberry weight loss rate, decay index, and ascorbic acid degradation. Over time, all treatments exhibited increased fungal growth. However, strawberries treated with alginate and lactic acid bacteria recorded lower final colony formation counts-6.82 log CFU/g for SA + LPC, 6.04 log CFU/g for SA + LGG, and 6.26 log CFU/g for SA + LP-compared to 8.73 log CFU/g in the control group. In terms of bacterial resistance under gastrointestinal conditions, L. paracasei demonstrated the highest survival rate post-simulated gastric fluid exposure, while L. plantarum showed the greatest resilience post-simulated intestinal fluid exposure. These findings underscore the efficacy of alginate-based antimicrobial coatings in not only enhancing the storage quality of strawberries but also ensuring microbial safety and potential benefits for gut health.
Collapse
Affiliation(s)
- Nanyang Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifan Cheng
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Zhao Li
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, Gansu 741000, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
4
|
Yuan Z, Yang T, Xiong Q, Shi Y, Han X, Lin Y, Wambui NH, Liu Z, Wang Y, Liu H. PCAP-1a, an exopolysaccharide from Pectobacterium actinidiae, exerts the dual role of immunogenicity and virulence in plants. Carbohydr Polym 2024; 323:121390. [PMID: 37940244 DOI: 10.1016/j.carbpol.2023.121390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 11/10/2023]
Abstract
Plant defense mechanisms begin with the recognition of microbe-associated molecular patterns or pathogen-associated molecular patterns (MAMPs/PAMPs). Several carbohydrates, such as chitin, were reported to induce plant defenses, acting as elicitors. Regrettably, the structures of polysaccharide elicitors have rarely been characterized, and their recognition receptors in plants remain unknown. In the present study, PCAP-1a, an exopolysaccharide (PCAP-1a) purified from Pectobacterium actinidiae, was characterized and found to induce rapid cell death of dicotyledons, acting as a polysaccharide elicitor to induce plant immunity. A series of pattern-triggered immunity (PTI) responses were triggered, including reactive oxygen species production, phosphorylation of mitogen-activated protein kinases and gene transcriptional reprogramming. Moreover, we confirmed that CERK1 is probably one of the immune coreceptors for plants to recognize PCAP-1a. Notably, PCAP-1a also promotes the infection caused by P. actinidiae. In conclusion, our study supports the potential of PCAP-1a as a toxin that plays a dual role of virulence and immune induction in pathogen-plant interactions.
Collapse
Affiliation(s)
- Zhixiang Yuan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China
| | - Tingmi Yang
- Guangxi Academy of Specialty Crops/Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guilin 541004, Guangxi, China
| | - Qingping Xiong
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yuqi Shi
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China
| | - Xixi Han
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China
| | - Yuqing Lin
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China
| | - Njoroge Hellen Wambui
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China
| | - Zhuang Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China
| | - Yunpeng Wang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Hongxia Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China.
| |
Collapse
|
5
|
Wang Z, Wang W, Li W, Yang R, Li Y, Zhang L, Zhang M, Li X. Effects of Near-Freezing Temperature Combined with Jujube Polysaccharides Treatment on Proteomic Analysis of 'Diaogan' Apricot ( Prunus armeniaca L.). Foods 2023; 12:4504. [PMID: 38137308 PMCID: PMC10742872 DOI: 10.3390/foods12244504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
This study involved the extraction of polysaccharides from jujube for application in apricot storage. Although near-freezing temperature (NFT) storage is commonly employed for preserving fresh fruit, its effectiveness is somewhat limited. Incorporating jujube polysaccharides was proposed to augment the preservative effect on apricots. Our findings demonstrated that the combined use of NFT and jujube polysaccharides can maintain fruit color, and effectively inhibit decay. Additionally, Tandem Mass Tag (TMT) quantitative proteomic technology was utilized to analyze protein variations in 'Diaogan' apricots during storage. This dual approach not only markedly lowered the activity of polyphenol cell wall-degrading enzymes (p < 0.05) but also revealed 1054 differentially expressed proteins (DEPs), which are related to sugar and energy metabolism, stress response and defense, lipid metabolism, and cell wall degradation. The changes in DEPs indicated that the combined use of NFT and jujube polysaccharides could accelerate the conversion of malic acid to oxaloacetic acid and regulate antioxidant ability, potentially extending the storage lifespan of apricot fruit.
Collapse
Affiliation(s)
| | - Wei Wang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | | | | | | | | | | | | |
Collapse
|
6
|
Firdous N, Moradinezhad F, Farooq F, Dorostkar M. Advances in formulation, functionality, and application of edible coatings on fresh produce and fresh-cut products: A review. Food Chem 2023; 407:135186. [PMID: 36525802 DOI: 10.1016/j.foodchem.2022.135186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/28/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
With the increasing population of the world food demand is also increasing but unfortunately, many countries in the world are lacking suitable and economical postharvest preservation techniques to minimize increasing postharvest losses. To ensure food security advanced production technologies, distribution systems and minimum losses should be ensured to give accessibility of food to all population groups. Innovative preservation techniques should be adopted by the agriculture sector to meet intercontinental distribution and demand for fresh produce. The application of the edible coating is a novel technique in postharvest preservation due to its simple application, ecofriendly nature, and effectiveness. Edible coatings can also improve the quality and safety aspects of fresh produce and thus extends shelf life. This review aimed to update information about recent advances in edible coating formulation and application mainly on fresh-cut /minimally processed fruits and vegetables. This information will be helpful for processors to select the best coating material and its effective concentration for different fresh and minimal processed vegetables.
Collapse
Affiliation(s)
- Nida Firdous
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Pakistan
| | - Farid Moradinezhad
- Department of Horticultural Science, Faculty of Agriculture, University of Birjand, Birjand, Iran.
| | - Fatima Farooq
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Pakistan
| | - Maryam Dorostkar
- Department of Horticultural Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| |
Collapse
|
7
|
Characterization of Zizania latifolia polysaccharide-corn starch composite films and their application in the postharvest preservation of strawberries. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Jiang G, He J, Gan L, Li X, Xu Z, Yang L, Li R, Tian Y. Exopolysaccharide Produced by Pediococcus pentosaceus E8: Structure, Bio-Activities, and Its Potential Application. Front Microbiol 2022; 13:923522. [PMID: 35814643 PMCID: PMC9257109 DOI: 10.3389/fmicb.2022.923522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
The novel exopolysaccharide EPS-E8, secreted by Pediococcus pentosaceus E8, was obtained by anion-exchange and gel filtration chromatography. Structural analyses identified EPS-E8 as a heteropolysaccharide containing mannose, glucose, and galactose. Its major backbone consists of →2)-α-D-Manp-(1→2,6)-α-D-Glcp-(1→6)-α-D-Manp-(1→, and its molecular weight is 5.02 × 104 g/mol. Using atomic force microscopy and scanning electron microscopy, many spherical and irregular reticular-like shapes were observed in the microstructure of EPS-E8. EPS-E8 has outstanding thermal stability (305.7°C). Both the zeta potential absolute value and average particle diameter increased gradually with increasing concentration. Moreover, at a concentration of 10 mg/ml, the antioxidant capacities of, 1-Diphenyl-2-picrylhydrazyl (DPPH), ABTS and hydroxyl radical were 50.62 ± 0.5%, 52.17 ± 1.4%, and 58.91 ± 0.7%, respectively. EPS-E8 possesses excellent emulsifying properties against several food-grade oils, and its activity is retained under various conditions (temperature, pH, and ionic strength). Finally, we found that EPS-E8 as a polysaccharide-based coating could reduce the weight loss and malondialdehyde (MDA) content of strawberry, as well as preserving the vitamin C and soluble solid content during storage at 20°C. Together, the results support the potential application of EPS-E8 as an emulsifier, and a polysaccharide-based coating in fruit preservation.
Collapse
Affiliation(s)
- Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Juan He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Longzhan Gan
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Xiaoguang Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Zhe Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Li Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Ran Li
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
- *Correspondence: Yongqiang Tian,
| |
Collapse
|
9
|
Fan TT, Zhang J, Cao JX, Xia MH, Wang T, Cao S. Effects of resveratrol treatment on quality and antioxidant properties of postharvest strawberry fruit. J Food Biochem 2022; 46:e14176. [PMID: 35393646 DOI: 10.1111/jfbc.14176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/07/2022] [Accepted: 03/25/2022] [Indexed: 01/26/2023]
Abstract
Strawberry fruit is one of people's favorite fruits. It has high nutritional value and health care effects. Strawberries lose their edible value quickly after being picked because of their thin skin, which is easily damaged. In order to find a method to maintain the quality of strawberries, the effects of resveratrol treatment on the nutritional quality and antioxidant metabolism of strawberry fruit were studied. The result indicated that 100 μM resveratrol was the optimal concentration to delay the occurrence of decay. Strawberry fruit treated with resveratrol delayed the decrease in firmness, total soluble solids (TSS), total phenolics content (TPC), total flavonoid content (TFC), vitamin C (Vc) content,1,1-diphenyl-2-picrylhydrazyl (DPPH), and 2,2'-azino-bis (3-ethylbezothi- azot-hiazoline-6-sulfonic acid) (ABTS) radical scavenging capacities. The malondialdehyde (MDA) content, hydrogen peroxide (H2 O2 ) content, and superoxide anion (O2 •- ) production of control fruit were significantly higher than those of treated fruit. Strawberry fruit treated with resveratrol also increased the activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) during storage. Therefore, resveratrol has been proved to effectively improve the nutritional quality and antioxidant properties of strawberry fruit. PRACTICAL APPLICATIONS: Strawberry fruit is rich in nutrients, which is beneficial to human health. But strawberry fruit has high water content and soft tissue, which is easy to be damaged and decayed. Therefore, it is particularly important to find a way to maintain strawberry fruit quality. In this study, resveratrol has good antioxidant, health care, and antibacterial properties. Resveratrol treatment can maintain the nutritional quality of strawberry fruit and can be used as an effective method for strawberry fruit preservation.
Collapse
Affiliation(s)
- Ting-Ting Fan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Jing Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Jun-Xuan Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Ming-Hui Xia
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Tong Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Shuqing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| |
Collapse
|
10
|
Zhang J, Chen H, Luo L, Zhou Z, Wang Y, Gao T, Yang L, Peng T, Wu M. Structures of fructan and galactan from Polygonatum cyrtonema and their utilization by probiotic bacteria. Carbohydr Polym 2021; 267:118219. [PMID: 34119173 DOI: 10.1016/j.carbpol.2021.118219] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 02/02/2023]
Abstract
Polygonatum cyrtonema is a known tonic herb in Chinese Materia Medica, extensively consumed in China, but the structure and activity of its polysaccharide components remain to be clarified. Herein, two new polysaccharides (a fructan and a galactan) were purified from the dried and the processed P. cyrtonema rhizome, respectively. Structural analysis suggested that the fructan consisted of a (2 → 6) linked β-d-Fruf residues backbone with an internal α-d-Glcp residue and two (2 → 1) linked β-d-Fruf residues branches, and that the galactan was a (1 → 4)-β-d-galactan branched with a single β-d-galactose at C-6 at about every nine residues in its main chain. The bioactive assay showed that the fructan and the galactan remarkably promoted growth of Bifidobacterium and Lactobacillus strains, indicating that they possess prebiotic activity. These findings may help expand the application of the polysaccharides from the tonic herb P. cyrtonema as functional ingredients in food products.
Collapse
Affiliation(s)
- Junyin Zhang
- College of Pharmacy, Chengdu University of TCM, Chengdu 611137, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hulan Chen
- College of Pharmacy, Chengdu University of TCM, Chengdu 611137, China
| | - Lan Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhipeng Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yingxiang Wang
- College of Pharmacy, Chengdu University of TCM, Chengdu 611137, China
| | - Tianyu Gao
- College of Pharmacy, Chengdu University of TCM, Chengdu 611137, China
| | - Lian Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Teng Peng
- College of Pharmacy, Chengdu University of TCM, Chengdu 611137, China.
| | - Mingyi Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
11
|
E-AlexNet: quality evaluation of strawberry based on machine learning. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01010-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Wei H, Shi Y, Yuan Z, Huang Z, Cai F, Zhu J, Zhang W, Li J, Xiong Q, Wang Y, Wang X. Isolation, Identification, and Anti-Inflammatory Activity of Polysaccharides of Typha angustifolia. Biomacromolecules 2021; 22:2451-2459. [PMID: 34024108 DOI: 10.1021/acs.biomac.1c00235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study aimed to purify, structurally characterize, and evaluate the anti-inflammatory activity of the polysaccharide extracted from Typha angustifolia. Two purified polysaccharides (PTA-1 and PTA-2) were obtained via DEAE-52 cellulose chromatography. Their structural characterizations and antioxidant activity were in vitro analyzed. To evaluate the anti-inflammatory activity of PTA-2, the levels of inflammatory cytokines, intracellular ROS production, and the inhibitory effects of the transcriptional activation of the nuclear factor kappa B (NF-κB) signaling pathway were determined. PTA-1 comprises glucose (100%) with α-(1 → 3) glycosidic bonds, and PTA-2 comprises glucose (66.7%) and rhamnose (33.3%) formed by β-(1 → 3) glycosidic bonds. PTA-1 and PTA-2 showed strong antioxidant activity in vitro. Moreover, PTA-2 intervention (50, 100, and 200 μg/mL) suppressed the production of inflammatory cytokines, the activation of NF-κB signaling, and reactive oxygen species production significantly. The results identified PTA-2 as a natural product that could be applied in anti-inflammatory drugs.
Collapse
Affiliation(s)
- Huan Wei
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yuqi Shi
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhixiang Yuan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhinan Huang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Fuhong Cai
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Jingfeng Zhu
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Wanwan Zhang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Jia Li
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Qingping Xiong
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yunpeng Wang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Xiaoli Wang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| |
Collapse
|
13
|
Structural characteristics and in vitro and in vivo immunoregulatory properties of a gluco-arabinan from Angelica dahurica. Int J Biol Macromol 2021; 183:90-100. [PMID: 33872613 DOI: 10.1016/j.ijbiomac.2021.04.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
A water-soluble polysaccharide identified here as ADP80-2 was acquired from Angelica dahurica. ADP80-2 was a gluco-arabinan composed of arabinose and a trace of glucose with a molecular weight of 9950 g/mol. The backbone of ADP80-2 comprised →5)-α-L-Araf-(1→, →3, 5)-α-L-Araf-(1→, →6)-α-D-Glcp-(1→, with a terminal branch α-L-Araf-(1 → residue. In terms of immunoregulatory activity, ADP80-2 can significantly promote the phagocytosis, the production of nitric oxide (NO), and the secretion of cytokines (IL-6, IL-1β, and TNF-α) of macrophage. In addition to the cellular immunomodulatory activities, the chemokines related to immunoregulation were significantly increased in the zebrafish model after treated with ADP80-2. These biological results indicated that ADP80-2 with immunomodulatory effects was expected to be useful for the development of new immunomodulatory agents. Simultaneously, the discovery of ADP80-2 further revealed the chemical composition of A. dahurica used as a traditional Chinese medicine and spice.
Collapse
|
14
|
Ansar, Nazaruddin, Azis AD. New frozen product development from strawberries ( Fragaria Ananassa Duch.). Heliyon 2020; 6:e05118. [PMID: 33024877 PMCID: PMC7529817 DOI: 10.1016/j.heliyon.2020.e05118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/28/2020] [Accepted: 09/27/2020] [Indexed: 11/28/2022] Open
Abstract
Strawberry fruit has a short shelf life. If stored at ambient temperature only lasts 1 day, so it needs to be dried into a frozen product so that its shelf life is longer. Frozen products are favored by consumers because they still have properties like fresh fruit. This study was aimed at examining the physical and sensory characteristics of new frozen products from strawberries. The research sample was freeze-dried at 3 variations of the heating plate temperature were 40, 50, and 60 °C and 3 variations of the drying time were 24, 36, and 48 h. The research parameters observed were weight loss, water content, texture, color, aroma, and taste. The results showed that the freeze-vacuum drying process has a significant influence on the parameters of weight loss, moisture content, texture, and color of frozen strawberries, but does not influence significantly to aroma and taste. The highest weight loss and evaporation were obtained at 60 °C and 48 h of drying time. Frozen strawberries most preferred by panelists are those that are freeze-dried at 50 °C and a drying time of 36 h because they have aroma and flavor that seem fresh strawberries.
Collapse
Affiliation(s)
- Ansar
- Department of Agricultural Engineering, Faculty of Food Technology and Agroindustries, University of Mataram, Indonesia
| | - Nazaruddin
- Department of Food Science and Technology, Faculty of Food Technology and Agroindustries, University of Mataram, Indonesia
| | - Atri Dewi Azis
- Department of English Education, Faculty of Teacher Training and Education, University of Mataram, Indonesia
| |
Collapse
|
15
|
Pei F, Ma Y, Chen X, Liu H. Purification and structural characterization and antioxidant activity of levan from Bacillus megaterium PFY-147. Int J Biol Macromol 2020; 161:1181-1188. [DOI: 10.1016/j.ijbiomac.2020.06.140] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/14/2020] [Indexed: 12/26/2022]
|
16
|
Su X, Yang Z, Tan KB, Chen J, Huang J, Li Q. Preparation and characterization of ethyl cellulose film modified with capsaicin. Carbohydr Polym 2020; 241:116259. [PMID: 32507184 DOI: 10.1016/j.carbpol.2020.116259] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 01/02/2023]
Abstract
Pure ethyl cellulose film cannot extend the shelf life of food, and adding capsaicin as an antibacterial agent can inhibit the activity of microorganisms on the surface of the film. The main purpose of this work is to study the properties and specific performance of the film formed by adding capsaicin to ethyl cellulose system. Importantly, the transparent, soft, and stretchable ethyl cellulose-capsaicin composite membrane (EC-Cap) is generally easy to produce and is environmentally friendly. It is the first successful preparation by a casting method. It is worth noting that the FTIR analysis of the film shows that there may be an interaction between the phenolic hydroxyl group in Cap and the hydroxyl group in EC, which means that Cap has successfully participated in the film formation system. Therefore, the cap-containing film not only exhibits a low water absorption, when the cap is appropriate, the elongation at break of the film reaches a maximum of 61.34 % ± 1.37 %. Compared with pure EC membrane, EC-Cap membrane has greater antibacterial activity than pure EC membrane. The practical application of EC-Cap films in the protection of bell peppers has shown positive results, which makes it possible to apply these films to food packaging.
Collapse
Affiliation(s)
- Xiaochi Su
- Department of Chemical and Biochemical Engineering, Xiamen University, 361005, PR China
| | - Zhuang Yang
- Department of Chemical and Biochemical Engineering, Xiamen University, 361005, PR China
| | - Kok Bing Tan
- Department of Chemical and Biochemical Engineering, Xiamen University, 361005, PR China
| | - Jianfu Chen
- School of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou, 363000, PR China.
| | - Jiale Huang
- Department of Chemical and Biochemical Engineering, Xiamen University, 361005, PR China.
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, Xiamen University, 361005, PR China; College of Food and Biological Engineering, Jimei University, Xiamen, 361021, PR China
| |
Collapse
|
17
|
Liu X, Zhang X, Zhang X, Li F, Tian Y, Du M, Zhao H, Shao L. Antibacterial activity of
Osmunda japonica
(Thunb) polysaccharides and its effect on tomato quality maintenance during storage. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Xiaochen Liu
- College of Food Science Northeast Agricultural University Changjiang Road 600 Xiangfang District Harbin Heilongjiang Province 150030 China
| | - Xiuling Zhang
- College of Food Science Northeast Agricultural University Changjiang Road 600 Xiangfang District Harbin Heilongjiang Province 150030 China
| | - Xueting Zhang
- College of Food Science Northeast Agricultural University Changjiang Road 600 Xiangfang District Harbin Heilongjiang Province 150030 China
| | - Fengfeng Li
- College of Food Science Northeast Agricultural University Changjiang Road 600 Xiangfang District Harbin Heilongjiang Province 150030 China
| | - Yaqin Tian
- College of Food Science Northeast Agricultural University Changjiang Road 600 Xiangfang District Harbin Heilongjiang Province 150030 China
| | - Meiling Du
- College of Food Science Northeast Agricultural University Changjiang Road 600 Xiangfang District Harbin Heilongjiang Province 150030 China
| | - Hengtian Zhao
- Northeast Institute of Geography and Agroecology Chinese Academy of Sciences 138# Haping Road Nangang District Harbin Heilongjiang Province 150080 China
| | - Lingling Shao
- Northeast Institute of Geography and Agroecology Chinese Academy of Sciences 138# Haping Road Nangang District Harbin Heilongjiang Province 150080 China
| |
Collapse
|