1
|
Amamou O, Kefil S, Denis JP, Boubaker T, Cardinal S. Revisiting the Determination of the Degree of Deacetylation Using Potentiometric Titration: A New Equation for Modified Chitosan. Molecules 2024; 29:2962. [PMID: 38998916 PMCID: PMC11242947 DOI: 10.3390/molecules29132962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 07/14/2024] Open
Abstract
Chitosan is a biopolymer that can be subjected to a variety of chemical modifications to generate new materials. The properties of modified chitosan are affected by its degree of deacetylation (DDA), which corresponds to the percentage of D-glucosamine monomers in its polymeric structure. Potentiometric titration is amongst the simplest, most readily available, and most cost-effective methods of determining the DDA. However, this method often suffers from a lack of precision, especially for modified chitosan resins. This is in large part because the equation used to calculate the DDA does not consider the molecular weight of the chemically modified monomeric units. In this paper, we introduce a new equation that is especially suited for modified chitosan bearing three different types of monomers. To test this equation, we prepared naphthalene-chitosan resins and subjected them to potentiometric titration. Our results show that our new equation, which is truer to the real structure of the polymeric chains, gives higher DDA values than those of the routinely used equations. These results show that the traditional equations underestimate the DDA of modified chitosan resins.
Collapse
Affiliation(s)
- Ons Amamou
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11S39), Faculté des Sciences, Université de Monastir, Monastir 5000, Tunisia
| | - Sarah Kefil
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
| | - Jean-Philippe Denis
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
| | - Taoufik Boubaker
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11S39), Faculté des Sciences, Université de Monastir, Monastir 5000, Tunisia
| | - Sébastien Cardinal
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
| |
Collapse
|
2
|
Jara-Quijada E, Pérez-Won M, Tabilo-Munizaga G, Lemus-Mondaca R, González-Cavieres L, Palma-Acevedo A, Herrera-Lavados C. Liposomes Loaded with Green Tea Polyphenols-Optimization, Characterization, and Release Kinetics Under Conventional Heating and Pulsed Electric Fields. FOOD BIOPROCESS TECH 2023; 17:1-13. [PMID: 37363379 PMCID: PMC10250174 DOI: 10.1007/s11947-023-03136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023]
Abstract
This study aimed to increase the encapsulation efficiency (EE%) of liposomes loaded with green tea polyphenols (GTP), by optimizing with response surface methodology (RSM), characterizing the obtained particles, and modeling their release under conventional heating and pulsed electric fields. GTP-loaded liposomes were prepared under conditions of Lecithin/Tween 80 (4:1, 1:1, and 1:4), cholesterol (0, 30, and 50%), and chitosan as coating (0, 0.05, and 0.1%). Particles were characterized by size, polydispersity index, ζ-potential, electrical conductivity, and optical microscopy. The release kinetics was modeled at a temperature of 60 °C and an electric field of 5.88 kV/cm. The optimal manufacturing conditions of GTP liposomes (ratio of lecithin/Tween 80 of 1:1, cholesterol 50%, and chitosan 0.1%) showed an EE% of 60.89% with a particle diameter of 513.75 nm, polydispersity index of 0.21, ζ-potential of 33.67 mV, and electrical conductivity of 0.14 mS/cm. Optical microscopy verified layering in the liposomes. The kinetic study revealed that the samples with chitosan were more stable to conventional heating, and those with higher cholesterol content were more stable to pulsed electric fields. However, in both treatments, the model with the best fit was the Peppas model. The results of the study allow us to give an indication of the knowledge of the behavior of liposomes under conditions of thermal and non-thermal treatments, helping the development of new functional ingredients based on liposomes for processed foods.
Collapse
Affiliation(s)
- Erick Jara-Quijada
- Department of Food Engineering, Faculty of Health Sciences and Food, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán, Chile
| | - Mario Pérez-Won
- Department of Food Engineering, Faculty of Health Sciences and Food, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán, Chile
| | - Gipsy Tabilo-Munizaga
- Department of Food Engineering, Faculty of Health Sciences and Food, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán, Chile
| | - Roberto Lemus-Mondaca
- Department of Food Science and Chemical Technology, Faculty of Chemical Sciences and Pharmaceutical, Universidad de Chile, St. Dr. Carlos Lorca 964, Independencia, Santiago RM Chile
| | - Luis González-Cavieres
- Department of Food Engineering, Faculty of Health Sciences and Food, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán, Chile
| | - Anais Palma-Acevedo
- Department of Food Engineering, Faculty of Health Sciences and Food, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán, Chile
| | - Carolina Herrera-Lavados
- Department of Food Engineering, Faculty of Health Sciences and Food, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán, Chile
| |
Collapse
|
3
|
Jeong DY, Lee ET, Lee J, Shin DC, Lee YH, Park JK. Effect of chemical structural properties of chitooligosaccharides on the immune activity of macrophages. Macromol Res 2023. [DOI: 10.1007/s13233-023-00143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
4
|
Zhang L, Liu F, Jin Y, Wu S, Xu X, Yang N. Current Applications and Challenges of Induced Electric Fields for the Treatment of Foods. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Gonçalves C, Ferreira N, Lourenço L. Production of Low Molecular Weight Chitosan and Chitooligosaccharides (COS): A Review. Polymers (Basel) 2021; 13:2466. [PMID: 34372068 PMCID: PMC8348454 DOI: 10.3390/polym13152466] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 11/16/2022] Open
Abstract
Chitosan is a biopolymer with high added value, and its properties are related to its molecular weight. Thus, high molecular weight values provide low solubility of chitosan, presenting limitations in its use. Based on this, several studies have developed different hydrolysis methods to reduce the molecular weight of chitosan. Acid hydrolysis is still the most used method to obtain low molecular weight chitosan and chitooligosaccharides. However, the use of acids can generate environmental impacts. When different methods are combined, gamma radiation and microwave power intensity are the variables that most influence acid hydrolysis. Otherwise, in oxidative hydrolysis with hydrogen peroxide, a long time is the limiting factor. Thus, it was observed that the most efficient method is the association between the different hydrolysis methods mentioned. However, this alternative can increase the cost of the process. Enzymatic hydrolysis is the most studied method due to its environmental advantages and high specificity. However, hydrolysis time and process cost are factors that still limit industrial application. In addition, the enzymatic method has a limited association with other hydrolysis methods due to the sensitivity of the enzymes. Therefore, this article seeks to extensively review the variables that influence the main methods of hydrolysis: acid concentration, radiation intensity, potency, time, temperature, pH, and enzyme/substrate ratio, observing their influence on molecular weight, yield, and characteristic of the product.
Collapse
Affiliation(s)
- Cleidiane Gonçalves
- Institute of Technology, Graduate Program in Food Science and Technology, Federal University of Pará, Belém 66075-110, Pará, Brazil;
- Institute of Health and Animal Production, Amazon Rural Federal University, Belém 66077-830, Pará, Brazil
| | - Nelson Ferreira
- Institute of Technology, Graduate Program in Food Science and Technology, Federal University of Pará, Belém 66075-110, Pará, Brazil;
| | - Lúcia Lourenço
- Institute of Technology, Graduate Program in Food Science and Technology, Federal University of Pará, Belém 66075-110, Pará, Brazil;
| |
Collapse
|
6
|
Miao Q, Mi Y, Cui J, Zhang J, Tan W, Li Q, Guo Z. Determination of chitosan content with Schiff base method and HPLC. Int J Biol Macromol 2021; 182:1537-1542. [PMID: 34022309 DOI: 10.1016/j.ijbiomac.2021.05.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 01/16/2023]
Abstract
Tremendous awareness of determination of chitosan content accurately is increasing, due to it has great significance to the quality control of chitosan. In this article, two kinds of chitosan-Schiff base derivatives (BCSB and PCSB) were synthesized by the different average degrees of deacetylation (DD) of chitosan with benzaldehyde or propanal, respectively. The total mass of Schiff base derivative product was dried and obtained without washing and loss. Then, a certain amount of the prepared Schiff base compound was taken to hydrolyze into glucosamine hydrochloride (GAH) in strong hydrochloric acidic environment, whose concentration was quantified by HPLC, and the mass of GAH contained in hydrolysis solution could be calculated. Subsequently, the total quality of GAH obtained by hydrolysis of all of the Schiff base product was calculated and obtained, and then the theoretical mass of chitosan could be deduced and calculated by further converse calculation. Finally, the chitosan content was obtained by combining the sample mass used in Schiff base reaction and the theoretical mass of chitosan. This method was accurate and convenient, providing a preeminent idea and method for the determination of chitosan content.
Collapse
Affiliation(s)
- Qin Miao
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingmin Cui
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Miao Q, Cui Y, Zhang J, Mi Y, Tan W, Li Q, Gu G, Dong F, Guo Z. Determination of chitosan content with ratio coefficient method and HPLC. Int J Biol Macromol 2020; 164:384-388. [DOI: 10.1016/j.ijbiomac.2020.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 11/16/2022]
|