1
|
Zhang Y, Wang Y, Dong H, Li J, Sun J, Mao X. Interaction of L-proline with water and ice: Implications for Litopenaeus Vannamei Cryoprotection during temperature fluctuation. Food Chem 2025; 470:142629. [PMID: 39733614 DOI: 10.1016/j.foodchem.2024.142629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/27/2024] [Accepted: 12/21/2024] [Indexed: 12/31/2024]
Abstract
Temperature fluctuations can negatively affect the quality of frozen shrimp. Research on novel cryoprotectants to replace traditional agents (phosphate, etc.) has become a hotspot. Our results indicated that L-Proline could reduce thawing losses, delay texture deterioration and improve the functional properties of myofibrillar proteins of shrimp. Thawing loss in the proline group (3.2 %) was significantly lower than that in the control (5.4 %) after 3 freeze-thaw cycles (p < 0.05). Compared to Na4P2O7, proline had better permeability and greater ability to inhibit ice crystal growth and volume expansion. Through molecular simulations, we found that proline might inhibit ice crystal formation by forming glassy states with water. Hydrogen bonding between proline and water/ice played a major role, and only a small amount of proline was required to significantly reduce the ice crystal growth rate from 0.16 m/s to 0.06 m/s. Briefly, proline exhibited potential as a cryoprotectant for shrimp in temperature fluctuations.
Collapse
Affiliation(s)
- Yejun Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Yongzhen Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Hao Dong
- Shandong Meijia Group Co. Ltd., Rizhao 276800, PR China
| | - Jiao Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Centre, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| |
Collapse
|
2
|
Ren Y, Liang R, Mao X. Effect of liquid nitrogen freezing pretreatment on the meat quality of gazami crab (Portunus trituberculatus) during frozen storage. Food Chem 2025; 468:142367. [PMID: 39700814 DOI: 10.1016/j.foodchem.2024.142367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Liquid nitrogen freezing (LNF) pretreatment is an effective means of maintaining seafood quality during frozen storage. To improve the meat quality of gazami crab (Portunus trituberculatus) during frozen storage, this study investigated the effects of LNF temperatures on the meat quality of gazami crab. Fresh crab was pre-treated with different LNF temperatures (-60 °C, -80 °C, -100 °C, -120 °C), and then freeze in refrigerator at -18 °C. The changes in protein structure and meat quality of gazami crab during long-term frozen storage were measured. The results showed that -100 °C LNF more effectively inhibited the oxidative deterioration of crab meat during storage, which is lower than the optimal LNF temperature for shell free aquatic products such as fish, extending the shelf life of frozen gazami crab to 4 months. This study enriches the application parameters of LNF in freezing industry of crustacean aquatic products, providing guidance for exploring the optimal LNF temperature of aquatic products.
Collapse
Affiliation(s)
- Yanmei Ren
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| | - Rongxiang Liang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China.
| |
Collapse
|
3
|
Yu S, Zhi Z, Wang Y, Chen F, Pang J, Wu C. Investigating the cryoprotective mechanism of phosphorylated nano-chitin in shrimp (Litopenaeus vannamei) during frozen storage. Food Res Int 2025; 203:115794. [PMID: 40022326 DOI: 10.1016/j.foodres.2025.115794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/14/2025] [Accepted: 01/18/2025] [Indexed: 03/03/2025]
Abstract
This study aims to explore the cryoprotective effects of phosphorylated surface deacetylated chitin nanofibers (PS-ChNFs) on shrimp. Compared to the control- and those treated with surface deacetylated chitin nanofibers (S-ChNFs) or sodium tripolyphosphate (STPP), the PS-ChNFs-treated group showed lower thawing losses and cooking losses, alongside higher myofibrillar protein concentrations and Ca2+-ATPase activity in frozen shrimp. Additional, PS-ChNFs-treated significantly delayed protein aggregation and the deterioration of the secondary structure in shrimp during frozen storage (p < 0.05). Furthermore, microscopy analysis revealed PS-ChNFs effectively inhibited ice crystal growth and slowed the damage to muscle tissue structures. Molecular simulations suggested that the cryoprotective effect of PS-ChNFs were primarily achieved through the "water substitution" and "glassy state" hypotheses, wherein PS-ChNFs formed hydrogen bonds with water and reduced the number of water molecules around myosin. These findings indicate that PS-ChNFs hold significant potential as cryoprotectants for freeze-stored aquatic products.
Collapse
Affiliation(s)
- Shan Yu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Zijian Zhi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yufei Wang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Fujie Chen
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jie Pang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| | - Chunhua Wu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
4
|
He M, Zhang Y, Luo W, Sun J, Mao X. Protective effects and molecular mechanisms of Litopenaeus vannamei treated with l-arginine/l-lysine against myofibrillar proteins oxidation and quality degradation during freeze-thaw cycles. Food Chem 2025; 462:140995. [PMID: 39213970 DOI: 10.1016/j.foodchem.2024.140995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/12/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The storage and processing of Litopenaeus vannamei are often challenged by the freeze-thaw (F-T) cycle phenomenon. This study delved into the influence of pretreatment with l-arginine (Arg) and l-lysine (Lys) on the myofibrillar proteins oxidation and quality of shrimp subjected to F-T cycles. Arg and Lys pretreatment notably improved water-holding capacity (WHC), textural integrity as well as the myofibrillar structure of the shrimps. A lesser reduction in the amounts of immobile and bound water was found in the amino acid-treated groups, and the oxidation of lipids and proteins were both decelerated. Molecular simulation results indicated that Arg and Lys could form hydrogen and salt-bridge bonds with myosin, enhancing the stability of Litopenaeus vannamei. The study concludes that Arg and Lys are effective in alleviating the adverse effects of F-T cycles on the quality of Litopenaeus vannamei, and provides a new solution for the quality maintenance during storage and processing.
Collapse
Affiliation(s)
- Mengxue He
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Yejun Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Wenwen Luo
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China; Sanya Ocean Institute, Ocean University of China, Sanya 572024, China.
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China; Sanya Ocean Institute, Ocean University of China, Sanya 572024, China.
| |
Collapse
|
5
|
Zhu M, Liu W, Li M, Jiang L, Li H, Wang H, Gao X, Ma H, Kang Z. Enhancing the quality attributes of porcine myofibrillar proteins through low-frequency alternating magnetic field-assisted freezing. Int J Biol Macromol 2024; 283:137918. [PMID: 39577536 DOI: 10.1016/j.ijbiomac.2024.137918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/10/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
This study explores the potential of low-frequency alternating magnetic field-assisted freezing (LF-MFF) on enhancing the physicochemical stability and gelling performance of porcine myofibrillar proteins (MPs). We observed that LF-MFF markedly reduced oxidative denaturation of MPs compared to refrigerator freezing (RF), thus maintaining higher gel quality. Notably, LF-MFF treatment at 3-4 mT enhanced MPs' solubility, decreased turbidity, and lowered dityrosine content. LF-MFF at 4 mT also effectively minimized MPs' aggregation and degradation. Rheological measurements revealed that the storage modulus (G') and apparent viscosity of MPs treated with 3-4 mT LF-MFF are comparable to those of fresh samples (FS). Furthermore, LF-MFF at 3-4 mT significantly improved the water-holding capacity (WHC), whiteness, gel strength, and textural properties of MPs. The 3-4 mT LF-MFF was particularly effective in enhancing hydrophobic interactions and hydrogen bonding, thereby inhibiting water mobility and protecting microstructure of MPs gels. In summary, LF-MFF, especially at 4 mT, improved the gelation properties of MPs by reducing oxidative denaturation, providing significant insights for its application in the frozen meat industry.
Collapse
Affiliation(s)
- Mingming Zhu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xinxiang 453003, PR China.
| | - Wang Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Mingzhe Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Lijie Jiang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Huijie Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Hui Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Xueli Gao
- Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Hanjun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Zhuangli Kang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, PR China.
| |
Collapse
|
6
|
Walayat N, Wei R, Lorenzo JM, Nawaz A, Khalifa I, Su Z, Salah M, Ahmed M. Kappa-carrageenan and xylooligosaccharide effect on water mobility and structural changes in silver carp proteins during frozen storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8511-8518. [PMID: 39031689 DOI: 10.1002/jsfa.13678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND The cryoprotective effect of xylooligosaccharide (XO) and kappa-carrageenan (KC) mixture on silver carp proteins in fluctuated frozen storage from 4 to -18 °C was analyzed. Positive control as a conventional cryoprotectant mixture of sucrose (4%) and sorbitol (4%), KC (3%) and XO/KC (3%) treatments were incorporated in silver carp surimi and myofibrillar proteins to analyze the water mobility and its influence on structural attributes. RESULTS The temperature fluctuation significantly increased the structural alteration in samples with no treatments due to oxidative changes, protein denaturation and recrystallization. Meanwhile, the mixture of XO and KC (XO/KC 3%) significantly reduced the tertiary and secondary structural alterations by preventing the oxidative changes in α-helix and tryptophan (Trp) residues. Moreover, XO/KC (3%) inhibited water mobility, hindering the T22 relaxation time, as compared to the samples added with KC (3%) and the positive control. Interestingly, the XO/KC (3%) mixture significantly reduced the formation of extracellular spaces and recrystallization by restricting the partial dehydration of muscles and extracellular solution concentration. CONCLUSION From the current results, it can be concluded that the XO/KC mixture could be efficient in protecting aquatic food proteins during fluctuating frozen storage by preventing the exposure of Trp residues and α-helix contents. Moreover, XO/KC restricted the water mobility by establishing a bond and making water unavailable for crystallization and recrystallization. Therefore, XO/KC could be used as an effective mixture to prevent fluctuated and frozen storage changes in aquatic foods. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Noman Walayat
- College of Tea Science and Tea Culture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Ran Wei
- College of Tea Science and Tea Culture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Spain
- Universidade de Vigo, Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Ourense, Spain
| | - Asad Nawaz
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, Qaliuobia, Egypt
| | - Zhucheng Su
- College of Tea Science and Tea Culture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Mahmoud Salah
- Department of Enviromental Agricultural Science, Faculty of Graduate Studies and Enviromental Research, Ain Shams University, Cairo, Egypt
| | - Mukhtar Ahmed
- Department of Zoology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Qin L, Li H, Lu H, Chen J, Wang H, Liao E. Tandem Mass Tag-based proteomic analysis of protein changes in superchilled crayfish (Procambarus clarkii) presoaked with carrageenan oligosaccharides. Food Chem 2024; 457:140126. [PMID: 38936119 DOI: 10.1016/j.foodchem.2024.140126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
To assess the effectiveness of carrageenan oligosaccharides (COs) in enhancing superchilling storage of crayfish, the physicochemical features of muscle and protein abundance in the refrigerated sample (RS), superchilled sample (SS) and COs soaked superchilled sample (CS) were evaluated. Microstructural and SDS-PAGE analyses suggested that CS exhibited fewer pores, with a microstructure and protein subunits distribution more similar to RS. Tandem Mass Tags quantitative proteomic analysis revealed 66 up-regulated differentially abundant proteins (DAPs) in the CS vs. SS batch, including myosin light chain 2, neural cadherin, integrin beta, lectin-like protein, toll-1, reticulon-1, and moesin/ezrin/radixin homolog 1, which facilitate cells adhesion and maintain membrane/cytoskeleton integrity. Eukaryotic Clusters of Orthologous Groups results confirmed that COs treatment increased the stability of crayfish myofibrillar proteins by up-regulating DAPs, which were concentrated in functional categories such as "posttranslation modification, protein turnover, chaperones", "signal transduction mechanisms", "energy production and conversion", and "cytoskeleton".
Collapse
Affiliation(s)
- Lerong Qin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Han Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongyan Lu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China
| | - Jiwang Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China; National Research & Development Branch Center for Crayfish Processing (Qianjiang), Qianjiang 433100, China
| | - Haibin Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China; National Research & Development Branch Center for Crayfish Processing (Qianjiang), Qianjiang 433100, China
| | - E Liao
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China; National Research & Development Branch Center for Crayfish Processing (Qianjiang), Qianjiang 433100, China.
| |
Collapse
|
8
|
Cheng H, Mei J, Xie J. Stability of large yellow croaker (Pseudosciaena crocea) as affected by temperature abuse during frozen storage: Quality attributes, myofibril characteristics, and microstructure. Cryobiology 2024; 117:105157. [PMID: 39477053 DOI: 10.1016/j.cryobiol.2024.105157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Temperature abuse occurs frequently during transportation and frozen storage, which affects the quality of frozen aquatic products. Recrystallization generated by temperature abuse leads to irreversible damage to the muscle tissue and microstructure, and exacerbates undesirable oxidation reactions, thus reducing the quality of frozen aquatic products. In this study, a modeling system of temperature abuse alternating between -24 °C and -7 °C was established to evaluate the effect of temperature abuse on the stability of frozen large yellow croaker. The results revealed that temperature abuse caused water migration with the extension of storage time, as well as poorer texture, color, and freshness. Furthermore, the structure of myofibrillar protein (MP) was severely damaged, with a gradual decrease in total sulfhydryl groups and Ca2+-ATPase activity, a loosening of the secondary structure, and a disruption of the protein conformation. The confocal laser scanning microscopy (CLSM) analysis also found that temperature abuse exacerbated protein aggregation. Therefore, temperature abuse during transportation and frozen storage could affect the stability of large yellow croaker negatively, and it mainly originated from the growth of ice crystals and the effect of recrystallization. The study was supposed to provide new insights into the improvement of frozen aquatic products quality.
Collapse
Affiliation(s)
- Hao Cheng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China.
| |
Collapse
|
9
|
Deng B, Li Y, Yang Y, Xie W. Advantages of UHT in retaining coconut milk aroma and insights into thermal changes of aroma compounds. Food Res Int 2024; 194:114937. [PMID: 39232549 DOI: 10.1016/j.foodres.2024.114937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 09/06/2024]
Abstract
Coconut milk products are susceptible to bacterial damage, necessitating sterilization methods that often compromise nutrient and aroma integrity. This study investigates the effects of different thermal sterilisation methods on coconut milk aroma using headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). We assessed the impact of pasteurisation (PAS, 70 °C, 25 min), high-temperature sterilisation (HTS, 121.1 °C, 15 min), and ultra-high temperature sterilisation (UHT, 130 °C, 5 s) through clustered heat maps and correlation analyses. Significant differences were observed (p < 0.05), with 37 and 52 substances detected by HS-GC-IMS and HS-SPME-GC-MS, respectively, identifying 12 key aroma compounds. UHT treatment primarily reduced 8 acids, maintaining a compositional structure and sensory profile similar to raw coconut milk. PAS and HTS treatments decreased the sensory intensity of overall coconut milk aroma, creamy, and floral notes, correlating with the presence of 2-heptanol, nonanal, 4-methylvaleric acid, and 2-tridecanone. These methods increased cooked notes, associated with 5-methyl-3-heptanone, 3-butyn-1-ol, hydroxyacetone, and acetoin. Rancidity was linked to acids such as isobutyric acid, isovaleric acid, and heptanoic acid, with high temperatures effectively reducing these compounds. Prolonged temperature changes in PAS and HTS accelerated lipid oxidative degradation and the Maillard reaction, involving free fatty acids in the formation of alcohols, aldehydes, esters, and lactones. These findings provide a theoretical basis for studying coconut milk flavour deterioration.
Collapse
Affiliation(s)
- Baohua Deng
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China; Jiangsu Susa Food Co., LTD., Taizhou 225324, China
| | - Yang Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China
| | - Ye Yang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China
| | - Wancui Xie
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China.
| |
Collapse
|
10
|
Yin J, Li Y, Zhong W, Li K, Xu J, Zeng X, Chen H, Pang J, Wu C. Effect of konjac glucomannan-based preservation pads on quality changes in refrigerated large yellow croaker (Pseudosciaena crocea). Int J Biol Macromol 2024; 276:133752. [PMID: 38986984 DOI: 10.1016/j.ijbiomac.2024.133752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
The purpose of this study was to evaluate the preservation effects of konjac glucomannan (KGM)/oregano essential oil (OEO) Pickering emulsion-based pads (K/OPE pads) on large yellow croaker (Pseudosciaena crocea) fillets stored at 4 °C. The K/OPE pads were fabricated using a freeze-drying technique. The homogeneous distribution of the OEO Pickering emulsions in the KGM matrix was observed using scanning electron microscopy. Fourier transform infrared spectroscopy confirmed that the OEO emulsions were encapsulated in the KGM and there was hydrogen bonding interaction between them. Compared with the KGM pads, the K/OPE pad groups demonstrated enhanced antioxidant and antimicrobial properties. When the content of OPE was increased from 20 % to 40 %, the antioxidant performance of the K/OPE pads increased from 48.09 % ± 0.03 % to 86.65 % ± 0.02 % and the inhibition range of Escherichia coli and Staphylococcus aureus increased to 13.84 ± 0.81 and 16.87 ± 1.53 mm, respectively. At the same time, K/OPE pads were more effective in inhibiting the formation of total volatile alkaline nitrogen and the production of thiobarbituric acid-reactive substances, thereby helping in reducing water loss and maintaining the muscle tissue structure of fish fillets for a longer storage time. Consequently, these K/OPE40 pads extended the shelf life of the fish fillets by an additional 4 days and delayed spoilage during refrigerated storage. The findings suggest that the K/OPE pads can effectively safeguard the quality of refrigerated large yellow croaker fillets, presenting their potential as an active packaging material in the fish preservation industry.
Collapse
Affiliation(s)
- Jing Yin
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yaoling Li
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Weiquan Zhong
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Kehao Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jingting Xu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xingxing Zeng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hongbin Chen
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China.
| | - Jie Pang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Chunhua Wu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
11
|
Yan S, Du Z, Liu C, Yu D, Zhu Z, Xu J, Xia W, Xu Y. Uncovering quality changes of surimi-sol based products subjected to freeze-thaw process: The potential role of oxidative modification on salt-dissolved myofibrillar protein aggregation and gelling properties. Food Chem 2024; 451:139456. [PMID: 38670022 DOI: 10.1016/j.foodchem.2024.139456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/13/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Frozen surimi quality generally correlates with oxidation, but impacts of protein oxidation on salt-dissolved myofibrillar protein (MP) sol in surimi remain unclear. Hence, physicochemical and gelling properties of MP sol with different oxidation degrees were investigated subjected to freeze-thaw cycles. Results showed that mild oxidation (≤1 mmol/L) improved unfrozen MP gel quality with lowest cooking loss (3.29 %) and highest hardness (829.76 N). Whereas, oxidized sol suffering freeze-thawing degenerated severely, showing reduction of 23.85 % of salt soluble protein contents with H2O2 concentrations of 10 mmol/L. Shearing before heating influenced gelling properties of freeze-thawed sol, depending on oxidation levels. Oxidized gel with shearing displayed disorganized network structures, whereas gel without shearing displayed relatively complete appearances without holes under high oxidation condition (10 mmol/L). Overall, freeze-thaw process aggravated denaturation extents of MP sol subjected to oxidation, further causing high water loss and yellow color of heat-induced gel, especially to gel with shearing.
Collapse
Affiliation(s)
- Sunjie Yan
- State Key Laboratory of Food Science and Resources, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| | - Zhiyin Du
- State Key Laboratory of Food Science and Resources, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| | - Cikun Liu
- State Key Laboratory of Food Science and Resources, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| | - Dawei Yu
- State Key Laboratory of Food Science and Resources, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| | - Zhifei Zhu
- Mekong Fishery Industry Co., Ltd, Veun Kham Village, Don Khong, Champassak, Laos; Shenzhen CF Marine Technology Co., Ltd., 140 Jinye Ave, Shenzhen 518116, Guangdong, China
| | - Junmin Xu
- Mekong Fishery Industry Co., Ltd, Veun Kham Village, Don Khong, Champassak, Laos; Shenzhen CF Marine Technology Co., Ltd., 140 Jinye Ave, Shenzhen 518116, Guangdong, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Resources, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Resources, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
12
|
Jiang C, Ma Y, Wang W, Sun J, Hao J, Mao X. Systematic review on carrageenolytic enzymes: From metabolic pathways to applications in biotechnology. Biotechnol Adv 2024; 73:108351. [PMID: 38582331 DOI: 10.1016/j.biotechadv.2024.108351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/21/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Carrageenan, the major carbohydrate component of some red algae, is an important renewable bioresource with very large annual outputs. Different types of carrageenolytic enzymes in the carrageenan metabolic pathway are potentially valuable for the production of carrageenan oligosaccharides, biofuel, and other chemicals obtained from carrageenan. However, these enzymes are not well-developed for oligosaccharide or biofuel production. For further application, comprehensive knowledge of carrageenolytic enzymes is essential. Therefore, in this review, we first summarize various carrageenolytic enzymes, including the recently discovered β-carrageenase, carrageenan-specific sulfatase, exo-α-3,6-anhydro-D-galactosidase (D-ADAGase), and exo-β-galactosidase (BGase), and describe their enzymatic characteristics. Subsequently, the carrageenan metabolic pathways are systematically presented and applications of carrageenases and carrageenan oligosaccharides are illustrated with examples. Finally, this paper discusses critical aspects that can aid researchers in constructing cascade catalytic systems and engineered microorganisms to efficiently produce carrageenan oligosaccharides or other value-added chemicals through the degradation of carrageenan. Overall, this paper offers a comprehensive overview of carrageenolytic enzymes, providing valuable insights for further exploration and application of these enzymes.
Collapse
Affiliation(s)
- Chengcheng Jiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yuqi Ma
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116000, China
| | - Wei Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jingjing Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jianhua Hao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China; Jiangsu Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Lianyungang 222005, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
13
|
Ding Y, Feng R, Zhu Z, Xu J, Xu Y. Effects of different protein cross-linking degrees on physicochemical and subsequent thermal gelling properties of silver carp myofibrillar proteins sol subjected to freeze-thaw cycles. Food Chem X 2024; 22:101448. [PMID: 38764785 PMCID: PMC11101881 DOI: 10.1016/j.fochx.2024.101448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024] Open
Abstract
Knowledge regarding the denaturation process and control methods for depolymerized sol-state myofibrillar proteins (MPs) during freezing remains scant. This study investigated the effects of protein cross-linking treatment before freezing on physicochemical and subsequent gelation properties of MPs sol subjected to freeze-thaw (F-T) cycles. Results indicated that after five F-T cycles, cross-linked MPs sols showed increased high molecular weight polymers and bound water (T21a and T21b) mobility, suggesting enhanced protein-protein interactions at the expense of protein-water interactions. Upon heating after F-T cycles, gels formed from cross-linked sols exhibited significantly higher hardness, springiness, and cooking loss (P < 0.05), alongside more contracted gel networks. Correlation analysis revealed that the formation and properties of thermal gel after freezing closely relate to changes in molecular conformation and chemical bonds of cross-linked MPs sol during freezing. This study provides new insights into regulating the freezing stability and post-thawed thermal processing properties of sol-based surimi products.
Collapse
Affiliation(s)
- Yuxin Ding
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| | - Ruonan Feng
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| | - Zhifei Zhu
- Mekong Fishery Industry Co.,Ltd, Veun Kham Village, Don Khong, Champassak, Laos
- Shenzhen CF Marine Technology Co., Ltd., 140 Jinye Ave, Shenzhen, Guangdong, 518116 China
| | - Junmin Xu
- Mekong Fishery Industry Co.,Ltd, Veun Kham Village, Don Khong, Champassak, Laos
- Shenzhen CF Marine Technology Co., Ltd., 140 Jinye Ave, Shenzhen, Guangdong, 518116 China
| | - Yanshun Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| |
Collapse
|
14
|
Chen H, Ge Y, Yang T, Wang S, Liu N, Sun Y, Zhou D, Xi R, Sun G. Quality changes of whitespotted conger ( Conger myriaster) based physicochemical changes and label-free proteomics analysis during frozen storage. Curr Res Food Sci 2024; 8:100779. [PMID: 38939611 PMCID: PMC11208945 DOI: 10.1016/j.crfs.2024.100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/13/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024] Open
Abstract
Whitespotted conger (Conger myriaster) muscle proteins were susceptible to oxidative denaturation during frozen storage. The objective of this study was to investigate the alterations in quality through physicochemical analysis and proteomics after whitespotted conger stored at temperatures of -18 °C and -60 °C. The microstructural observation revealed the noticeable variations such as increased interstitial space and fractured muscle fibre with extension of frozen storage time, and the muscle fibre of whitespotted conger stored at -60 °C were more intact than those stored at -18 °C. The raised TVB-N value indicated that the freshness of whitespotted conger decreased during 120-day frozen storage period. Analysis of myofibrillar protein content and SDS-PAGE demonstrated that compared to -18 °C, lower storage temperature (-60 °C) could better maintain the structure of whitespotted conger muscle by inhibiting protein degradation and oxidation. To reveal the mechanism of protein degradation, label-free quantitative proteomic analysis was performed through LC-MS/MS. The structural proteins including domain-associated proteins and actin-related proteins were up-regulated during frozen storage, but the phosphoglycerate kinase, phosphoglycerate mutase, and fructose-bisphosphate aldolase were down-regulated. Storage at -18 °C accelerated the up- or down-regulation of those differentially abundant proteins. According to KEGG analysis, up- or down-regulated pathways such as glycolysis/gluconeogenesis, carbon metabolism, biosynthesis of amino acids, and calcium signalling pathway mainly accounted for the protein degradation and quality reduction of whitespotted conger at low temperature. These results provided a theoretical basis for improving the quality stability of whitespotted conger during frozen storage.
Collapse
Affiliation(s)
- Hui Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106# Nanjing Road, Shinan District, Qingdao, 266071, Shandong Province, China
| | - Yinggang Ge
- College of Life Science and Technology, Xinjiang University, 777# Huarui Street, Shuimogou District, Urumqi, 830046, Xinjiang Province, China
| | - Ting Yang
- Department of Basic Medicine, School of Medicine, Qingdao Huanghai University, 1145# Linghai Road, West Coast New District, Qingdao, 266427, Shandong Province, China
| | - Shanshan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106# Nanjing Road, Shinan District, Qingdao, 266071, Shandong Province, China
| | - Nan Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106# Nanjing Road, Shinan District, Qingdao, 266071, Shandong Province, China
| | - Yong Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106# Nanjing Road, Shinan District, Qingdao, 266071, Shandong Province, China
| | - Deqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106# Nanjing Road, Shinan District, Qingdao, 266071, Shandong Province, China
| | - Rui Xi
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106# Nanjing Road, Shinan District, Qingdao, 266071, Shandong Province, China
| | - Guohui Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106# Nanjing Road, Shinan District, Qingdao, 266071, Shandong Province, China
| |
Collapse
|
15
|
Li J, Sun C, Ma W, Wen K, Wang Y, Yue X, Wang Y, Bai Y. The Effects of Assisted Freezing with Different Ultrasound Power Rates on the Quality and Flavor of Braised Beef. Foods 2024; 13:1566. [PMID: 38790866 PMCID: PMC11121095 DOI: 10.3390/foods13101566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigated the effects of ultrasound-assisted immersion freezing (UIF) at different power rates (0, 200, 400, and 600 W) on the changes in beef quality and flavor after braising. The results demonstrated that UIF treatment at 400 W significantly reduced the juice loss (cooking loss decreased from 49.04% to 39.74%) and fat oxidation (TBARS value decreased from 0.32 mg/kg to 0.20 mg/kg) of braised beef. In addition, the tenderness (hardness value decreased from 5601.50 g to 2849.46 g) and color stability of braised beef were improved after UIF treatment. The flavor characteristics of braised beef were characterized using an electronic nose and an electronic tongue. The PCA analysis data showed that the cumulative contribution rates of the first and second principal components were 85% and 93.2%, respectively, with the first principal component accounting for a higher proportion. The UIF-400 W group had the highest concentration for the first principal component, and the differentiation was not significant compared to the control group. The total amino acid values of different power UIF treatment groups were improved compared to the AF treatment group, indicating that UIF can effectively reduce the losses caused by freezing. The results demonstrate that ultrasound-assisted freezing treatment is beneficial in enhancing the tenderness and flavor attributes of beef after braising, providing new insights into the processing of meat products with desirable quality characteristics.
Collapse
Affiliation(s)
- Junguang Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe 462000, China
| | - Chenhao Sun
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe 462000, China
| | - Wuchao Ma
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
| | - Kexin Wen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
| | - Yu Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe 462000, China
| | - Xiaonan Yue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe 462000, China
| | - Yuntao Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe 462000, China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe 462000, China
| |
Collapse
|
16
|
Yang C, Wu G, Liu Y, Li Y, Zhang C, Liu C, Li X. Low-voltage electrostatic field enhances the frozen force of -12 ℃ to suppress oxidative denaturation of the lamb protein during the subsequent frozen storage process after finishing initial freezing. Food Chem 2024; 438:138055. [PMID: 38011792 DOI: 10.1016/j.foodchem.2023.138055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/09/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
The effect of low-voltage electrostatic field (LVEF) assisted -9 °C (LVEF-9) and -12 °C (LVEF-12) frozen, non-LVEF-assisted -9 °C (NLVEF-9) and -12 °C (NLVEF-12) frozen, and conventional frozen (CF-18, -18 °C) storage on the muscle microstructure and the oxidative denaturation of the lamb protein during the subsequent frozen storage process after finishing initial freezing was investigated. Compared with NLVEF-9, LVEF-9, and NLVEF-12, LVEF-12 maintained the better integrity of muscle microstructure, demonstrated by smaller holes, more complete Z-line and M-line, and no significant difference with CF-18 (P > 0.05). Furthermore, LVEF-12 effectively inhibited protein oxidative denaturation as shown by the lower carbonyl content, surface hydrophobicity, and higher total/active sulfhydryl groups and Ca2+-ATPase activity. Moreover, LVEF-12 effectively maintained the integrity of the secondary and tertiary structure of proteins, reduced cross-linking aggregation of proteins, and sustained better functional properties, as shown by higher α-helix content, fluorescence intensity, protein solubility, and lower R-value, disulfide bonds.
Collapse
Affiliation(s)
- Chuan Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193,China
| | - Guangyu Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193,China
| | - Yunhe Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193,China
| | - Yingbiao Li
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty(Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193,China
| | - Chengjiang Liu
- Institute of Agro-products Processing Science and Technology, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China.
| | - Xia Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193,China.
| |
Collapse
|
17
|
Li W, Bai X, Xia X, Chen H. Effect of sodium alginate ice glazing on the quality of the freeze-thawed fish balls. Int J Biol Macromol 2024; 254:128097. [PMID: 37972840 DOI: 10.1016/j.ijbiomac.2023.128097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
The effect of 1.0 % (w/v) sodium alginate (SA) glazing on surface frost formation and the quality of frozen fish balls in repeated freeze-thaw (F-T) cycles was studied. The optimal glazing property of 1.0 % SA solution was manifested by high transmittance, excellent water resistance, and high ice glazing rate. After seven F-T cycles, compared with the control, the ice production, thawing loss, and total volatile base nitrogen (TVB-N) value of samples with 1.0 % ice glazing decreased by 28.30 %, 21.02 %, and 27.35 %, while the chewiness and whiteness were increased by 15.02 % and 10.40 %, respectively. Moreover, compared to the control, the microstructure of fish balls glazed with 1.0 % SA was smoother and more uniform, and the ice crystal diameter was smaller. Therefore, 1.0 % SA glazing effectively inhibits the formation of ice crystals, reducing water migration and loss while minimizing damage to the meat structure, thus enhancing the quality of meat products.
Collapse
Affiliation(s)
- Wenxin Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xue Bai
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Hongsheng Chen
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| |
Collapse
|
18
|
Yang Z, Ye G, Yang D, Xie J, Huo Y. Observation on the ice crystal formation process of large yellow croaker (Pseudosciaena crocea) and the effect of multiple cryoprotectants pre-soaking treatments on frozen quality. Cryobiology 2023; 113:104580. [PMID: 37625476 DOI: 10.1016/j.cryobiol.2023.104580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
By observing the formation behavior of ice crystals, the quality of food products under different freezing conditions can be intuitively judged. In this paper, large yellow croaker was taken as the research object, and a novel cryomicroscopic system was developed to directly observe the structure of ice crystals during the freezing process. The cryoprotective effects of 4% sucrose +4% sorbitol (SU + SO), 4% xylo-oligosaccharide (XO), 4% xylo-oligosaccharide + 0.3% tetrasodium pyrophosphate (XO + TSPP) and 0.2% antifreeze protein (AFP) at different freezing temperatures were investigated. And the evaluation indicators, such as cell deformation degree, equivalent diameters, roundness, elongation and fractal dimension were introduced to quantify the damage of ice crystals to muscle tissues and fibers. The results indicate that reducing the freezing temperature and adding cryoprotectants can improve the quality of large yellow croaker. AFP has the best cryoprotective effect, with a reduction in cell deformation degree of 54.78% and 67.83% compared to the Control group at -5 °C and -20 °C, respectively. SU + SO and XO have the equivalent antifreeze effect, which is slightly inferior to XO + TSPP. In addition, physical parameters of large yellow croaker samples were measured to verify the influence of ice crystal structure on product quality. Therefore, direct observation of the ice crystal formation process and evaluation of ice crystal structure can accurately reflect the quality of frozen products, which is of great significance for the development of refrigeration and preservation technology.
Collapse
Affiliation(s)
- Zhikang Yang
- College of Food Science and Technology, Shanghai Ocean University, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), China
| | - Guosen Ye
- Shanghai Baofeng Machinery Manufacturing CO., LTD, Shanghai, China
| | - Dazhang Yang
- College of Food Science and Technology, Shanghai Ocean University, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, China; Quality Supervision, Inspection and Testing Center for Cold Storage and Refrigeration Equipment, Ministry of Agriculture, Shanghai, China.
| | - Yilin Huo
- College of Food Science and Technology, Shanghai Ocean University, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), China
| |
Collapse
|
19
|
Tan JM, Li B, Han SY, Wu H. Use of a compound modifier to retard the quality deterioration of frozen dough and its steamed bread. Food Res Int 2023; 172:113229. [PMID: 37689962 DOI: 10.1016/j.foodres.2023.113229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 09/11/2023]
Abstract
To retard the quality deterioration of the dough during frozen storage, the effects of a compound modifier (CM) comprised of sodium stearoyl lactate, VC, and β-glucanase on the properties of the frozen dough, as well as the quality of the frozen dough steamed bread were investigated. The results revealed that CM restricted the migration of water in the dough and improved its rheological properties. Furthermore, CM minimized the deterioration of specific volume and textural properties, and prevented starch retrogradation in the frozen dough steamed bread. Moreover, the addition of CM strengthened the secondary structure of gluten protein and formed a more resilient gluten network. The microstructure of the frozen dough steamed bread showed that CM reduced the damage caused by ice crystals on the gluten network. Overall, the use of CM strengthened the gluten network and effectively delayed the quality deterioration of the frozen dough, thus is potential as an improver for frozen dough.
Collapse
Affiliation(s)
- Jin-Ming Tan
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Bing Li
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Shuang-Yan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China.
| |
Collapse
|
20
|
Maghsoudi L, Moosavi‐Nasab M, Abedi E, Maleki S. Investigation of cryoprotectants-treated surimi protein deterioration during chilled and frozen storage: Functional properties and kinetic modeling. Food Sci Nutr 2023; 11:5543-5553. [PMID: 37701217 PMCID: PMC10494660 DOI: 10.1002/fsn3.3510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 09/14/2023] Open
Abstract
The relative cryoprotective effects of flaxseed protein hydrolysate and pectin in comparison with conventional cryoprotectant (sucrose + sorbitol + sodium tripolyphosphates) on stabilization of proteins in surimi of Capoor (Cyprinus carpio) were investigated during freezing (-20°C for 4 months) and chilling storage (4°C for 10 days). Although pectin caused to improve water-holding capacity (27.8%; 4°C and 21.5%; -20°C) on account of highly more inhibitory impact on the ice crystals growth, the protein denaturation may have occurred. It can be related to higher reduction in the amount of salt extractable protein (%) and the immeasurable value of thiol group in surimi formulation containing pectin compared with other cryoprotectants. The results of modeling surimi samples showed that salt extractable protein and sulfhydryl content were in good agreement with the first-order reaction model at -20°C and second-order kinetic model at 4°C. In comparison with other samples, samples treated with flaxseed protein showed the lowest reaction rate constant during chilled and frozen storage. The results confirmed that flaxseed protein with no sweetness and considerable caloric value had a cryoprotective effect similar to sucrose + sorbitol + polyphosphate and even better.
Collapse
Affiliation(s)
- Leila Maghsoudi
- Department of Food Science and Technology, School of AgricultureShiraz UniversityShirazIran
| | - Marzieh Moosavi‐Nasab
- Department of Food Science and Technology, School of AgricultureShiraz UniversityShirazIran
- Seafood Processing Research Center, School of AgricultureShiraz UniversityShirazIran
| | - Elahe Abedi
- Department of Food Science and Technology, Faculty of AgricultureFasa UniversityFasaIran
| | - Shahrzad Maleki
- Department of Civil Engineering, Faculty of EngineeringFasa UniversityFasaIran
| |
Collapse
|
21
|
Russo GL, Langellotti AL, Buonocunto G, Puleo S, Di Monaco R, Anastasio A, Vuoso V, Smaldone G, Baselice M, Capuano F, Garofalo F, Masi P. The Sous Vide Cooking of Mediterranean Mussel ( Mytilus galloprovincialis): Safety and Quality Assessment. Foods 2023; 12:2900. [PMID: 37569168 PMCID: PMC10417654 DOI: 10.3390/foods12152900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
This study involves an investigation of the effects of various cooking temperatures, freeze-thaw processes, and food preservatives on the quality and shelf-life of sous vide Mediterranean mussels. Cooking temperatures of 80 °C or above significantly improved the microbiological quality, with bacterial counts remaining within the acceptability range for human consumption even after 21 days of refrigerated storage. Fast freezing followed by slow thawing preserved the highest moisture content, potentially improving texture. Sensory analysis revealed that refrigerated sous vide mussels maintained a comparable taste to freshly cooked samples. Frozen samples reheated via microwaving exhibited more intense flavour than pan-reheated or fresh mussels. Food additives, including citric acid, potassium benzoate, and potassium sorbate, alone or in combination with grape seed oil, significantly reduced total volatile basic nitrogen and thiobarbituric acid-reactive substances during 28 days of storage, indicating decreased spoilage and lipid oxidation. Mussels with a combination of these additives registered a nitrogen content as low as 22 mg of N/100g after 28 days, well below the limit of acceptability (<35 mg of N/100g). Food additives also inhibited bacterial growth, with mesophilic bacteria count below 3.35 Log CFU/g after 28 days, compared with 5.37 Log CFU/g in control samples. This study provides valuable insights for developing optimal cooking and preservation methods for sous vide cooked seafood, underscoring the need for further research on optimal cooking and freeze-thaw protocols for various seafood types.
Collapse
Affiliation(s)
- Giovanni Luca Russo
- CAISIAL Centre, University of Naples Federico II, Via Università 133, 80055 Portici, Italy; (G.L.R.); (G.B.); (S.P.); (R.D.M.); (P.M.)
| | - Antonio Luca Langellotti
- CAISIAL Centre, University of Naples Federico II, Via Università 133, 80055 Portici, Italy; (G.L.R.); (G.B.); (S.P.); (R.D.M.); (P.M.)
| | - Gabriele Buonocunto
- CAISIAL Centre, University of Naples Federico II, Via Università 133, 80055 Portici, Italy; (G.L.R.); (G.B.); (S.P.); (R.D.M.); (P.M.)
| | - Sharon Puleo
- CAISIAL Centre, University of Naples Federico II, Via Università 133, 80055 Portici, Italy; (G.L.R.); (G.B.); (S.P.); (R.D.M.); (P.M.)
- Unit of Food Science and Technology, Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Rossella Di Monaco
- CAISIAL Centre, University of Naples Federico II, Via Università 133, 80055 Portici, Italy; (G.L.R.); (G.B.); (S.P.); (R.D.M.); (P.M.)
- Unit of Food Science and Technology, Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Aniello Anastasio
- Department of Veterinary Medicine and Animal Production (MVPA), University of Naples Federico II, 80137 Napoli, Italy; (A.A.); (V.V.)
| | - Valeria Vuoso
- Department of Veterinary Medicine and Animal Production (MVPA), University of Naples Federico II, 80137 Napoli, Italy; (A.A.); (V.V.)
| | - Giorgio Smaldone
- Centro di Riferimento Regionale per la Sicurezza Sanitaria del Pescato (CRiSSaP), 80143 Napoli, Italy;
- ASL Caserta, Department of Prevention, Complex Unit Hygiene of Animal Origin Foods, 81100 Caserta, Italy
| | - Marco Baselice
- Department of Civil, Environmental, Land, Construction and Chemistry (DICATECh), Politecnico di Bari, 70126 Bari, Italy;
| | - Federico Capuano
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (F.C.); (F.G.)
| | - Francesca Garofalo
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (F.C.); (F.G.)
| | - Paolo Masi
- CAISIAL Centre, University of Naples Federico II, Via Università 133, 80055 Portici, Italy; (G.L.R.); (G.B.); (S.P.); (R.D.M.); (P.M.)
- Unit of Food Science and Technology, Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
22
|
Yu M, Ding Y, Du Q, Liao Y, Miao W, Deng S, Cullen PJ, Zhou R. Efficacy of Chitosan Oligosaccharide Combined with Cold Atmospheric Plasma for Controlling Quality Deterioration and Spoilage Bacterial Growth of Chilled Pacific White Shrimp ( Litopenaeus vannamei). Foods 2023; 12:foods12091763. [PMID: 37174301 PMCID: PMC10178389 DOI: 10.3390/foods12091763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
A novel food processing technique based on the combination of cold atmospheric plasma (CAP) and chitosan oligosaccharide treatment (COS) was developed to enhance antibacterial performance and extend the shelf life of Pacific white shrimp (Litopenaeus vannamei). Effects of different treatments on the microbial community composition, physicochemical properties, and post-storage behaviors of Pacific white shrimp were evaluated during chilled storage for up to 10 days. Results showed that the synergistic effects of COS and CAP could be obtained, largely inhibiting the growth of microorganisms. The content of total volatile basic nitrogen (TVB-N), total viable counts (TVC), and pH value in treated groups were lower than in the control group and the loss of moisture content, water activity, and sensory score were observed. Compared to the control group, shrimp was on the verge of spoilage on the 6th day of storage, while the COS-CAP-treated shrimp had a 4-day lag period. Moreover, the COS and CAP could effectively inhibit the growth of Aliivibrio, the predominant microbial group in the ultimate storage period. This study suggests that the combined utilization of COS and CAP could be a high-efficacy technique for extending the shelf-life of shrimp.
Collapse
Affiliation(s)
- Mijia Yu
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yixuan Ding
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qi Du
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yueqin Liao
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China
| | - Wenhua Miao
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shanggui Deng
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China
| | - Patrick J Cullen
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | - Rusen Zhou
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
23
|
Pan N, Bai X, Kong B, Liu Q, Chen Q, Sun F, Liu H, Xia X. The dynamic change in the degradation and in vitro digestive properties of porcine myofibrillar protein during freezing storage. Int J Biol Macromol 2023; 234:123682. [PMID: 36796280 DOI: 10.1016/j.ijbiomac.2023.123682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
The myofibrillar protein (MP) degradation and in vitro digestive properties of porcine longissimus during freezing at -8, -18, -25 and - 40 °C for 1, 3, 6, 9 and 12 months were investigated. As the freezing temperature and duration of frozen storage increased, the amino nitrogen and TCA (trichloroacetic acid)-soluble peptides of the samples were significantly increased, while the total sulfhydryl content and band intensity of myosin heavy chain, actin, troponin T, tropomyosin were significantly decreased (P < 0.05). At higher freezing storage temperatures and durations, the particle size of MP samples and the green fluorescent spots detected using a laser particle size analyzer and confocal laser scanning microscopy became large. After 12 months of freezing, the digestibility and the degree of hydrolysis of the trypsin digestion solution of the samples frozen at -8 °C were significantly decreased by 15.02 % and 14.28 %, respectively, when compared to fresh samples, whereas, the mean surface diameter (d3,2) and mean volume diameter (d4,3) were significantly increased by 14.97 % and 21.53 %, respectively. Therefore, frozen storage induced protein degradation and impaired the ability of digestion in the pork proteins. This phenomenon was more evident as the samples were frozen at high temperatures over a long storage period.
Collapse
Affiliation(s)
- Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xue Bai
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
24
|
Zhang H, Li X, Sun S, Wang Y, Li Z, Kang H, Peng X. Effects of carboxymethyl chitosan on the oxidation stability and gel properties of myofibrillar protein from frozen pork patties. Int J Biol Macromol 2023; 234:123710. [PMID: 36801276 DOI: 10.1016/j.ijbiomac.2023.123710] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023]
Abstract
The effect of carboxymethyl chitosan (CMCH) on the oxidation stability and gel properties of myofibrillar protein (MP) from frozen pork patties was investigated. The results showed that CMCH could inhibit the denaturation of MP induced by freezing. Compared with the control group, the protein solubility was significantly (P < 0.05) increased, while the carbonyl content, the loss of sulfhydryl groups, and the surface hydrophobicity were decreased, respectively. Meanwhile, the incorporation of CMCH could alleviate the influence of frozen storage on water mobility and reduce the water loss. With the increased concentration of CMCH, the whiteness, strength, and water-holding capacity (WHC) of MP gels were significantly improved, in which the maximum value was at addition level of 1 %. In addition, CMCH inhibited the decrease in the maximum elastic (G') value and loss factor (tan δ) value of samples. By scanning electron microscopy (SEM) observation, CMCH stabilized the microstructure of the gel and maintained the relative integrity of the gel tissue. These findings suggest that CMCH could be used as a cryoprotectant to maintain the structural stability of MP in pork patty during frozen storage.
Collapse
Affiliation(s)
- Huiyun Zhang
- Food and Bioengineering Department, Henan University of Science and Technology, Luoyang, Henan 471003, China.
| | - Xinling Li
- Food and Bioengineering Department, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Shuoshuo Sun
- Food and Bioengineering Department, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Yuantu Wang
- Food and Bioengineering Department, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Ziyan Li
- Food and Bioengineering Department, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Huaibin Kang
- Food and Bioengineering Department, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Xinyan Peng
- College of Life Science, Yantai University, Yantai, Shandong 264025, China
| |
Collapse
|
25
|
Chen J, Fan Y, Zhang X, Yuan Z, Zhang H, Xu X, Qi J, Xiong G, Mei L, Zhu Y, Yang L, Li C. Effect of antifreeze protein on the quality and microstructure of frozen chicken breasts. Food Chem 2023; 404:134555. [DOI: 10.1016/j.foodchem.2022.134555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/26/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
|
26
|
Preparation methods, biological activities, and potential applications of marine algae oligosaccharides: a review. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Flammulina velutipes polysaccharide improves the water-holding capacity in the dorsal muscle of freeze-thawed cultured large yellow croaker (Larimichthys crocea). Food Chem 2023; 403:134401. [DOI: 10.1016/j.foodchem.2022.134401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/25/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022]
|
28
|
Shi Y, Zheng Y, Li B, Yang X, Guo Q, Liu A. Prevention of quality characteristic decline in freeze-thawed cultured large yellow croaker ( Larimichthys crocea) using flammulina velutipes polysaccharide. Food Sci Nutr 2023; 11:181-190. [PMID: 36655079 PMCID: PMC9834881 DOI: 10.1002/fsn3.3051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 01/21/2023] Open
Abstract
To investigate the cryoprotective effect of flammulina velutipes polysaccharide (FVP) on the quality characteristics in freeze-thawed cultured large yellow croaker, 0.050%, 0.075%, and 0.100% FVP was used before freezing and the quality after thawing was compared with water soaking (WS) and commercial cryoprotectant (CC) treatment. Quality attributes were comprehensively determined instrumentally and organoleptically after thawing at 4°C. Results showed that FVP effectively reduces the quality deterioration of body color and water-holding capacity, while no obvious effects were observed in texture and flavor. As for body color, both FVP and CC treatment could maintain the b* value to a large extent. Among them, 0.075% FVP shows the highest value in two sample points, with 55.2% and 21.0% increases seen in the values in WS. FVP-dose-dependent trends were found in water-holding capacity, where a reduction of 28.26% and 14.38% in thawing loss and cooking loss was observed in the 0.100% FVP group. Low-field nuclear magnetic resonance (LF-NMR) also revealed that immobilized water and free water were more tightly retained in the muscle tissue with FVP addition. The results of the sensory evaluation are essentially in line with the above observations. These findings indicate that FVP has the potential to partially replace commercial cryoprotectants in aquatic products during frozen storage.
Collapse
Affiliation(s)
- Yuzhuo Shi
- Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research InstituteChinese Academy of Fishery SciencesShanghaiChina
- School of Health Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Yao Zheng
- Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research InstituteChinese Academy of Fishery SciencesShanghaiChina
| | - Baoguo Li
- School of Health Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Xu Yang
- Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research InstituteChinese Academy of Fishery SciencesShanghaiChina
| | - Quanyou Guo
- Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research InstituteChinese Academy of Fishery SciencesShanghaiChina
| | - Anqi Liu
- Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research InstituteChinese Academy of Fishery SciencesShanghaiChina
- School of Health Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
| |
Collapse
|
29
|
Li M, He S, Sun Y, Pan D, Zhou C, He J. Effectiveness of l-arginine/l-lysine in retarding deterioration of structural and gelling properties of duck meat myofibrillar protein during freeze-thaw cycles. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Influence of sodium chloride and sodium pyrophosphate on the physicochemical and gelling properties of silver carp myofibrillar proteins sol subjected to freeze-thaw cycles. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Wu G, Lv Y, Chu Y, Zhang X, Ding Z, Xie J. Evaluation of Preservation (−23 to 4 °C) for Cuttlefish Through Functional Ice Glazing During Storage and Cold Chain Logistics. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
32
|
Cold-induced denaturation of muscle proteins in hairtail ( Trichiurus lepturus) during storage: Physicochemical and label-free based proteomics analyses. Food Chem X 2022; 16:100479. [PMID: 36277867 PMCID: PMC9583035 DOI: 10.1016/j.fochx.2022.100479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
Physicochemical, proteomics, and bioinformatics analyses were conducted to investigate protein profiles in Trichiurus haumela under frozen (120 d) and chilled (6 d) storage. Springiness, chewiness, myofibrillar active sulfhydryl content, and Ca2+-ATPase activity significantly decreased, suggesting that cold stress altered muscle proteins. Compared with fresh hairtail (FH), 66 common differentially abundant proteins (DAPs) had lower abundances in chilled (3 d; CSH) and frozen (120 d; FSH) hairtail, including myosin binding proteins, filamins, actinin, troponin, and muscle-restricted coiled-coil protein. Gene Ontology (GO) annotation showed DAPs were mainly involved in cellular process, cellular anatomical entity, intracellular, and binding items. Eukaryotic orthologous group (KOG) analysis revealed that changes in cytoskeleton and energy production and conversion functions dominated during cold storage, degrading the myofibril and connective tissue structures and the physicochemical performance of muscle tissues. This study presents deep insights into the protein alternation mechanisms in hairtail muscle under cold stress.
Collapse
|
33
|
Du Q, Fang C, Qi H, Benjakul S, Aubourg SP, Zhang B. Low-temperature vacuum permeation of sodium tripolyphosphate and trehalose suppresses the denaturation of myofibrillar proteins in peeled shrimp ( Litopenaeus vannamei) during frozen storage. Front Nutr 2022; 9:1012864. [PMID: 36276827 PMCID: PMC9583252 DOI: 10.3389/fnut.2022.1012864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Phosphates and trehalose are widely accepted additives in animal muscle products. In this study, the effects of pre-soaking with sodium tripolyphosphate (STPP) and trehalose under vacuum permeation (VP) conditions on the physicochemical properties of shrimp muscle were evaluated over 120 d of frozen storage. The results indicate the STPP/trehalose-VP treatments significantly reduced the thawing loss and prevented changes in the texture, myofibrillar protein (MP) content, and Ca2+-ATPase activity of shrimp muscle during frozen storage compared with results of control and individual STPP or trehalose soaking treatments. The histological structure analysis revealed the permeated STPP/trehalose distinctly inhibited the dissociation of muscle fibers and reduced physical damage to connective tissues during storage. Furthermore, analysis of the thermal properties indicated STPP/trehalose treatment increased the Tg’ values of shrimp muscle tissues, likely by restricting the mobility of water molecules in muscle tissues and embedding proteins in the glassy matrix. Thus, the physical destruction caused by ice crystal growth was greatly reduced, due to the absence of water molecules around muscle proteins during frozen storage. Accordingly, the combined STPP/trehalose-VP treatment significantly enhanced the stability of frozen shrimp, and the results support the application of traditional cryoprotective additives. The treated shrimp can be stored at comparatively higher temperatures with limited physicochemical reactions during frozen storage.
Collapse
Affiliation(s)
- Qi Du
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Chuangdong Fang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China,Pisa Marine Graduate School, Zhejiang Ocean University, Zhoushan, China,Chuangdong Fang
| | - He Qi
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Santiago P. Aubourg
- Consejo Superior de Investigaciones Cientificas (CSIC), Inst Invest Marinas, Vigo, Spain
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China,Pisa Marine Graduate School, Zhejiang Ocean University, Zhoushan, China,*Correspondence: Bin Zhang ;
| |
Collapse
|
34
|
Diao H, Lin S, Li D, Li S, Feng Q, Sun N. Control on moisture distribution and protein changes of Antarctic krill meat by antifreeze protein during multiple freeze–thaw cycles. J Food Sci 2022; 87:4440-4452. [DOI: 10.1111/1750-3841.16308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Huayu Diao
- National Engineering Research Center of Seafood, School of Food Science and Technology Dalian Polytechnic University Dalian P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology Dalian Polytechnic University Dalian P. R. China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University Dalian P. R. China
| | - Dongmei Li
- National Engineering Research Center of Seafood, School of Food Science and Technology Dalian Polytechnic University Dalian P. R. China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University Dalian P. R. China
| | - Shuang Li
- National Engineering Research Center of Seafood, School of Food Science and Technology Dalian Polytechnic University Dalian P. R. China
| | - Qi Feng
- National Engineering Research Center of Seafood, School of Food Science and Technology Dalian Polytechnic University Dalian P. R. China
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology Dalian Polytechnic University Dalian P. R. China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University Dalian P. R. China
| |
Collapse
|
35
|
Yuan P, Chen X, Benjakul S, Sun J, Zhang B. Label-free based proteomics revealed the specific changes of muscle proteins in pike eel ( Muraenesox cinereus) under cold stress. Food Chem X 2022; 14:100275. [PMID: 35284818 PMCID: PMC8904379 DOI: 10.1016/j.fochx.2022.100275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/12/2023] Open
Abstract
Changes in protein profiles were investigated in pike eel during cold storage. Cold storage decreased the springiness and MP content in muscle tissues. 137 and 148 DAPs were identified in the CPE and FPE compared with the PE samples. Membrane and cytoskeletal proteins were vulnerable to damage during storage. Proteomics revealed significant protein alterations in fresh and stored fish comparisons.
Chemical- and liquid chromatography coupled with mass spectrometry (LC–MS) based proteomics strategies were executed to investigate the alterations of protein profiles in pike eel (Muraenesox cinereus) muscle during chilling (CPE) and frozen (FPE) storage. Chemical results indicated that springiness and myofibrillar protein (MP) content of muscle tissues decreased significantly during 6 days of chilled and 120 days of frozen storage. LC–MS-based proteomics analysis suggested that great alterations occurred in muscle proteins mainly induced by cold stress. The differentially abundant proteins (DAPs) with low abundances in CPE and FPE samples included the annexins, fibronectin, ribosomal proteins, T-complex proteins, tubulin beta chain, and histones, which were mostly associated with the membrane structural constituents, cytoskeleton, and binding functional proteins. Results of eukaryotic cluster of orthologous group (KOG) verified that these identified DAPs were mainly converged in the cytoskeleton function resulting from cold conditions, which in turn affected the physical structure and chemical performances of muscle tissues.
Collapse
Affiliation(s)
- Pengxiang Yuan
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, China
| | - Xiaonan Chen
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Thailand
| | - Jipeng Sun
- Zhejiang Marine Development Research Institute, China
- Corresponding authors at: No.1, Haida South Road, Lincheng Changzhi Island, Zhoushan, Zhejiang Province 316022, China.
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, China
- Pisa Marine Graduate School, Zhejiang Ocean University, China
- Corresponding authors at: No.1, Haida South Road, Lincheng Changzhi Island, Zhoushan, Zhejiang Province 316022, China.
| |
Collapse
|
36
|
Comparison of Arrhenius model and artificial neuronal network for predicting quality changes of frozen tilapia (Oreochromis niloticus). Food Chem 2022; 372:131268. [PMID: 34818731 DOI: 10.1016/j.foodchem.2021.131268] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022]
Abstract
The objectives of this study were to study the quality changes (ice crystal morphology, Ca2+-ATPase activity, total sulfhydryl [SH] content, intrinsic fluorescence intensity [IFI], and K value [freshness determination]) of tilapia at different storage temperatures for 112 days, and kinetic models and artificial neuronal network (ANN) were developed to predict the changes. There was a dramatic increase in cross-section area and equivalent diameter and a sharp decrease in Ca2+-ATPase activity and SH content during the first 4 weeks (p < 0.05). IFIλmax decreased by 43.95%, 29.77%, 28.97% and 18.58% after 16 weeks at 265 K, 259 K, 253 K, and 233 K. The kinetic model established by IFIλmax could be accurately described the quality changes during storage at 233-265 K. However, the prediction accuracy established by other indices decreased at later stages (14-16 weeks). The ANN model was superior to Arrhenius models and performed better for all indicators.
Collapse
|
37
|
Li Z, Zhou T, Wu Y, Shui S, Tu C, Benjakul S, Zhang B. Investigation of the activity of cathepsin B in red shrimp (
Solenocera crassicornis
) and its relation to the quality of muscle proteins during chilled and frozen storage. J Food Sci 2022; 87:1610-1623. [DOI: 10.1111/1750-3841.16105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/15/2022] [Accepted: 02/10/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Zhipeng Li
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province College of Food Science and Pharmacy Zhejiang Ocean University Zhoushan China
| | - Ting Zhou
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province College of Food Science and Pharmacy Zhejiang Ocean University Zhoushan China
| | - Yingru Wu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province College of Food Science and Pharmacy Zhejiang Ocean University Zhoushan China
| | - Shanshan Shui
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province College of Food Science and Pharmacy Zhejiang Ocean University Zhoushan China
| | - Chuanhai Tu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province College of Food Science and Pharmacy Zhejiang Ocean University Zhoushan China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University Songkhla Thailand
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province College of Food Science and Pharmacy Zhejiang Ocean University Zhoushan China
| |
Collapse
|
38
|
Cao Y, Zhao L, Huang Q, Xiong S, Yin T, Liu Z. Water migration, ice crystal formation, and freeze-thaw stability of silver carp surimi as affected by inulin under different additive amounts and polymerization degrees. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107267] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
39
|
Wang H, Shi W, Wang X. Establishment of quality evaluation method for frozen tilapia (
Oreochromis niloticus
) fillets stored at different temperatures based on fractal dimension. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongli Wang
- College of Food Science and Technology Shanghai Ocean University, Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai China
| | - Wenzheng Shi
- College of Food Science and Technology Shanghai Ocean University, Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai China
| | - Xichang Wang
- College of Food Science and Technology Shanghai Ocean University, Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai China
| |
Collapse
|
40
|
Effects of Ultrasound-Assisted Vacuum Impregnation Antifreeze Protein on the Water-Holding Capacity and Texture Properties of the Yesso Scallop Adductor Muscle during Freeze-Thaw Cycles. Foods 2022; 11:foods11030320. [PMID: 35159472 PMCID: PMC8834382 DOI: 10.3390/foods11030320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
The effect of antifreeze protein (AFP) on the water-holding capacity (WHC) and texture properties of the Patinopecten yessoensis adductor muscles during freeze–thaw cycles (FTCs) were evaluated based on three impregnation methods: general impregnation (GI), vacuum impregnation (VI), and ultrasound-assisted VI (US-VI). The WHC, texture properties, and tissue microstructure were all evaluated. Results showed that the WHC and texture properties of adductor muscle were significantly improved in the VI and US-VI groups during FTCs (p < 0.05). The WHC of the adductor muscle in the US-VI group was maximally enhanced in terms of yield (6.63%), centrifugal loss, cooking loss, and T22. The US-VI group of the adductor muscle had the optimal chewiness and springiness compared to others, and the shear force and hardness were most effectively enhanced by VI. The growth and recrystallization of ice crystals in the frozen adductor muscle were significantly inhibited by VI and US-VI. The average cross-sectional area and roundness of ice crystals in the US-VI group were decreased by 61.89% and increased by 22.22% compared with those of the control, respectively. The partial least squares regression (PLSR) model further confirmed that the WHC and texture properties of the adductor muscle were correlated appreciably with the degree of modification of ice crystal morphology through the AFP.
Collapse
|
41
|
Bian C, Cheng H, Yu H, Mei J, Xie J. Effect of multi-frequency ultrasound assisted thawing on the quality of large yellow croaker (Larimichthys crocea). ULTRASONICS SONOCHEMISTRY 2022; 82:105907. [PMID: 34998136 PMCID: PMC8799743 DOI: 10.1016/j.ultsonch.2021.105907] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/18/2021] [Accepted: 12/30/2021] [Indexed: 05/02/2023]
Abstract
The effects of mono-, dual- and tri-frequency ultrasound-assisted thawing (UAT) on the physicochemical quality, water-holding capacity, moisture migration and distribution and myofibrillary structure of frozen large yellow croaker (Larimichthys crocea) were detected. The results indicated that multifrequency UAT treatment significantly increased the thawing rate, maintained the stability of myofibrils and reduced the lipid oxidation. The multifrequency UAT samples had better water-holding capacity (higher water-holding capacity values, lower thawing loss and cooking loss) and physicochemical quality (higher hardness, springiness, resilience, chewiness and lower total volatile basic nitrogen (TVB-N) values, thiobarbituric acid reactive substances (TBARS) values), higher immobilized water content, and lower free water content. Therefore, the results provide a further understanding of the quality stability of frozen large yellow croaker treated by the multifrequency UAT.
Collapse
Affiliation(s)
- Chuhan Bian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Hao Cheng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Huijie Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| |
Collapse
|
42
|
Wang H, Wang Y, Xu K, Zhang Y, Shi M, Liu X, Chi C, Zhang H. Causal relations among starch hierarchical structure and physicochemical characteristics after repeated freezing-thawing. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107121] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Guo Z, Wei Y, Zhang Y, Xu Y, Zheng L, Zhu B, Yao Z. Carrageenan oligosaccharides: A comprehensive review of preparation, isolation, purification, structure, biological activities and applications. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Wang H, Shi W, Wang X. Effects of different thawing methods on microstructure and the biochemical properties of tilapia (
Oreochromis niloticus
) fillets during frozen storage. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Hongli Wang
- College of Food Science and Technology Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai Ocean University Shanghai China
| | - Wenzheng Shi
- College of Food Science and Technology Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai Ocean University Shanghai China
| | - Xichang Wang
- College of Food Science and Technology Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai Ocean University Shanghai China
| |
Collapse
|
45
|
The quality properties of frozen large yellow croaker fillets during temperature fluctuation cycles: improvement by cellobiose and carboxylated cellulose nanofibers. Int J Biol Macromol 2022; 194:499-509. [PMID: 34822836 DOI: 10.1016/j.ijbiomac.2021.11.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 12/26/2022]
Abstract
Frozen aquatic products undergo unavoidable quality changes owing to temperature fluctuations during frozen storage and distribution. This study investigated the effects of 1% cellobiose (CB), and 0.5 and 1% carboxylated cellulose nanofibers (CNF) on ice crystal growth and recrystallization of frozen large yellow croaker fillets exposed to temperature fluctuations. Denser and more uniformly distributed ice crystals were observed in the CB- and CNF-treated samples than in the water-treated samples. Furthermore, the addition of CB and CNF suppressed the conversion of bound water to frozen water in the samples during temperature fluctuation cycles, played a positive role in fixing the ionic and hydrogen bonds that stabilize the protein structure, limited the conformational transition from α-helix to β-sheet, and improved protein thermal stability. Based on turbidity, zeta potential, and confocal laser scanning microscopy (CLSM) analyses, the presence of CB and CNF restricted the protein aggregation. Compared with CB, CNF molecules with abundant carboxyl functional groups and longer morphology exhibited better cryoprotective effects. Moreover, the fillets were more improved protected from mechanical damage induced by large ice crystals at a higher CNF concentration. This study reveals the potential of CB and CNF as novel cryoprotectants.
Collapse
|
46
|
Tian J, Walayat N, Ding Y, Liu J. The role of trifunctional cryoprotectants in the frozen storage of aquatic foods: Recent developments and future recommendations. Compr Rev Food Sci Food Saf 2021; 21:321-339. [PMID: 34766434 DOI: 10.1111/1541-4337.12865] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/06/2021] [Accepted: 10/05/2021] [Indexed: 11/26/2022]
Abstract
Freeze-induced changes including protein denaturation, ice crystals formation and lipid oxidation are mainly responsible for the quality deterioration persistent in aquatic foods. Here, for the first time, the cryoprotectants with trifunctional properties have been suggested for aquatic food cryopreservation and have exhibited exceptional cryoprotective abilities. In this study, in-depth discussion of protein denaturation, ice crystal formation and lipid oxidation is added in order to understand their mechanism, emphasizing on the necessity and use of trifunctional cryoprotectants in aquatic foods during frozen storage. Trifunctional cryoprotectants have strong abilities to prevent the formation of malondihaldehyde and aldehydes resulting from lipid oxidation, which further interact with proteins, subsequently lead to protein denaturation. Besides these all cryoprotective properties, ice crystal binding abilities distinguish trifunctional cryoprotectants from conventional cryoprotectants. Moreover, this study added with recent advances in cryoprotectants including antifreeze proteins and protein hydrolysates with their role in retarded freeze-induced changes. This study concluded that trifunctional cryoprotectants are effective owing to their hydrophilic amino acid chains, radical scavenging, water entrapping abilities, as well as the hydroxyl groups, which interact at the functional sites of protein molecules. Furthermore, polysaccharides and protein hydrolysates are the potential ingredients with trifunctional cryoproperties. However, more scientific research is required for material optimization to attain the desired level of cryoprotection.
Collapse
Affiliation(s)
- Jing Tian
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China.,National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P. R. China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China.,National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P. R. China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China.,National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P. R. China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China.,National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P. R. China
| |
Collapse
|
47
|
Shelf-Life of Half-Shell Mussel ( Mytilus edulis) as Affected by Pullulan, Acidic Electrolyzed Water, and Stable Chlorine Dioxide Combined Ice-Glazing during Frozen Storage. Foods 2021; 10:foods10081896. [PMID: 34441673 PMCID: PMC8392224 DOI: 10.3390/foods10081896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/27/2021] [Accepted: 08/13/2021] [Indexed: 01/20/2023] Open
Abstract
Mussel (Mytilus edulis) is an economic shellfish with a high nutritional value. Due to the high amount of protein and fat, fresh mussels are susceptible to spoilage during storage. In the present study, how a combination of pullulan, acidic electrolyzed water (AEW), and stable chlorine dioxide (ClO2) ice-glazing treatments affect the quality of mussels was investigated during 90 days of frozen storage. The results indicate that the combined glazing treatment effectively maintained the mussel muscle quality during storage mainly due to its air barrier actions. Mussel samples coated with AEW and ClO2 showed lower aerobic plate counts than other groups, resulting from the strong antibacterial action of AEW and ClO2. After 90 days of frozen storage, the mussel glazed with a combination of AEW, ClO2, and pullulan solutions showed better texture properties, higher content of myofibrillar proteins, higher Ca2+-ATPase activity, and more SH groups than the other glazing treatments. The water-holding capacity and SEM observations showed that the pullulan glazing efficiently inhibited the physical damage caused by the frozen and long-term storage, which mainly contributed to the high amount of hydrophilic hydroxyl groups in the muscle tissues. The present study supports the use of a combination of cryoprotectants for extending the shelf-life of frozen mussel products during long-term storage.
Collapse
|
48
|
Bao P, Chen L, Wang Y, Hu Y, Wang Y, Fang H, Yang H, Zhang B, He B, Zhou C. Quality of frozen porcine Longissimus lumborum muscles injected with l-arginine and l-lysine solution. Meat Sci 2021; 179:108530. [PMID: 33946021 DOI: 10.1016/j.meatsci.2021.108530] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 11/28/2022]
Abstract
This study investigated the effects of l-arginine and l-lysine on the water holding capacity, shear force, color, and protein denaturation of frozen porcine Longissimus lumborum. Four batches were prepared, each corresponding to samples of an experimental treatment: without a cryoprotective solution, injecting a 0.3% sodium tripolyphosphate and 0.5% NaCl solution, a 0.5% l-arginine solution, or a 0.5% l-lysine solution. The results showed that both l-arginine and l-lysine decreased thawing loss, cooking loss, shear force, L⁎ values, b⁎ values, and surface hydrophobicity, but they increased pH values, a⁎ values, percentages of peak areas for T21 relaxation times, and Ca2+-ATPase activity. Additionally, both histological and transmission electron microscopy images showed that l-lysine, and especially l-arginine could inhibit the formation of gaps between fiber bundles, alleviate the disruption of intracellular spaces, and maintain the structural integrity of sarcomeres. Overall, the results showed that both l-arginine and l-lysine hindered the structural damage of muscle fibers during freezing and protected myofibrillar proteins from denaturation, ultimately contributing to superior quality attributes.
Collapse
Affiliation(s)
- Pengqi Bao
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei, University of Technology, Hefei 230009, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Li Chen
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei, University of Technology, Hefei 230009, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yu Wang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei, University of Technology, Hefei 230009, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yue Hu
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei, University of Technology, Hefei 230009, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yan Wang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei, University of Technology, Hefei 230009, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hongmei Fang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei, University of Technology, Hefei 230009, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Huamei Yang
- Anhui Runbao Food Co., Ltd, Mengcheng 233500, Anhui, PR China
| | - Bao Zhang
- Anhui Runbao Food Co., Ltd, Mengcheng 233500, Anhui, PR China
| | - Bin He
- Anhui Runbao Food Co., Ltd, Mengcheng 233500, Anhui, PR China
| | - Cunliu Zhou
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei, University of Technology, Hefei 230009, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
49
|
Zhu S, Yu J, Chen X, Zhang Q, Cai X, Ding Y, Zhou X, Wang S. Dual cryoprotective strategies for ice-binding and stabilizing of frozen seafood: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
Effect of ice structuring protein on the microstructure and myofibrillar protein structure of mirror carp (Cyprinus carpio L.) induced by freeze-thaw processes. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110570] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|