1
|
Jiang C, Kan J, Gao G, Dockter C, Li C, Wu W, Yang P, Stein N. Barley2035: A decadal vision for barley research and breeding. MOLECULAR PLANT 2025; 18:195-218. [PMID: 39690737 DOI: 10.1016/j.molp.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
Barley (Hordeum vulgare ssp. vulgare) is one of the oldest founder crops in human civilization and has been widely dispersed across the globe to support human society as a livestock feed and a raw material for the brewing industries. Since the early half of the 20th century, it has been used for innovative research on cytogenetics, biochemistry, and genetics, facilitated by its mode of reproduction through self-pollination and its true diploid status, which have contributed to the accumulation of numerous germplasm and mutant resources. In the era of molecular genomics and biology, a multitude of barley genes and their related regulatory mechanisms have been identified and functionally validated, providing a paradigm for equivalent studies in other Triticeae crops. This review highlights important advances on barley research over the past decade, focusing mainly on genomics and genomics-assisted germplasm exploration, genetic dissection of developmental and adaptation-related traits, and the complex dynamics of yield and quality formation. In the coming decade, the prospect of integrating these innovations in barley research and breeding shows great promise. Barley is proposed as a reference Triticeae crop for the discovery and functional validation of new genes and the dissection of their molecular mechanisms. The application of precise genome editing as well as genomic prediction and selection, further enhanced by artificial intelligence-based tools and applications, is expected to promote barley improvement to efficiently meet the evolving global demands for this important crop.
Collapse
Affiliation(s)
- Congcong Jiang
- State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinhong Kan
- State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guangqi Gao
- State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Christoph Dockter
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen, Denmark
| | - Chengdao Li
- Western Crop Genetic Alliance, Murdoch University, Perth, WA 6150, Australia
| | - Wenxue Wu
- State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ping Yang
- State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany; Crop Plant Genetics, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
2
|
Gawande ND, Bhalla H, Watts A, Shelake RM, Sankaranarayanan S. Application of genome editing in plant reproductive biology: recent advances and challenges. PLANT REPRODUCTION 2024; 37:441-462. [PMID: 38954018 DOI: 10.1007/s00497-024-00506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
KEY MESSAGE This comprehensive review underscores the application of genome editing in plant reproductive biology, including recent advances and challenges associated with it. Genome editing (GE) is a powerful technology that has the potential to accelerate crop improvement by enabling efficient, precise, and rapid engineering of plant genomes. Over the last decade, this technology has rapidly evolved from the use of meganucleases (homing endonucleases), zinc-finger nucleases, transcription activator-like effector nucleases to the use of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas), which has emerged as a popular GE tool in recent times and has been extensively used in several organisms, including plants. GE has been successfully employed in several crops to improve plant reproductive traits. Improving crop reproductive traits is essential for crop yields and securing the world's food supplies. In this review, we discuss the application of GE in various aspects of plant reproductive biology, including its potential application in haploid induction, apomixis, parthenocarpy, development of male sterile lines, and the regulation of self-incompatibility. We also discuss current challenges and future prospects of this technology for crop improvement, focusing on plant reproduction.
Collapse
Affiliation(s)
- Nilesh D Gawande
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Hemal Bhalla
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Anshul Watts
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Subramanian Sankaranarayanan
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India.
| |
Collapse
|
3
|
Hanak T, Andrzejczak OA, Hebelstrup K, Brinch-Pedersen H. Barley's gluten challenge: A path to hordein-free food and malt. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109174. [PMID: 39362126 DOI: 10.1016/j.plaphy.2024.109174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Barley, a vital cereal crop worldwide, is hindered by hordeins, gluten proteins triggering adverse reactions in those with celiac disease (CeD) and non-celiac gluten sensitivity (NCGS). Recent barley breeding advancements focus on creating varieties with reduced hordein content. Researchers have developed ultra-low gluten barley mutants via targeted genetic modifications, showing significantly decreased hordein levels, potentially safe for CeD and NCGS individuals. However, some mutants carry undesirable traits, which are addressed through further breeding and new genomic techniques. These innovative methods offer promising ways to eliminate unwanted traits and transfer the ultra-low gluten characteristic to diverse barley cultivars, expanding dietary choices and potentially transforming the food and beverage industry with gluten-free barley-based products. This review addresses hordeins' impact and ultra-low gluten barley development and proposes using new genomic techniques for safe barley lines.
Collapse
Affiliation(s)
- Tobias Hanak
- Crops Genetic and Biotechnology, AU Flakkebjerg, Department of Agroecology, Aarhus University, Slagelse, Denmark.
| | - Olga A Andrzejczak
- Crops Genetic and Biotechnology, AU Flakkebjerg, Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Kim Hebelstrup
- Crops Genetic and Biotechnology, AU Flakkebjerg, Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Henrik Brinch-Pedersen
- Crops Genetic and Biotechnology, AU Flakkebjerg, Department of Agroecology, Aarhus University, Slagelse, Denmark
| |
Collapse
|
4
|
Ahmar S, Hensel G, Gruszka D. CRISPR/Cas9-mediated genome editing techniques and new breeding strategies in cereals - current status, improvements, and perspectives. Biotechnol Adv 2023; 69:108248. [PMID: 37666372 DOI: 10.1016/j.biotechadv.2023.108248] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Cereal crops, including triticeae species (barley, wheat, rye), as well as edible cereals (wheat, corn, rice, oat, rye, sorghum), are significant suppliers for human consumption, livestock feed, and breweries. Over the past half-century, modern varieties of cereal crops with increased yields have contributed to global food security. However, presently cultivated elite crop varieties were developed mainly for optimal environmental conditions. Thus, it has become evident that taking into account the ongoing climate changes, currently a priority should be given to developing new stress-tolerant cereal cultivars. It is necessary to enhance the accuracy of methods and time required to generate new cereal cultivars with the desired features to adapt to climate change and keep up with the world population expansion. The CRISPR/Cas9 system has been developed as a powerful and versatile genome editing tool to achieve desirable traits, such as developing high-yielding, stress-tolerant, and disease-resistant transgene-free lines in major cereals. Despite recent advances, the CRISPR/Cas9 application in cereals faces several challenges, including a significant amount of time required to develop transgene-free lines, laboriousness, and a limited number of genotypes that may be used for the transformation and in vitro regeneration. Additionally, developing elite lines through genome editing has been restricted in many countries, especially Europe and New Zealand, due to a lack of flexibility in GMO regulations. This review provides a comprehensive update to researchers interested in improving cereals using gene-editing technologies, such as CRISPR/Cas9. We will review some critical and recent studies on crop improvements and their contributing factors to superior cereals through gene-editing technologies.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany; Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.
| |
Collapse
|
5
|
Adeyinka OS, Tabassum B, Koloko BL, Ogungbe IV. Enhancing the quality of staple food crops through CRISPR/Cas-mediated site-directed mutagenesis. PLANTA 2023; 257:78. [PMID: 36913066 DOI: 10.1007/s00425-023-04110-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The enhancement of CRISPR-Cas gene editing with robust nuclease activity promotes genetic modification of desirable agronomic traits, such as resistance to pathogens, drought tolerance, nutritional value, and yield-related traits in crops. The genetic diversity of food crops has reduced tremendously over the past twelve millennia due to plant domestication. This reduction presents significant challenges for the future especially considering the risks posed by global climate change to food production. While crops with improved phenotypes have been generated through crossbreeding, mutation breeding, and transgenic breeding over the years, improving phenotypic traits through precise genetic diversification has been challenging. The challenges are broadly associated with the randomness of genetic recombination and conventional mutagenesis. This review highlights how emerging gene-editing technologies reduce the burden and time necessary for developing desired traits in plants. Our focus is to provide readers with an overview of the advances in CRISPR-Cas-based genome editing for crop improvement. The use of CRISPR-Cas systems in generating genetic diversity to enhance the quality and nutritional value of staple food crops is discussed. We also outlined recent applications of CRISPR-Cas in developing pest-resistant crops and removing unwanted traits, such as allergenicity from crops. Genome editing tools continue to evolve and present unprecedented opportunities to enhance crop germplasm via precise mutations at the desired loci of the plant genome.
Collapse
Affiliation(s)
- Olawale Samuel Adeyinka
- Department of Chemistry, Physics and Atmospheric Sciences Jackson State University, Jackson, MS, 39217, USA.
| | - Bushra Tabassum
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Ifedayo Victor Ogungbe
- Department of Chemistry, Physics and Atmospheric Sciences Jackson State University, Jackson, MS, 39217, USA
| |
Collapse
|
6
|
Jiang Y, Li J, Liu B, Cao D, Zong Y, Chang Y, Li Y. Novel Hina alleles created by genome editing increase grain hardness and reduce grain width in barley. Transgenic Res 2022; 31:637-645. [PMID: 35982368 DOI: 10.1007/s11248-022-00324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/09/2022] [Indexed: 01/20/2023]
Abstract
The hordoindolina genes (Hina and Hinb) are believed to play critical roles in barley (Hordeum vulgare L.) grain texture. In this study, we created novel alleles of the Hina gene using CRISPR/Cas9 (Clustered regularly inter spaced short palindromic repeat-associated protein, CRISPR-Cas) genome editing. Mutagenesis of single bases in these novel alleles led to loss of Hina protein function in edited lines. The grain hardness index of hina mutants was 95.5 on average, while that of the wild type was only 53.7, indicating successful conversion of soft barley into hard barley. Observation of cross-sectional grain structure using scanning electron microscopy revealed different adhesion levels between starch granules and protein matrix. Starch granules were loose and separated from the protein matrix in the wild type, but deeply trapped and tightly integrated with the protein matrix in hina02 mutants. In addition, the grain width and thousand-grain weight of the hina02 mutant were significantly lower than those of the wild type.
Collapse
Affiliation(s)
- Yanyan Jiang
- Qinghai Normal University, Xining, 810008, China
| | - Jianmin Li
- Qinghai Normal University, Xining, 810008, China
| | - Baolong Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Dong Cao
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Yuan Zong
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Yanzi Chang
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Yun Li
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China. .,Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
| |
Collapse
|
7
|
Kuluev BR, Mikhailova EV, Kuluev AR, Galimova AA, Zaikina EA, Khlestkina EK. Genome Editing in Species of the Tribe Triticeae with the CRISPR/Cas System. Mol Biol 2022. [DOI: 10.1134/s0026893322060127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Abdul Aziz M, Brini F, Rouached H, Masmoudi K. Genetically engineered crops for sustainably enhanced food production systems. FRONTIERS IN PLANT SCIENCE 2022; 13:1027828. [PMID: 36426158 PMCID: PMC9680014 DOI: 10.3389/fpls.2022.1027828] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Genetic modification of crops has substantially focused on improving traits for desirable outcomes. It has resulted in the development of crops with enhanced yields, quality, and tolerance to biotic and abiotic stresses. With the advent of introducing favorable traits into crops, biotechnology has created a path for the involvement of genetically modified (GM) crops into sustainable food production systems. Although these plants heralded a new era of crop production, their widespread adoption faces diverse challenges due to concerns about the environment, human health, and moral issues. Mitigating these concerns with scientific investigations is vital. Hence, the purpose of the present review is to discuss the deployment of GM crops and their effects on sustainable food production systems. It provides a comprehensive overview of the cultivation of GM crops and the issues preventing their widespread adoption, with appropriate strategies to overcome them. This review also presents recent tools for genome editing, with a special focus on the CRISPR/Cas9 platform. An outline of the role of crops developed through CRSIPR/Cas9 in achieving sustainable development goals (SDGs) by 2030 is discussed in detail. Some perspectives on the approval of GM crops are also laid out for the new age of sustainability. The advancement in molecular tools through plant genome editing addresses many of the GM crop issues and facilitates their development without incorporating transgenic modifications. It will allow for a higher acceptance rate of GM crops in sustainable agriculture with rapid approval for commercialization. The current genetic modification of crops forecasts to increase productivity and prosperity in sustainable agricultural practices. The right use of GM crops has the potential to offer more benefit than harm, with its ability to alleviate food crises around the world.
Collapse
Affiliation(s)
- Mughair Abdul Aziz
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al−Ain, Abu−Dhabi, United Arab Emirates
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Hatem Rouached
- Michigan State University, Plant and Soil Science Building, East Lansing, MI, United States
| | - Khaled Masmoudi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al−Ain, Abu−Dhabi, United Arab Emirates
| |
Collapse
|
9
|
Editing of the starch synthase IIa gene led to transcriptomic and metabolomic changes and high amylose starch in barley. Carbohydr Polym 2022; 285:119238. [DOI: 10.1016/j.carbpol.2022.119238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/07/2022] [Accepted: 02/06/2022] [Indexed: 11/24/2022]
|
10
|
Garcia-Gimenez G, Jobling SA. Gene editing for barley grain quality improvement. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2021.103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Shah P, Magar ND, Barbadikar KM. Current technological interventions and applications of CRISPR/Cas for crop improvement. Mol Biol Rep 2021; 49:5751-5770. [PMID: 34807378 DOI: 10.1007/s11033-021-06926-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Efficient and innovative breeding strategies are immensely required to meet the global food demand, nutritional security and sustainable agriculture. Genome editing tools have emerged as an effective technology for site-directed genome modification causing the change in gene expression and protein function for the improvement of various important traits in particular the CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein). As the technology evolved with time, advances have been observed like prime editing, base editing, PAMless editing, Drosha based editing with multiple targets having the potential to fulfill the regulatory processes around the world. These recent interventions are highly proficient, cost-efficient, user-friendly, and holds promise for a major revolution in basic and applied plant biology research in the ever-evolving climatic conditions. In the review, we have discussed the most recent technologies and advances for CRISPR/Cas editing in plants.
Collapse
Affiliation(s)
- Priya Shah
- Tamil Nadu Agricultural University, Tamil Nadu, India
| | - Nakul D Magar
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana State, 500030, India
| | - Kalyani M Barbadikar
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana State, 500030, India.
| |
Collapse
|
12
|
Matres JM, Hilscher J, Datta A, Armario-Nájera V, Baysal C, He W, Huang X, Zhu C, Valizadeh-Kamran R, Trijatmiko KR, Capell T, Christou P, Stoger E, Slamet-Loedin IH. Genome editing in cereal crops: an overview. Transgenic Res 2021; 30:461-498. [PMID: 34263445 PMCID: PMC8316241 DOI: 10.1007/s11248-021-00259-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/15/2021] [Indexed: 02/06/2023]
Abstract
Genome-editing technologies offer unprecedented opportunities for crop improvement with superior precision and speed. This review presents an analysis of the current state of genome editing in the major cereal crops- rice, maize, wheat and barley. Genome editing has been used to achieve important agronomic and quality traits in cereals. These include adaptive traits to mitigate the effects of climate change, tolerance to biotic stresses, higher yields, more optimal plant architecture, improved grain quality and nutritional content, and safer products. Not all traits can be achieved through genome editing, and several technical and regulatory challenges need to be overcome for the technology to realize its full potential. Genome editing, however, has already revolutionized cereal crop improvement and is poised to shape future agricultural practices in conjunction with other breeding innovations.
Collapse
Affiliation(s)
- Jerlie Mhay Matres
- Genetic Design and Validation Unit, International Rice Research Institute, Los Banos, Philippines
| | - Julia Hilscher
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Akash Datta
- Genetic Design and Validation Unit, International Rice Research Institute, Los Banos, Philippines
| | - Victoria Armario-Nájera
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Can Baysal
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Wenshu He
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Xin Huang
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Rana Valizadeh-Kamran
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- Department of Biotechnology, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Kurniawan R Trijatmiko
- Genetic Design and Validation Unit, International Rice Research Institute, Los Banos, Philippines
| | - Teresa Capell
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Paul Christou
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
- ICREA, Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Inez H Slamet-Loedin
- Genetic Design and Validation Unit, International Rice Research Institute, Los Banos, Philippines.
| |
Collapse
|
13
|
Huang X, Hilscher J, Stoger E, Christou P, Zhu C. Modification of cereal plant architecture by genome editing to improve yields. PLANT CELL REPORTS 2021; 40:953-978. [PMID: 33559722 DOI: 10.1007/s00299-021-02668-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE We summarize recent genome editing studies that have focused on the examination (or reexamination) of plant architectural phenotypes in cereals and the modification of these traits for crop improvement. Plant architecture is defined as the three-dimensional organization of the entire plant. Shoot architecture refers to the structure and organization of the aboveground components of a plant, reflecting the developmental patterning of stems, branches, leaves and inflorescences/flowers. Root system architecture is essentially determined by four major shape parameters-growth, branching, surface area and angle. Interest in plant architecture has arisen from the profound impact of many architectural traits on agronomic performance, and the genetic and hormonal regulation of these traits which makes them sensitive to both selective breeding and agronomic practices. This is particularly important in staple crops, and a large body of literature has, therefore, accumulated on the control of architectural phenotypes in cereals, particularly rice due to its twin role as one of the world's most important food crops as well as a model organism in plant biology and biotechnology. These studies have revealed many of the molecular mechanisms involved in the regulation of tiller/axillary branching, stem height, leaf and flower development, root architecture and the grain characteristics that ultimately help to determine yield. The advent of genome editing has made it possible, for the first time, to introduce precise mutations into cereal crops to optimize their architecture and close in on the concept of the ideotype. In this review, we consider recent genome editing studies that have focused on the examination (or reexamination) of plant architectural phenotypes in cereals and the modification of these traits for crop improvement.
Collapse
Affiliation(s)
- Xin Huang
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
| | - Julia Hilscher
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180, Vienna, Austria
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180, Vienna, Austria
| | - Paul Christou
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain.
| |
Collapse
|
14
|
Biswas S, Zhang D, Shi J. CRISPR/Cas systems: opportunities and challenges for crop breeding. PLANT CELL REPORTS 2021; 40:979-998. [PMID: 33977326 DOI: 10.1007/s00299-021-02708-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/28/2021] [Indexed: 05/27/2023]
Abstract
Increasing crop production to meet the demands of a growing population depends largely on crop improvement through new plant-breeding techniques (NPBT) such as genome editing. CRISPR/Cas systems are NPBTs that enable efficient target-specific gene editing in crops, which is supposed to accelerate crop breeding in a way that is different from genetically modified (GM) technology. Herein, we review the applications of CRISPR/Cas systems in crop breeding focusing on crop domestication, heterosis, haploid induction, and synthetic biology, and summarize the screening methods of CRISPR/Cas-induced mutations in crops. We highlight the importance of molecular characterization of CRISPR/Cas-edited crops, and pay special attentions to emerging highly specific genome-editing tools such as base editors and prime editors. We also discuss future improvements of CRISPR/Cas systems for crop improvement.
Collapse
Affiliation(s)
- Sukumar Biswas
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
15
|
Zhang D, Zhang Z, Unver T, Zhang B. CRISPR/Cas: A powerful tool for gene function study and crop improvement. J Adv Res 2021; 29:207-221. [PMID: 33842017 PMCID: PMC8020163 DOI: 10.1016/j.jare.2020.10.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 12/26/2022] Open
Abstract
Background It is a long-standing goal of scientists and breeders to precisely control a gene for studying its function as well as improving crop yield, quality, and tolerance to various environmental stresses. The discovery and modification of CRISPR/Cas system, a nature-occurred gene editing tool, opens an era for studying gene function and precision crop breeding. Aim of Review In this review, we first introduce the brief history of CRISPR/Cas discovery followed the mechanism and application of CRISPR/Cas system on gene function study and crop improvement. Currently, CRISPR/Cas genome editing has been becoming a mature cutting-edge biotechnological tool for crop improvement that already used in many different traits in crops, including pathogen resistance, abiotic tolerance, plant development and morphology and even secondary metabolism and fiber development. Finally, we point out the major issues associating with CRISPR/Cas system and the future research directions.Key Scientific Concepts of Review: CRISPR/Cas9 system is a robust and powerful biotechnological tool for targeting an individual DNA and RNA sequence in the genome. It can be used to target a sequence for gene knockin, knockout and replacement as well as monitoring and regulating gene expression at the genome and epigenome levels by binding a specific sequence. Agrobacterium-mediated method is still the major and efficient method for delivering CRISPR/Cas regents into targeted plant cells. However, other delivery methods, such as virus-mediated method, have been developed and enhanced the application potentials of CRISPR/Cas9-based crop improvement. PAM requirement offers the CRISPR/Cas9-targted genetic loci and also limits the application of CRISPR/Cas9. Discovering new Cas proteins and modifying current Cas enzymes play an important role in CRISPR/Cas9-based genome editing. Developing a better CRISPR/Cas9 system, including the delivery system and the methods eliminating off-target effects, and finding key/master genes for controlling crop growth and development is two major directions for CRISPR/Cas9-based crop improvement.
Collapse
Affiliation(s)
- Dangquan Zhang
- Henan Province Engineering Research Center for Forest Biomass Value-Added Products, College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Zhiyong Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding and Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Turgay Unver
- Ficus Biotechnology, Ostim Teknopark, No: 1/1/76, 06378, Yenimahalle, Ankara, Turkey
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
16
|
Tiwari M, Trivedi P, Pandey A. Emerging tools and paradigm shift of gene editing in cereals, fruits, and horticultural crops for enhancing nutritional value and food security. Food Energy Secur 2020. [DOI: 10.1002/fes3.258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Manish Tiwari
- National Institute of Plant Genome Research New Delhi India
| | - Prabodh Trivedi
- CSIR‐Central Institute of Medicinal and Aromatic Plants Lucknow India
| | | |
Collapse
|
17
|
Zeng Z, Han N, Liu C, Buerte B, Zhou C, Chen J, Wang M, Zhang Y, Tang Y, Zhu M, Wang J, Yang Y, Bian H. Functional dissection of HGGT and HPT in barley vitamin E biosynthesis via CRISPR/Cas9-enabled genome editing. ANNALS OF BOTANY 2020; 126:929-942. [PMID: 32575125 PMCID: PMC7539355 DOI: 10.1093/aob/mcaa115] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/18/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS Vitamin E (tocochromanol) is a lipid-soluble antioxidant and an essential nutrient for human health. Among cereal crops, barley (Hordeum vulgare) contains a high level of vitamin E, which includes both tocopherols and tocotrienols. Although the vitamin E biosynthetic pathway has been characterized in dicots, such as Arabidopsis, which only accumulate tocopherols, knowledge regarding vitamin E biosynthesis in monocots is limited because of the lack of functional mutants. This study aimed to obtain gene knockout mutants to elucidate the genetic control of vitamin E composition in barley. METHODS Targeted knockout mutations of HvHPT and HvHGGT in barley were created with CRISPR/Cas9-enabled genome editing. High-performance liquid chromatography (HPLC) was performed to analyse the content of tocochromanol isomers in transgene-free homozygous Hvhpt and Hvhggt mutants. KEY RESULTS Mutagenesis efficiency among T0 regenerated plantlets was 50-65 % as a result of two simultaneously expressed guide RNAs targeting each gene; most of the mutations were stably inherited by the next generation. The transgene-free homozygous mutants of Hvhpt and Hvhggt exhibited decreased grain size and weight, and the HvHGGT mutation led to a shrunken phenotype and significantly lower total starch content in grains. HPLC analysis revealed that targeted mutation of HvHPT significantly reduced the content of both tocopherols and tocotrienols, whereas mutations in HvHGGT completely blocked tocotrienol biosynthesis in barley grains. Transient overexpression of an HvHPT homologue in tobacco leaves significantly increased the production of γ- and δ-tocopherols, which may partly explain why targeted mutation of HvHPT in barley grains did not eliminate tocopherol production. CONCLUSIONS Our results functionally validated that HvHGGT is the only committed gene for the production of tocotrienols, whereas HvHPT is partly responsible for tocopherol biosynthesis in barley.
Collapse
Affiliation(s)
- Zhanghui Zeng
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ning Han
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Cuicui Liu
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - B Buerte
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chenlu Zhou
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jianshu Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Mengyao Wang
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yuhong Zhang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Yawei Tang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Muyuan Zhu
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Junhui Wang
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yinong Yang
- Department of Plant Pathology and Environment Microbiology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Hongwu Bian
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
- For correspondence. E-mail
| |
Collapse
|
18
|
Rotasperti L, Sansoni F, Mizzotti C, Tadini L, Pesaresi P. Barley's Second Spring as A Model Organism for Chloroplast Research. PLANTS 2020; 9:plants9070803. [PMID: 32604986 PMCID: PMC7411767 DOI: 10.3390/plants9070803] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
Barley (Hordeum vulgare) has been widely used as a model crop for studying molecular and physiological processes such as chloroplast development and photosynthesis. During the second half of the 20th century, mutants such as albostrians led to the discovery of the nuclear-encoded, plastid-localized RNA polymerase and the retrograde (chloroplast-to-nucleus) signalling communication pathway, while chlorina-f2 and xantha mutants helped to shed light on the chlorophyll biosynthetic pathway, on the light-harvesting proteins and on the organization of the photosynthetic apparatus. However, during the last 30 years, a large fraction of chloroplast research has switched to the more “user-friendly” model species Arabidopsis thaliana, the first plant species whose genome was sequenced and published at the end of 2000. Despite its many advantages, Arabidopsis has some important limitations compared to barley, including the lack of a real canopy and the absence of the proplastid-to-chloroplast developmental gradient across the leaf blade. These features, together with the availability of large collections of natural genetic diversity and mutant populations for barley, a complete genome assembly and protocols for genetic transformation and gene editing, have relaunched barley as an ideal model species for chloroplast research. In this review, we provide an update on the genomics tools now available for barley, and review the biotechnological strategies reported to increase photosynthesis efficiency in model species, which deserve to be validated in barley.
Collapse
|
19
|
Fang Y, Zhang X, Zhang X, Tong T, Zhang Z, Wu G, Hou L, Zheng J, Niu C, Li J, Wang W, Wang H, Xue D. A High-Density Genetic Linkage Map of SLAFs and QTL Analysis of Grain Size and Weight in Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2020; 11:620922. [PMID: 33424912 PMCID: PMC7793689 DOI: 10.3389/fpls.2020.620922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/26/2020] [Indexed: 05/12/2023]
Abstract
Grain size is an important agronomic trait determines yield in barley, and a high-density genetic map is helpful to accurately detect quantitative trait loci (QTLs) related to grain traits. Using specific-locus amplified fragment sequencing (SLAF-seq) technology, a high-density genetic map was constructed with a population of 134 recombinant inbred lines (RILs) deriving from a cross between Golden Promise (GP) and H602, which contained 12,635 SLAFs with 26,693 SNPs, and spanned 896.74 cM with an average interval of 0.07 cM on seven chromosomes. Based on the map, a total of 16 QTLs for grain length (GL), grain width and thousand-grain weight were detected on 1H, 2H, 4H, 5H, and 6H. Among them, a major QTL locus qGL1, accounting for the max phenotypic variance of 16.7% was located on 1H, which is a new unreported QTL affecting GL. In addition, the other two QTLs, qGL5 and qTGW5, accounting for the max phenotypic variances of 20.7 and 21.1%, respectively, were identified in the same region, and sequencing results showed they are identical to HvDep1 gene. These results indicate that it is a feasible approach to construct a high-quality genetic map for QTL mapping by using SLAF markers, and the detected major QTLs qGL1, qGL5, and qTGW5 are useful for marker-assisted selection (MAS) of grain size in barley breeding.
Collapse
Affiliation(s)
- Yunxia Fang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiaoqin Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xian Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Tao Tong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ziling Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Gengwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Linlin Hou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Junjun Zheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Chunyu Niu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jia Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Wenjia Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Hua Wang,
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Dawei Xue,
| |
Collapse
|