1
|
Carrera I, Corzo L, Martínez-Iglesias O, Naidoo V, Cacabelos R. Preventive Role of Cocoa-Enriched Extract Against Neuroinflammation in Mice. Neurol Int 2025; 17:47. [PMID: 40278418 DOI: 10.3390/neurolint17040047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Chronic aberrant inflammation is a crucial step in mediating cerebrovascular and neurodegenerative pathologies, including Alzheimer's and Parkinson's disease. Due to their exceptional antioxidant properties and ability to alter imbalance metabolism and reactive inflammation response, cocoa-derived flavanols are being investigated as potential bioactive substances to modulate and reverse these inflammation-associated disorders. OBJECTIVE The present study will focus on the possible beneficial effects of cocoa-derived extract, enhanced with other bioactive phytochemicals such as spirulina and pineapple, on selected biomarkers of the inflammatory, metabolic, and neurodegenerative processes. METHODS A mice model of inflammation was treated with cocoa-derived extract cocktail, and biomolecular data was obtained by performing immunohistochemical and biochemical analysis. RESULTS Results show that the cocoa-derived extract mitigates the neuroinflammatory processes triggered (decreased expression of macrophage CD11b) and prevents the escalade of subsequent neurodegeneration pathologies. CONCLUSIONS The results based on hypo-vitaminosis, neuroinflammation, and inmunoreactive analysis suggest that cocoa-derived extract is a powerful bioproduct for ameliorating neuroinflammatory processes that mediate metabolic and cerebrovascular diseases.
Collapse
Affiliation(s)
- Ivan Carrera
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165 Bergondo, Corunna, Spain
| | - Lola Corzo
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165 Bergondo, Corunna, Spain
| | - Olaia Martínez-Iglesias
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165 Bergondo, Corunna, Spain
| | - Vinogran Naidoo
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165 Bergondo, Corunna, Spain
| | - Ramón Cacabelos
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165 Bergondo, Corunna, Spain
| |
Collapse
|
2
|
Saldarriaga S, Rodríguez-Salazar CA, Recalde-Reyes DP, Paladines Beltrán GM, Cuéllar Álvarez LN, Silva Ortíz YL. Phenolic Composition, Antioxidant, and Anti-Proliferative Activities Against Human Colorectal Cancer Cells of Amazonian Fruits Copoazú ( Theobroma grandiflorum) and Buriti ( Mauritia flexuosa). Molecules 2025; 30:1250. [PMID: 40142027 PMCID: PMC11944506 DOI: 10.3390/molecules30061250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 03/28/2025] Open
Abstract
Amazonian fruits are a source of bioactive compounds, among which phenolic compounds, flavonoids, and carotenes stand out. These compounds play a crucial role in restoring oxidative balance, consequently reducing the proliferation of cancer cells. However, the content of these metabolites and their biological properties may vary significantly depending on the geographical location and the environmental conditions where plants grow. This research assessed the content of metabolites, free radical scavenging capacity, and hemolytic and antiproliferative effects of the hydro-methanolic extracts of the Amazonian fruits Theobroma grandiflorum and Mauritia flexuosa. The results revealed that the extracts derived from the seeds of Theobroma grandiflorum sourced from the Balcanes experimental farm and the pulp of Mauritia flexuosa harvested in Florencia exhibited higher contents compared to other analyzed sites: Total phenolic content (TPC) (619.41 ± 12.05 and 285.75 ± 10.06 mg GAE/100 g FW), Total flavonoid content (TFC) (569.09 ± 4.51 and 223.21 ± 3.92 mg CAT/100 g FW), and Total carotenoid content (TCC) (25.12 ± 0.16 and 48.00 ± 0.28 mg eq β-carotene/100 g FW), respectively. Also, these samples demonstrated superior scavenging capacities for the ABTS and DPPH radicals, while the peel of Mauritia flexuosa exhibited the highest scavenging capacity for the oxygen radical (526.23 ± 2.08 µmol Trolox.g-1). The hemolytic effect shows dose-dependent responses with IC50 values of 27.73 μg/mL for the Balcanes seeds and 1.27 μg/mL for the Florencia pulp. Furthermore, it was observed that treatment with the fruit-derived extracts effectively reduced the number of viable human colorectal cancer cells, using SW480 ATCC cell line, demonstrating a non-dose-dependent behavior compared to the control cells.
Collapse
Affiliation(s)
- Sebastián Saldarriaga
- Grupo de Investigación en Productos Naturales Amazónicos-GIPRONAZ, Universidad de la Amazonia, Florencia 180001, Colombia; (S.S.); (G.M.P.B.); (L.N.C.Á.)
| | - Carlos Andrés Rodríguez-Salazar
- Molecular Biology and Virology Laboratory, Faculty of Medicine and Health Sciences, Corporación Universitaria Empresarial Alexander von Humboldt, Armenia 630008, Colombia;
| | - Delia Piedad Recalde-Reyes
- Molecular Biology and Virology Laboratory, Faculty of Medicine and Health Sciences, Corporación Universitaria Empresarial Alexander von Humboldt, Armenia 630008, Colombia;
| | - Gloria Magally Paladines Beltrán
- Grupo de Investigación en Productos Naturales Amazónicos-GIPRONAZ, Universidad de la Amazonia, Florencia 180001, Colombia; (S.S.); (G.M.P.B.); (L.N.C.Á.)
| | - Liceth N. Cuéllar Álvarez
- Grupo de Investigación en Productos Naturales Amazónicos-GIPRONAZ, Universidad de la Amazonia, Florencia 180001, Colombia; (S.S.); (G.M.P.B.); (L.N.C.Á.)
| | - Yudy Lorena Silva Ortíz
- Grupo de Investigación en Productos Naturales Amazónicos-GIPRONAZ, Universidad de la Amazonia, Florencia 180001, Colombia; (S.S.); (G.M.P.B.); (L.N.C.Á.)
| |
Collapse
|
3
|
Escobar-García JD, Prieto C, Talon E, Lagaron JM. Comparison of the Stability of a Camu Camu Extract Dried and Encapsulated by Means of High-Throughput Electrospraying Assisted by Pressurized Gas. Foods 2024; 13:3280. [PMID: 39456342 PMCID: PMC11508133 DOI: 10.3390/foods13203280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
This study explores the impact on the stability of drying and the encapsulation of a camu camu extract (CCX) using the non-thermal, high-throughput electrospraying assisted by pressurized gas (EAPG) technique. The dried and encapsulated products by the EAPG processing techniques were compared in terms of total soluble phenolic compounds, antioxidant activity, and storage stability. Whey protein concentrate (WPC) and zein (ZN) were selected as the protective excipients for encapsulation. Dried and encapsulated products were obtained in the form of microparticles, which were smaller and more spherical in the case of the encapsulates. No significant differences were observed in the total polyphenolic content (TSP), and only relatively small differences in the antioxidant capacity were measured among samples. The generated products were subjected to various storage conditions to assess their stability and the preservation of the TSP and the antioxidant properties, i.e., 0% relative humidity (RH) and 4 °C; 0% RH and 21 °C; 23% RH and 21 °C; 56% RH and 21 °C; and UV light exposure. The results indicated that ZN encapsulation notably enhanced the retention of total soluble polyphenols and the antioxidant activity compared to WPC and dried CCX, especially in the ratio of 2:1 (encapsulating polymer: dried CCX). This study demonstrates the potential of protein-based encapsulation, particularly using ZN, for stabilizing bioactive compounds against degradation mechanisms induced by humidity, temperature, or ultraviolet radiation exposure.
Collapse
Affiliation(s)
| | - Cristina Prieto
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain; (C.P.); (J.M.L.)
| | - Emma Talon
- R&D Department, Bioinicia S.L., Calle Algepser 65, 46980 Paterna, Spain;
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain; (C.P.); (J.M.L.)
| |
Collapse
|
4
|
Lima LS, Ribeiro M, Cardozo LFMF, Moreira NX, Teodoro AJ, Stenvinkel P, Mafra D. Amazonian Fruits for Treatment of Non-Communicable Diseases. Curr Nutr Rep 2024; 13:611-638. [PMID: 38916807 DOI: 10.1007/s13668-024-00553-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE OF REVIEW The Amazon region has a high biodiversity of flora, with an elevated variety of fruits, such as Camu-Camu (Myrciaria dúbia), Açaí (Euterpe oleracea Mart.), Tucumã (Astrocaryum aculeatum and Astrocaryum vulgare), Fruta-do-conde (Annona squamosa L.), Cupuaçu (Theobroma grandiflorum), Graviola (Annona muricata L.), Guarana (Paullinia cupana Kunth var. sorbilis), and Pitanga (Eugenia uniflora), among many others, that are rich in phytochemicals, minerals and vitamins with prominent antioxidant and anti-inflammatory potential. RECENT FINDINGS Studies evaluating the chemical composition of these fruits have observed a high content of nutrients and bioactive compounds. Such components are associated with significant biological effects in treating various non-communicable diseases (NCDs) and related complications. Regular intake of these fruits from Amazonas emerges as a potential therapeutic approach to preventing and treating NCDs as a nutritional strategy to reduce the incidence or mitigate common complications in these patients, which are the leading global causes of death. As studies remain largely unexplored, this narrative review discusses the possible health-beneficial effects for patients with NCDs.
Collapse
Affiliation(s)
- Ligia Soares Lima
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Marcia Ribeiro
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Ludmila F M F Cardozo
- Nutrition Faculty, Federal Fluminense University, Niterói-Rio de Janeiro (RJ), Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Nara Xavier Moreira
- Nutrition Faculty, Federal Fluminense University, Niterói-Rio de Janeiro (RJ), Brazil
| | - Anderson Junger Teodoro
- Nutrition Faculty, Federal Fluminense University, Niterói-Rio de Janeiro (RJ), Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Denise Mafra
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil.
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
- Unidade de Pesquisa Clínica-UPC. Rua Marquês de Paraná, Niterói-RJ, 303/4 Andar , Niterói, RJ, 24033-900, Brazil.
| |
Collapse
|
5
|
Roy S, Sarkar T, Upadhye VJ, Chakraborty R. Comprehensive Review on Fruit Seeds: Nutritional, Phytochemical, Nanotechnology, Toxicity, Food Biochemistry, and Biotechnology Perspective. Appl Biochem Biotechnol 2024; 196:4472-4643. [PMID: 37755640 DOI: 10.1007/s12010-023-04674-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/28/2023]
Abstract
Fruit seeds are leftovers from a variety of culinary sectors. They are generally unutilized and contribute greatly to global disposals. These seeds not only possess various nutritional attributes but also have many heath-beneficial properties. One way to make use of these seeds is to extract their bioactive components and create fortified food items. Nowadays, researchers are highly interested in creating innovative functional meals and food components from these unconventional resources. The main objective of this manuscript was to determine the usefulness of seed powder from 70 highly consumed fruits, including Apple, Apricot, Avocado, Banana, Blackberry, Blackcurrant, Blueberry, Cherry, Common plum, Cranberry, Gooseberry, Jackfruit, Jamun, Kiwi, Lemon, Mahua, Mango, Melon, Olive, Orange, and many more have been presented. The nutritional attributes, phytochemical composition, health advantages, nanotechnology applications, and toxicity of these fruit seeds have been fully depicted. This study also goes into in-depth detailing on creating useful food items out of these seeds, such as bakery goods, milk products, cereal-based goods, and meat products. It also identifies enzymes purified from these seeds along with their biochemical applications and any research openings in this area.
Collapse
Affiliation(s)
- Sarita Roy
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, 732102, India.
| | | | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
6
|
Noguera NH, Noguera DCLH, Machado APDF, Reguengo LM, Nascimento RDPD. Emerging berries from the Brazilian Amazon and Atlantic Forest biomes: new sources of bioactive compounds with potential health benefits. Food Funct 2024; 15:5752-5784. [PMID: 38753200 DOI: 10.1039/d4fo00182f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Brazil has a broad geographic biodiversity spread across its six different biomes. However, it has been suffering from the abusive exploitation of its resources, which poses a threat to the local fauna and flora. The Amazon and Atlantic Forest, for example, are birthplaces to rare and edible native species, such as bacaba (Oenocarpus bacaba, Arecaceae) and camu-camu (Myrciaria dubia, Myrtaceae), and cereja-do-Rio Grande (Eugenia involucrata, Myrtaceae) and grumixama (Eugenia brasiliensis, Myrtaceae), respectively. These plants produce fruits which are sources of macro and micronutrients, including sugars, dietary fibers, vitamins, minerals, and/or lipids. Nutritionally, their consumption have the ability to reach partially or totally the daily recommendations for adults of some nutrients. More recently, these fruits have also been exposed as interesting sources of minor bioactive compounds, such as carotenoids, terpenes, and/or polyphenols, the latter which include anthocyanins, phenolic acids, and tannins. Particularly, bacaba stands out for being a rich source of polyunsaturated fatty acids (around 22%, dry weight) and dietary fibers (6.5-21%, dry weight); camu-camu has very high contents of vitamin C (up to 5000 mg per 100 g of pulp, dry basis); and cereja-do-Rio-Grande and grumixama are abundant sources of anthocyanins. Although they are still underexplored, several in vitro and in vivo studies with different parts of the fruits, including the peel, seed, and pulp, indicate their health potential through anti-oxidative, anti-obesity, antihyperglycemic, antidyslipidemic, antimicrobial, and/or anticancer effects. All things considered, the focus of this research was to highlight the bioactive potential and health impact of native fruits from the Amazon and Atlantic Forest biomes.
Collapse
Affiliation(s)
- Nathan Hargreaves Noguera
- Universidade Estadual de Campinas, Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, 13083-862, Campinas, São Paulo, Brazil
| | - Dyana Carla Lima Hargreaves Noguera
- Universidade Estadual de Campinas, Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, 13083-862, Campinas, São Paulo, Brazil
| | - Ana Paula da Fonseca Machado
- Universidade Federal da Grande Dourados, Faculdade de Engenharia, 79804-970, Dourados, Mato Grosso do Sul, Brazil
| | - Livia Mateus Reguengo
- Universidade Estadual de Campinas, Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, 13083-862, Campinas, São Paulo, Brazil.
| | - Roberto de Paula do Nascimento
- Universidade Estadual de Campinas, Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, 13083-862, Campinas, São Paulo, Brazil.
| |
Collapse
|
7
|
Hasan MM, Islam MR, Haque AR, Kabir MR, Khushe KJ, Hasan SMK. Trends and challenges of fruit by-products utilization: insights into safety, sensory, and benefits of the use for the development of innovative healthy food: a review. BIORESOUR BIOPROCESS 2024; 11:10. [PMID: 38647952 PMCID: PMC10991904 DOI: 10.1186/s40643-023-00722-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/21/2023] [Indexed: 04/25/2024] Open
Abstract
A significant portion of the human diet is comprised of fruits, which are consumed globally either raw or after being processed. A huge amount of waste and by-products such as skins, seeds, cores, rags, rinds, pomace, etc. are being generated in our homes and agro-processing industries every day. According to previous statistics, nearly half of the fruits are lost or discarded during the entire processing chain. The concern arises when those wastes and by-products damage the environment and simultaneously cause economic losses. There is a lot of potential in these by-products for reuse in a variety of applications, including the isolation of valuable bioactive ingredients and their application in developing healthy and functional foods. The development of novel techniques for the transformation of these materials into marketable commodities may offer a workable solution to this waste issue while also promoting sustainable economic growth from the bio-economic viewpoint. This approach can manage waste as well as add value to enterprises. The goal of this study is twofold based on this scenario. The first is to present a brief overview of the most significant bioactive substances found in those by-products. The second is to review the current status of their valorization including the trends and techniques, safety assessments, sensory attributes, and challenges. Moreover, specific attention is drawn to the future perspective, and some solutions are discussed in this report.
Collapse
Affiliation(s)
- Md Mehedi Hasan
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Md Rakibul Islam
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Ahmed Redwan Haque
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Md Raihan Kabir
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Khursheda Jahan Khushe
- Department of Food Science and Nutrition, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - S M Kamrul Hasan
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh.
| |
Collapse
|
8
|
Paes LT, D'Almeida CTDS, do Carmo MAV, da Silva Cruz L, Bubula de Souza A, Viana LM, Gonçalves Maltarollo V, Martino HSD, Domingues de Almeida Lima G, Larraz Ferreira MS, Azevedo L, Barros FARD. Phenolic-rich extracts from toasted white and tannin sorghum flours have distinct profiles influencing their antioxidant, antiproliferative, anti-adhesive, anti-invasive, and antimalarial activities. Food Res Int 2024; 176:113739. [PMID: 38163694 DOI: 10.1016/j.foodres.2023.113739] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
Sorghum is a gluten-free cereal commonly used in foods, and its consumption has been associated with the prevention of human chronic conditions such as obesity and cancer, due to the presence of dietary fiber and phenolic compounds. This study aimed to evaluate, for the first time, the antiproliferative, antioxidant, anti-adhesion, anti-invasion, and antimalarial activities of phenolic extracts from toasted white and tannin sorghum flours to understand how different phenolic profiles contribute to sorghum biological activities. Water and 70 % ethanol/water (v/v), eco-friendly solvents, were used to obtain the phenolic extracts of toasted sorghum flours, and their phenolic profile was analyzed by UPLC-MSE. One hundred forty-five (145) phenolic compounds were identified, with 23 compounds common to all extracts. The solvent type affected the phenolic composition, with aqueous extract of both white sorghum (WSA) and tannin sorghum (TSA) containing mainly phenolic acids. White sorghum (WSE) and tannin sorghum (TSE) ethanolic extracts exhibited a higher abundance of flavonoids. WSE demonstrated the lowest IC50 on EA.hy926 (IC50 = 46.6 µg/mL) and A549 cancer cells (IC50 = 33.1 µg/mL), while TSE showed the lowest IC50 (IC50 = 70.8 µg/mL) on HCT-8 cells (human colon carcinoma). Aqueous extracts also demonstrated interesting results, similar to TSE, showing selectivity for cancer cells at higher IC50 concentrations. All sorghum extracts also reduced the adhesion and invasion of HCT-8 cells, suggesting antimetastatic potential. WSE, rich in phenolic acids and flavonoids, exhibited greater toxicity to both the W2 (chloroquine-resistant) and 3D7 (chloroquine-sensitive) strains of Plasmodium falciparum (IC50 = 8 µg GAE/mL and 22.9 µg GAE/mL, respectively). These findings underscore the potential health benefits of toasted sorghum flours, suggesting diverse applications in the food industry as a functional ingredient or even as an antioxidant supplement. Moreover, it is suggested that, besides the phenolic concentration, the phenolic profile is important to understand the health benefits of sorghum flours.
Collapse
Affiliation(s)
- Laise Trindade Paes
- Department of Food Technology, Federal University of Vicosa, Vicosa, MG, Brazil
| | | | | | | | | | | | - Vinicius Gonçalves Maltarollo
- Pharmaceutical Products Department, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Mariana Simões Larraz Ferreira
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Brazil
| | - Luciana Azevedo
- Faculty of Nutrition, Federal University of Alfenas, Alfenas, MG, Brazil
| | | |
Collapse
|
9
|
Dos Santos de Moraes PG, da Silva Santos IB, Silva VBG, Dede Oliveira FariasAguiar JCR, do Amaral Ferraz Navarro DM, de Oliveira AM, Dos Santos Correia MT, Costa WK, da Silva MV. Essential oil from leaves of Myrciaria floribunda (H. West ex Willd.) O. Berg has antinociceptive and anti-inflammatory potential. Inflammopharmacology 2023; 31:3143-3151. [PMID: 37498376 DOI: 10.1007/s10787-023-01300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Myrciaria floribunda is a plant that is distributed across different Brazilian biomes such as the Amazon, Caatinga, Cerrado, and Atlantic Forest, and it possesses antioxidant, antimicrobial, and anticancer properties. The antinociceptive and anti-inflammatory properties of the essential oil from M. floribunda leaves (MfEO) were examined in this study using mouse models. Gas chromatography-mass spectrometry was employed to describe the oil, and the results revealed that δ-cadinene, bicyclogermacrene, α-cadinol, and epi-α-muurolol predominated in the chemical profile. The oil stimulated a decrease in nociception in the chemical and thermal models used to evaluate acute antinociceptive activity. Findings from the use of pain pathway blockers to study the presumed underlying mechanism indicated opioid pathway activity. The anti-edematogenic effect, decreased cell migration, and generation of pro-inflammatory cytokines provided evidence of the anti-inflammatory potential of the essential oil from M. floribunda. According to this research, the essential oil from M. floribunda can effectively alleviate acute pain and inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wêndeo Kennedy Costa
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil.
| | - Márcia Vanusa da Silva
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| |
Collapse
|
10
|
Lima RS, de Carvalho APA, Conte-Junior CA. Health from Brazilian Amazon food wastes: Bioactive compounds, antioxidants, antimicrobials, and potentials against cancer and oral diseases. Crit Rev Food Sci Nutr 2023; 63:12453-12475. [PMID: 35875893 DOI: 10.1080/10408398.2022.2101983] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Brazilian Amazon contains over 30,000 plant species and foods rich in bioactive compounds such as terpenes, phenolic acids, alkaloids, and flavonoids, of potential health benefits (antioxidant, antimicrobial, antiparasitic, anticancer, gastroprotection, prebiotic effects, among others). The existence of residues from non-edible parts of plants (leaves, roots, stems, branches, barks) or fruit wastes (peel, bagasse, seeds) in the agri-food industry and its supply chain is an important challenge in food loss and waste management. In this critical review several Amazon species, focusing on extracts/essential oils from nonedible parts or wastes, were analyzed in terms of phytochemicals, biological activity, and underlying mechanisms. We hope this review emphasizes the importance of Amazon's sustainability initiatives on population health due to the potential shown against cancer, infectious diseases, and prevention of oral diseases. It is urgent to think about the conversion of amazon food wastes and co-products into high-added-value raw materials to develop novel drugs, food packaging systems, or nutraceutical foods.
Collapse
Affiliation(s)
- Rayssa S Lima
- Department of Biochemistry, Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anna Paula Azevedo de Carvalho
- Department of Biochemistry, Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Conte-Junior
- Department of Biochemistry, Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Food Science (PPGCAL), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Dembogurski DSDO, Bonfá IS, Candeloro L, Parisotto EB, Toffoli Kadri MC, Silva DB. Infusion from Miconia albicans (Melastomataceae) leaves exhibits anti-inflammatory and anti-hyperalgesic activities without toxicity. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116251. [PMID: 36791930 DOI: 10.1016/j.jep.2023.116251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The leaves of Miconia albicans have been extensively used as a traditional medicine to treat inflammation, infection, arthritis, joint pain, and analgesia, which can be purchased easily. Nevertheless, the scientific evidence of chemical profile identification and toxicity investigation is meager. AIM OF THE STUDY This study aimed to determine the chemical profile of Miconia albicans aqueous extract (MAAE), to investigate its anti-inflammatory and hyperalgesic effects, and toxicity (acute and repeated-dose oral) in vivo studies. MATERIALS AND METHODS MAAE was obtained by infusion method and its chemical constituents were analyzed and annotated by LC-DAD-MS. The in vivo tests were performed with male and female Swiss mice. Toxicity studies were examined by acute (2000 mg/kg) and repeated-dose oral assays (51.2; 256; 1280 mg/kg); anti-inflammatory evaluation was performed by paw edema and leukocyte migration, and anti-hyperalgesic properties were analyzed by abdominal writhing induced by acetic acid and formalin. The animals were treated by oral means with 51.2, 256, and 1280 mg/kg of MAAE. RESULTS Twenty-four compounds were annotated from MAAE by LC-DAD-MS, such as ellagitannins, ellagic acid derivatives, flavan-3-ol, and O-glycosylated compounds, including flavonols, triterpenes, and megastigmanes. MAAE induced no significant toxicological effects in the acute and repeated-dose oral assays at lower doses and no histological changes were observed. Hematological and biochemical showed no significant alterations. The oral administration of MAAE 256 mg/kg inhibited the edematogenic effect and reduced the leukocyte migration. In addition, MAAE decreased the abdominal writhings induced by acetic acid and the paw-licking time by formalin assay. CONCLUSION MAAE showed a significant reduction in inflammatory levels and leukocyte migration, revealing anti-hyperalgesic properties. Additionally, MAAE revealed no acute and repeated-doses toxicities.
Collapse
Affiliation(s)
- Djaceli Sampaio de Oliveira Dembogurski
- Laboratory of Natural Products and Mass Spectrometry (LaPNEM), Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Brazil
| | - Iluska Senna Bonfá
- Laboratory of Pharmacology and Inflammation, FACFAN/ Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Brazil
| | - Luciane Candeloro
- Laboratory of Histology, Biosciences Institute (INBIO), Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Brazil
| | - Eduardo Benedetti Parisotto
- Laboratory of Hematology, Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Brazil
| | - Mônica Cristina Toffoli Kadri
- Laboratory of Pharmacology and Inflammation, FACFAN/ Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Brazil
| | - Denise Brentan Silva
- Laboratory of Natural Products and Mass Spectrometry (LaPNEM), Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Brazil.
| |
Collapse
|
12
|
García-Chacón J, Marín-Loaiza JC, Osorio C. Camu Camu ( Myrciaria dubia (Kunth) McVaugh): An Amazonian Fruit with Biofunctional Properties-A Review. ACS OMEGA 2023; 8:5169-5183. [PMID: 36816657 PMCID: PMC9933082 DOI: 10.1021/acsomega.2c07245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Amazonian Camu camu fruit (Myrciaria dubia (Kunth) McVaugh) has been called a "superfruit" due to its high levels of bioactive and antioxidant compounds such as polyphenols, carotenoids, and vitamin C. The biofunctional properties of camu camu fruit (including pulp, peel, and seeds) have been well established through several in vitro and in vivo studies. Several reports confirmed the nutritious and biofunctional value of camu camu extracts or its food-derived products, exhibiting antioxidant, antihyperglycemic, antihypertensive, and antiobesity activity, contributing to quality life improvement. Other studies showed antimicrobial, anti-inflammatory, antiproliferative, antihepatotoxic, antihemolytic, antimutagenic, and cell rejuvenation bioactivities. This Review summarizes the bioactive profile of camu camu fruit through the understanding of some physiological modulation processes and its contribution to the Amazon bioeconomy under the development of biofunctional food ingredients exhibiting health benefits.
Collapse
Affiliation(s)
| | | | - Coralia Osorio
- Departamento
de Química, Universidad Nacional
de Colombia, AA 14490 Bogotá, Colombia
| |
Collapse
|
13
|
Nowak D, Gośliński M, Przygoński K, Wojtowicz E. Averrhoa carambola L., Cyphomandra betacea, Myrciaria dubia as a Source of Bioactive Compounds of Antioxidant Properties. Foods 2023; 12:foods12040753. [PMID: 36832828 PMCID: PMC9955449 DOI: 10.3390/foods12040753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Natural bioactive compounds play an important role in the prevention of various diseases. The exotic fruits Averrhoa carambola L. (star fruit), Cyphomandra betacea (tamarillo) and Myrciaria dubia (camu-camu) can be valuable sources of phytochemicals with antioxidant properties. The aim of this study has been to compare the antioxidant properties of these exotic fruits, the structure of polyphenolic compounds and the content of vitamin C and β-carotene. All the juices were analyzed for their antioxidant capacity (DPPH and ABTS assays) and the composition of phenolic compounds (TP and FBBB assays, total flavonoid content, total anthocyanins). In addition, HPLC assays were performed to analyse the content of phenolic acids, flavonoids, vitamin C and β-carotene. The results demonstrated that juice from the Myrciaria dubia fruit had the highest antioxidant capacity, which was 4.5-fold higher than that of juice from Averrhola carambola L., and nearly 7-fold higher than the antioxidant capacity of Cyphomandra betacea fruit juice. Additionally, juice from the camu-camu fruit had a 3- to 4-fold higher total polyphenol content (8290 ± 254 mg GAE L-1) and a high level of vitamin C (8410.8 ± 16.9 mg AA kg-1). In turn, tamarillo juice had a high content of total anthocyanins (5796 mg CGE L-1) and phenolic acids (mostly chlorogenic acid and caffeic acid). Juice produced from carambola had a high content of total flavonoids (1345 mg CAE L-1), and the composition of these compounds was dominated by flavanols (epicatechin). The research results justify the conclusion that fruits of Myrciaria dubia, Averrhoa carambola L., Cyphomandra betacea are rich sources of bioactive compounds with antioxidant properties, and in the near future may serve as healthful food ingredients.
Collapse
Affiliation(s)
- Dariusz Nowak
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Correspondence:
| | - Michał Gośliński
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Krzysztof Przygoński
- Department of Food Concentrates and Starch Products, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, 61-361 Poznań, Poland
| | - Elżbieta Wojtowicz
- Department of Food Concentrates and Starch Products, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, 61-361 Poznań, Poland
| |
Collapse
|
14
|
Jia W, Zhou L, Li L, Zhou P, Shen Z. Nano-Based Drug Delivery of Polyphenolic Compounds for Cancer Treatment: Progress, Opportunities, and Challenges. Pharmaceuticals (Basel) 2023; 16:ph16010101. [PMID: 36678599 PMCID: PMC9865384 DOI: 10.3390/ph16010101] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Polyphenols and their derivates, a kind of natural product distributed in herb plants, vegetables, and fruits, are the most abundant antioxidants in the human diet and have been found to display cancer-preventative effects in several epidemiological studies. The scientific community has also validated the anti-cancer bioactivities and low toxicities of polyphenolic compounds, including flavones, tannins, phenolic acids, and anthocyanins, through in vitro and in vivo studies. However, the low stability, weak targeting ability, poor solubility, and low bioavailability of pure polyphenolic agents have significantly impaired their treatment efficacy. Nowadays, nano-based technology has been applied to surmount these restrictions and maximize the treatment efficacy of polyphenols. In this review, we summarize the advantages and related mechanisms of polyphenols in cancer treatment. Moreover, aiming at the poor solubility and low bioavailability of pure polyphenols in vivo, the advantages of nano-based delivery systems and recent research developments are highlighted. Herein, particular emphasis is mainly placed on the most widely used nanomaterials in the delivery of natural products, including liposomes, micelles, and nanogels. Finally, we present an overview and the challenges of future implementations of nano-based delivery systems of polyphenolic compounds in the cancer therapeutic field.
Collapse
Affiliation(s)
- Wenhui Jia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Zhou
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou 571199, China
- Correspondence: (P.Z.); (Z.S.)
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo 315211, China
- Correspondence: (P.Z.); (Z.S.)
| |
Collapse
|
15
|
Machado APDF, Alves MDR, Nascimento RDPD, Reguengo LM, Marostica Junior MR. Antiproliferative effects and main molecular mechanisms of Brazilian native fruits and their by-products on lung cancer. Food Res Int 2022; 162:111953. [DOI: 10.1016/j.foodres.2022.111953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/11/2022] [Accepted: 09/16/2022] [Indexed: 11/04/2022]
|
16
|
Pereira MTM, Charret TS, Pascoal VDB, Machado RLD, Rocha LM, Pascoal ACRF. Myrciaria Genus: Bioactive Compounds and Biological Activities. Chem Biodivers 2022; 19:e202200864. [PMID: 36250914 DOI: 10.1002/cbdv.202200864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 12/27/2022]
Abstract
The Myrtaceae family is of angiosperms, imposing its size and economic, cultural, and scientific importance. The genus Myrciaria, belonging to this family, has 33 species currently accepted, many of which are research targets aimed at elucidating their bioactive compounds and biological activities. Most species of the Myrciaria genus have terpenes in their composition, mainly mono and sesquiterpenes, and phenolic compounds such as tannins, phenolic acids, and flavonoids. Other secondary metabolites are also observed, such as alkaloids, steroids, coumarins, saponins, and naphthoquinones. These bioactive compounds are closely related to these species' most diverse biological activities: antioxidant, anti-inflammatory, analgesic, antiproliferative, antimicrobial, antiparasitic, insecticide, metabolic, protective, and nutraceutical. This work aims to provide a review of secondary metabolites and medicinal properties related to the genus Myrciaria, thus stimulating further studies on the species of this genus.
Collapse
Affiliation(s)
- Mariana Toledo Martins Pereira
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
- Laboratório Multiusuário de Pesquisa Biomédica, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, Rua Dr. Silvio Henrique Braune, 22, Centro, Nova Friburgo, Rio de Janeiro, 22625-650, Brasil
| | - Thiago Sardou Charret
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
- Laboratório Multiusuário de Pesquisa Biomédica, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, Rua Dr. Silvio Henrique Braune, 22, Centro, Nova Friburgo, Rio de Janeiro, 22625-650, Brasil
| | - Vinicius D'Avila Bitencourt Pascoal
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
- Laboratório Multiusuário de Pesquisa Biomédica, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, Rua Dr. Silvio Henrique Braune, 22, Centro, Nova Friburgo, Rio de Janeiro, 22625-650, Brasil
| | - Ricardo Luiz Dantas Machado
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
- Departamento de Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
| | - Leandro Machado Rocha
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
- Laboratório de Tecnologia de Produtos Naturais do Departamento de Tecnologia Farmacêutica da Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
| | - Aislan Cristina Rheder Fagundes Pascoal
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
- Laboratório Multiusuário de Pesquisa Biomédica, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, Rua Dr. Silvio Henrique Braune, 22, Centro, Nova Friburgo, Rio de Janeiro, 22625-650, Brasil
| |
Collapse
|
17
|
Cunha-Santos ECE, Rodrigues-Silva C, da Silveira TFF, Godoy HT. Optimization of Phenolic Compounds Extraction of Different Parts of Camu-camu Fruit from Different Geographic Regions. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:340-344. [PMID: 35902483 DOI: 10.1007/s11130-022-00985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Phenolic compounds in camu-camu (Myrciaria dubia) have received interest due to their health-promoting effects. However, these compounds have been poorly investigated in the different parts of the camu-camu fruit (pulp, peel, and seeds). This study aimed to optimize the solvent composition for extraction of phenolic compounds from pulp, peels, and seeds of camu-camu through a simplex-centroid mixture design. Then, the profile of phenolic compounds in samples of camu-camu pulp, peels, and seeds from different regions in Brazil and South America was determined by UPLC-ESI-MS/MS. Aqueous ethanol (80%, v/v) yielded the highest extraction for the pulp and peel, while aqueous methanol (50%, v/v) was selected for the seed. Camu-camu parts had p-coumaric acid, catechin, epicatechin, luteolin, rutin, and quercetin, with catechin as the major compound in the pulp, peels, and seeds of all the evaluated samples. The peel showed lower concentrations of these compounds compared with the pulp and the seed; the content of phenolic compounds also differed according to the geographic region. These results broaden the knowledge on phytochemical extraction and composition of camu-camu pulp, peel, and seed and may guide future applications of their extracts in the food industry.
Collapse
Affiliation(s)
- Elenice Carla Emidio Cunha-Santos
- Department of Food Science, Faculty of Food Engineering, University of Campinas, 80, Monteiro Lobato Street, 13083-862, Campinas, SP, Brazil
| | - Caio Rodrigues-Silva
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, 13083-970, Campinas, SP, Brazil
| | - Tayse Ferreira Ferreira da Silveira
- Department of Food Science, Faculty of Food Engineering, University of Campinas, 80, Monteiro Lobato Street, 13083-862, Campinas, SP, Brazil.
| | - Helena Teixeira Godoy
- Department of Food Science, Faculty of Food Engineering, University of Campinas, 80, Monteiro Lobato Street, 13083-862, Campinas, SP, Brazil
| |
Collapse
|
18
|
Granato D, Reshamwala D, Korpinen R, Azevedo L, Vieira do Carmo MA, Cruz TM, Marques MB, Wen M, Zhang L, Marjomäki V, Kilpeläinen P. From the forest to the plate - Hemicelluloses, galactoglucomannan, glucuronoxylan, and phenolic-rich extracts from unconventional sources as functional food ingredients. Food Chem 2022; 381:132284. [PMID: 35121317 DOI: 10.1016/j.foodchem.2022.132284] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 12/16/2022]
Abstract
This study aimed to characterise pressurised hot water (PHW) extracts from nonconventional sources of functional carbohydrates and phenolic compounds in terms of antioxidant capacity, antiviral activity, toxicity, and human erythrocytes' protection antidiabetic potential. PHW extracts of Norway spruce bark (E1 + E2) and Birch sawdust (E3 + E4) contained mostly galactoglucomannan and glucuronoxylan. In contrast, samples E5 to E9 PHW extracted from Norway spruce, and Scots pine bark are rich sources of phenolic compounds. Overall, phenolic-rich extracts presented the highest inhibition of α-amylase and α-glucosidase and protection against stable non-enveloped enteroviruses. Additionally, all extracts protected human erythrocytes from hemolysis. Cell-based experiments using human cell lines (IMR90 and A549) showed extracts' non-toxicin vitroprofile. Considering the relative toxicological safety of extracts from these unconventional sources, functional carbohydrates and polyphenol-rich extracts can be obtained and further used in food models.
Collapse
Affiliation(s)
- Daniel Granato
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Dhanik Reshamwala
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Risto Korpinen
- Biorefinery and Bioproducts, Production Systems Unit - Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland; Separation Science, LUT School of Engineering Science, LUT University, Yliopistonkatu 34, 53850 Lappeenranta, Finland
| | - Luciana Azevedo
- Faculty of Nutrition, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 714, 37130-000 Alfenas, Brazil
| | | | - Thiago Mendanha Cruz
- Faculty of Nutrition, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 714, 37130-000 Alfenas, Brazil
| | - Mariza Boscacci Marques
- Department of Chemistry, State University of Ponta Grossa, Av. Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, Brazil
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036 Hefei, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036 Hefei, China
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Petri Kilpeläinen
- Biorefinery and Bioproducts, Production Systems Unit - Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland.
| |
Collapse
|
19
|
|
20
|
Abot A, Brochot A, Pomié N, Wemelle E, Druart C, Régnier M, Delzenne NM, de Vos WM, Knauf C, Cani PD. Camu-Camu Reduces Obesity and Improves Diabetic Profiles of Obese and Diabetic Mice: A Dose-Ranging Study. Metabolites 2022; 12:metabo12040301. [PMID: 35448490 PMCID: PMC9025096 DOI: 10.3390/metabo12040301] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
Overweight, obesity, and their comorbidities are currently considered a major public health concern. Today considerable efforts are still needed to develop efficient strategies able to attenuate the burden of these diseases. Nutritional interventions, some with plant extracts, present promising health benefits. In this study, we evaluated the action of Camu-Camu (Myrciaria dubia), an Amazonian fruit rich in polyphenols and vitamin C, on the prevention of obesity and associated disorders in mice and the abundance of Akkermansia muciniphila in both cecum and feces. Methods: We investigated the dose-response effects of Camu-Camu extract (CCE) in the context of high-fat-diet (HFD)-induced obesity. After 5 weeks of supplementation, we demonstrated that the two doses of CCE differently improved glucose and lipid homeostasis. The lowest CCE dose (62.5 mg/kg) preferentially decreased non-HDL cholesterol and free fatty acids (FFA) and increased the abundance of A. muciniphila without affecting liver metabolism, while only the highest dose of CCE (200 mg/kg) prevented excessive body weight gain, fat mass gain, and hepatic steatosis. Both doses decreased fasting hyperglycemia induced by HFD. In conclusion, the use of plant extracts, and particularly CCE, may represent an additional option in the support of weight management strategies and glucose homeostasis alteration by mechanisms likely independent from the modulation of A. muciniphila abundance.
Collapse
Affiliation(s)
- Anne Abot
- Enterosys SAS, 31670 Labège, France; (A.A.); (N.P.)
| | - Amandine Brochot
- A-Mansia Biotech SA, The Akkermansia Company, 1435 Mont-Saint-Guibert, Belgium; (A.B.); (C.D.)
| | | | - Eve Wemelle
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1220, Institut de Recherche en Santé Digestive et Nutrition (IRSD), Université Paul Sabatier (UPS), 31000 Toulouse, France;
- NeuroMicrobiota Lab, International Research Program (IRP) INSERM, 31000 Toulouse, France
| | - Céline Druart
- A-Mansia Biotech SA, The Akkermansia Company, 1435 Mont-Saint-Guibert, Belgium; (A.B.); (C.D.)
| | - Marion Régnier
- WELBIO—Walloon Excellence in Life Sciences and BIOtechnology, Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.R.); (N.M.D.)
| | - Nathalie M. Delzenne
- WELBIO—Walloon Excellence in Life Sciences and BIOtechnology, Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.R.); (N.M.D.)
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, 6708 WE Wageningen, The Netherlands;
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Claude Knauf
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1220, Institut de Recherche en Santé Digestive et Nutrition (IRSD), Université Paul Sabatier (UPS), 31000 Toulouse, France;
- NeuroMicrobiota Lab, International Research Program (IRP) INSERM, 31000 Toulouse, France
- Correspondence: (C.K.); (P.D.C.)
| | - Patrice D. Cani
- NeuroMicrobiota Lab, International Research Program (IRP) INSERM, 31000 Toulouse, France
- WELBIO—Walloon Excellence in Life Sciences and BIOtechnology, Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.R.); (N.M.D.)
- Correspondence: (C.K.); (P.D.C.)
| |
Collapse
|
21
|
Santos IL, Miranda LCF, da Cruz Rodrigues AM, da Silva LHM, Amante ER. Camu-camu [Myrciaria dubia (HBK) McVaugh]: A review of properties and proposals of products for integral valorization of raw material. Food Chem 2022; 372:131290. [PMID: 34818735 DOI: 10.1016/j.foodchem.2021.131290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/06/2021] [Accepted: 09/29/2021] [Indexed: 12/17/2022]
Abstract
This review aims to evaluate the production and processing chain of camu-camu (Myrciaria dubia), giving suggestions to maximize the valorization of raw materials, demonstrating new product possibilities from processing to distribution and highlighting the suggested contributions. It is clear that despite the camu-camu pulp has important properties, a large part of its raw material, considered waste (around 50%) and formed by important bioactive compounds, can give rise to new products, such as bioactive extracts to be used by pharmaceutical, chemical and food industries, ingredients for bakery products, dairy and several others sectors, which constitutes opportunities, in addition to contributing to the reduction of agro-industrial waste and the preservation of the environment.
Collapse
Affiliation(s)
- Ivone Lima Santos
- Universidade Federal do Pará (UFPA), Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) [Graduate Program in Science and Food Technology], Belém, Pará, Brazil
| | - Laiane Cristina Freire Miranda
- Universidade Federal do Pará (UFPA), Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) [Graduate Program in Science and Food Technology], Belém, Pará, Brazil
| | - Antonio Manoel da Cruz Rodrigues
- Universidade Federal do Pará (UFPA), Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) [Graduate Program in Science and Food Technology], Belém, Pará, Brazil
| | - Luiza Helena Meller da Silva
- Universidade Federal do Pará (UFPA), Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) [Graduate Program in Science and Food Technology], Belém, Pará, Brazil
| | - Edna Regina Amante
- Universidade Federal de Santa Catarina, Food Science and Technology Department, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
22
|
Patra A, Abdullah S, Pradhan RC. Review on the extraction of bioactive compounds and characterization of fruit industry by-products. BIORESOUR BIOPROCESS 2022; 9:14. [PMID: 38647620 PMCID: PMC10992780 DOI: 10.1186/s40643-022-00498-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/19/2022] [Indexed: 12/19/2022] Open
Abstract
The by-products produced from fruit processing industries could be a potential hazard to environmental pollution. However, these by-products contain several biologically active molecules (essential fatty acid, phenolic compounds, flavonoids, coloring pigments, pectin, proteins, dietary fibers, and vitamins), which can be utilized for various applications in the food, pharmaceutical, cosmetic and textile industries. Nevertheless, during extraction, these bioactive compounds' recovery must be maximized using proper extraction technologies, keeping both economy and environment under consideration. In addition, the characteristics of the extract obtained from those by-products depend mainly on the parameters considered during the extraction process. In this review, an overview of different technologies used to extract bioactive compounds from fruit industry by-products such as seeds and peels has been briefly discussed, along with their mechanisms, process, advantages, disadvantages, and process parameters. In addition, the characteristics of the extracted bioactive compounds have also been briefly discussed in this review.
Collapse
Affiliation(s)
- Abhipriya Patra
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - S Abdullah
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Rama Chandra Pradhan
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
23
|
Mude H, Balapure A, Thakur A, Ganesan R, Ray Dutta J. Enhanced antibacterial, antioxidant and anticancer activity of caffeic acid by simple acid-base complexation with spermine/spermidine. Nat Prod Res 2022; 36:6453-6458. [PMID: 35142575 DOI: 10.1080/14786419.2022.2038597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Caffeic acid (CA) is a naturally occurring plant-derived polyphenol possessing diverse biological properties. However, the poor water-solubility of CA restricts its widespread applications. On the other hand, biogenic amines such as spermine and spermidine are natural constituents in eukaryotes. In this work, we present water-soluble complexes of CA with spermine and spermidine by exploiting the acid-base interaction. Four different compositions have been prepared by varying the CA to amine ratios, whose chemical structures have been probed in detail using Fourier-transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) studies that have revealed the acid-base interaction between the constituent precursors. The obtained acid-base complexes at their native pH values have shown enhanced antibacterial and antioxidant activities than pristine CA. Further, the CA-polyamine complexes have shown high anticancer performances in the concentration range that is compatible with the normal cell lines.
Collapse
Affiliation(s)
- Hemanjali Mude
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Medchal District, Hyderabad, Telangana, India
| | - Aniket Balapure
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Medchal District, Hyderabad, Telangana, India
| | - Anindita Thakur
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Medchal District, Hyderabad, Telangana, India
| | - Ramakrishnan Ganesan
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Medchal District, Hyderabad, Telangana, India
| | - Jayati Ray Dutta
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Medchal District, Hyderabad, Telangana, India
| |
Collapse
|
24
|
ARAÚJO PADC, GARCIA VADS, OSIRO D, FRANÇA DDS, VANIN FM, CARVALHO RAD. Active compounds from the industrial residue of dry camu-camu. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.05321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Mude H, Maroju PA, Balapure A, Ganesan R, Ray Dutta J. Water-soluble caffeic acid-dopamine acid-base complex exhibits enhanced bactericidal, antioxidant, and anticancer properties. Food Chem 2021; 374:131830. [PMID: 34906806 DOI: 10.1016/j.foodchem.2021.131830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022]
Abstract
Despite the highly potent biological characteristics, the poor water-solubility of caffeic acid (CA) limits its applications in various domains. Here, we present a facile approach, wherein CA has been treated with dopamine hydrochloride (Dopa.HCl) to obtain a water-soluble acid-base complex, which does not possess any covalent bond between the individual components and thus retains their nativity. Simple mixing of CA and Dopa.HCl did not provide water solubility to CA, but the complex became readily soluble in water when the mineral acid was scavenged using sodium bicarbonate. The obtained CA-Dopa complex had been characterized using FT-IR, 1H NMR, 13C NMR, 2D 1H-1H NOESY NMR, XPS, and DSC techniques. The complex was found to exhibit excellent bactericidal, antibiofilm, antioxidant, and anticancer properties in the physiologically relevant pH range of 5.5 to 7.5. The results have revealed the high potential of the simple acid-base complex of CA in diverse domains.
Collapse
Affiliation(s)
- Hemanjali Mude
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India
| | - Pranay Amruth Maroju
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India
| | - Aniket Balapure
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India
| | - Ramakrishnan Ganesan
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India.
| | - Jayati Ray Dutta
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India.
| |
Collapse
|
26
|
Berry polyphenols and human health: evidence of antioxidant, anti-inflammatory, microbiota modulation, and cell-protecting effects. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.06.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Sayago-Ayerdi S, García-Martínez DL, Ramírez-Castillo AC, Ramírez-Concepción HR, Viuda-Martos M. Tropical Fruits and Their Co-Products as Bioactive Compounds and Their Health Effects: A Review. Foods 2021; 10:foods10081952. [PMID: 34441729 PMCID: PMC8393595 DOI: 10.3390/foods10081952] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022] Open
Abstract
Tropical and subtropical fruits are recognized as a source of a high content of bioactive compounds and health promoting properties due to their nutritional composition. These beneficial health effects are related to the content of several of these bioactive compounds, mainly flavonoids and non-flavonoid phenolics. Many of these compounds are common in different tropical fruits, such as epicatechin in mango, pineapple, and banana, or catechin in pineapple, cocoa or avocado. Many studies of tropical fruits had been carried out, but in this work an examination is made in the current literature of the flavonoids and non-flavonoid phenolics content of some tropical fruits and their coproducts, comparing the content in the same units, as well as examining the role that these compounds play in health benefits.
Collapse
Affiliation(s)
- Sonia Sayago-Ayerdi
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Diana Laura García-Martínez
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Ailin Cecilia Ramírez-Castillo
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Heidi Rubí Ramírez-Concepción
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Agro-Food Technology Department, Miguel Hernández University, Orihuela, 03312 Alicante, Spain
- Correspondence: ; Tel.: +34-966-749-661
| |
Collapse
|
28
|
Recent Applications of Mixture Designs in Beverages, Foods, and Pharmaceutical Health: A Systematic Review and Meta-Analysis. Foods 2021; 10:foods10081941. [PMID: 34441717 PMCID: PMC8391317 DOI: 10.3390/foods10081941] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 01/10/2023] Open
Abstract
Design of Experiments (DoE) is a statistical tool used to plan and optimize experiments and is seen as a quality technology to achieve products excellence. Among the experimental designs (EDs), the mixture designs (MDs) stand out, being widely applied to improve conditions for processing, developing, or formulating novel products. This review aims to provide useful updated information on the capacity and diversity of MDs applications for the industry and scientific community in the areas of food, beverage, and pharmaceutical health. Recent works were selected following the Preferred Reporting Items for Systematic Review and Meta-Analyses statement (PRISMA) flow diagram. Data analysis was performed by self-organizing map (SOM) to check and understand which fields of application/countries/continents are using MDs. Overall, the SOM indicated that Brazil presented the largest number of works using MDs. Among the continents, America and Asia showed a predominance in applications with the same amount of work. Comparing the MDs application areas, the analysis indicated that works are prevalent in food and beverage science in the American continent, while in Asia, health science prevails. MDs were more used to develop functional/nutraceutical products and the formulation of drugs for several diseases. However, we briefly describe some promising research fields in that MDs can still be employed.
Collapse
|
29
|
Gregoriou G, Neophytou CM, Vasincu A, Gregoriou Y, Hadjipakkou H, Pinakoulaki E, Christodoulou MC, Ioannou GD, Stavrou IJ, Christou A, Kapnissi-Christodoulou CP, Aigner S, Stuppner H, Kakas A, Constantinou AI. Anti-Cancer Activity and Phenolic Content of Extracts Derived from Cypriot Carob ( Ceratonia siliqua L.) Pods Using Different Solvents. Molecules 2021; 26:5017. [PMID: 34443605 PMCID: PMC8401790 DOI: 10.3390/molecules26165017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 01/11/2023] Open
Abstract
Extracts derived from the Ceratonia siliqua L. (carob) tree have been widely studied for their ability to prevent many diseases mainly due to the presence of polyphenolic compounds. In this study, we explored, for the first time, the anti-cancer properties of Cypriot carobs. We produced extracts from ripe and unripe whole carobs, pulp and seeds using solvents with different polarities. We measured the ability of the extracts to inhibit proliferation and induce apoptosis in cancer and normal immortalized breast cells, using the MTT assay, cell cycle analysis and Western Blotting. The extracts' total polyphenol content and anti-oxidant action was evaluated using the Folin-Ciocalteu method and the DPPH assay. Finally, we used LC-MS analysis to identify and quantify polyphenols in the most effective extracts. Our results demonstrate that the anti-proliferative capacity of carob extracts varied with the stage of carob maturity and the extraction solvent. The Diethyl-ether and Ethyl acetate extracts derived from the ripe whole fruit had high Myricetin content and also displayed specific activity against cancer cells. Their mechanism of action involved caspase-dependent and independent apoptosis. Our results indicate that extracts from Cypriot carobs may have potential uses in the development of nutritional supplements and pharmaceuticals.
Collapse
Affiliation(s)
- Gregoria Gregoriou
- Department of Biological Sciences, University of Cyprus, Nicosia 1678, Cyprus; (G.G.); (Y.G.); (A.I.C.)
| | - Christiana M. Neophytou
- Department of Biological Sciences, University of Cyprus, Nicosia 1678, Cyprus; (G.G.); (Y.G.); (A.I.C.)
- European University Research Center, Nicosia 2404, Cyprus
| | - Alexandru Vasincu
- Department of Pharmacodynamics and Clinical Pharmacy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania;
| | - Yiota Gregoriou
- Department of Biological Sciences, University of Cyprus, Nicosia 1678, Cyprus; (G.G.); (Y.G.); (A.I.C.)
| | - Haria Hadjipakkou
- Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus; (H.H.); (E.P.); (M.C.C.); (G.D.I.); (I.J.S.); (A.C.); (C.P.K.-C.)
| | - Eftychia Pinakoulaki
- Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus; (H.H.); (E.P.); (M.C.C.); (G.D.I.); (I.J.S.); (A.C.); (C.P.K.-C.)
| | - Marios C. Christodoulou
- Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus; (H.H.); (E.P.); (M.C.C.); (G.D.I.); (I.J.S.); (A.C.); (C.P.K.-C.)
| | - Georgia D. Ioannou
- Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus; (H.H.); (E.P.); (M.C.C.); (G.D.I.); (I.J.S.); (A.C.); (C.P.K.-C.)
| | - Ioannis J. Stavrou
- Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus; (H.H.); (E.P.); (M.C.C.); (G.D.I.); (I.J.S.); (A.C.); (C.P.K.-C.)
- Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Atalanti Christou
- Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus; (H.H.); (E.P.); (M.C.C.); (G.D.I.); (I.J.S.); (A.C.); (C.P.K.-C.)
| | | | - Siegfried Aigner
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, 6020 Innsbruck, Austria; (S.A.); (H.S.)
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, 6020 Innsbruck, Austria; (S.A.); (H.S.)
| | - Antonis Kakas
- Department of Computer Science, University of Cyprus, Nicosia 1678, Cyprus;
| | - Andreas I. Constantinou
- Department of Biological Sciences, University of Cyprus, Nicosia 1678, Cyprus; (G.G.); (Y.G.); (A.I.C.)
| |
Collapse
|
30
|
Lin Y, Wu S. Vegetable soybean (Glycine max (L.) Merr.) leaf extracts: Functional components and antioxidant and anti-inflammatory activities. J Food Sci 2021; 86:2468-2480. [PMID: 34028011 DOI: 10.1111/1750-3841.15765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/01/2022]
Abstract
To investigate ways to extract greater dietary value from the leaves of the vegetable soybean (Glycine max (L.) Merr.) cultivar 'Kaohsiung No. 9'. Our results indicate that phenolic content and flavonoid content are highest in extracts prepared with 70% methanol and 70% ethanol. The 70% ethanol extracts also had the highest quercetin (135 ± 1.62 µg/g) and kaempferol (450 ± 1.35 µg/g) contents. These results show that flavonoids are a dominant class of compounds in these vegetable soybean leaf extracts and serve as their main source of antioxidants. At an extract concentration of 5 mg/ml, the 70% methanol extracts achieved good antioxidant effects, with a DPPH radical scavenging rate of 80%, and a reducing power of 88%. In assays of anti-inflammatory capacity using lipopolysaccharide-stimulated RAW 264.7 macrophages. The 70% methanol extracts displayed the most significant inhibition of nitric oxide (NO) synthesis, achieving up to 86% inhibition. As a similar trend was observed in expression levels of inducible nitric oxide synthase (iNOS), we deduced that vegetable soybean leaves may regulate NO synthesis through inhibiting iNOS. We also observed a significant decrease in cyclooxygenase (COX)-2 gene expression. Analysis of proinflammatory cytokine synthesis revealed that the 70% methanol and 70% ethanol extracts significantly reduced TNF-α, IL-6, and IL-1β synthesis, and increased the intracellular reduced glutathione/oxidized glutathione (GSH/GSSG) ratio from 8 to 12.8. These results indicate that vegetable soybean leaves possess antioxidant activities and exert inhibitory effects on inflammatory mediators, suggesting their potential for use as dietary supplements.
Collapse
Affiliation(s)
- Yushiuan Lin
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Szjie Wu
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
31
|
Assmann CE, Weis GCC, da Rosa JR, Bonadiman BDSR, Alves ADO, Schetinger MRC, Ribeiro EE, Morsch VMM, da Cruz IBM. Amazon-derived nutraceuticals: Promises to mitigate chronic inflammatory states and neuroinflammation. Neurochem Int 2021; 148:105085. [PMID: 34052297 DOI: 10.1016/j.neuint.2021.105085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022]
Abstract
Nutraceuticals have been the focus of numerous research in recent years and accumulating data support their use for promoting some health benefits. Several nutraceuticals have been widely studied as supplements due to their functional properties ameliorating symptoms associated with neurological disorders, such as oxidative stress and chronic inflammatory states. This seems to be the case of some fruits and seeds from the Amazon Biome consumed since the pre-Columbian period that could have potential beneficial impact on the human nervous system. The beneficial activities of these food sources are possibly related to a large number of bioactive molecules including polyphenols, carotenoids, unsaturated fatty acids, vitamins, and trace elements. In this context, this review compiled the research on six Amazonian fruits and seeds species and some of the major nutraceuticals found in their composition, presenting brief mechanisms related to their protagonist action in improving inflammatory responses and neuroinflammation.
Collapse
Affiliation(s)
- Charles Elias Assmann
- Post-Graduate Program in Biological Sciences, Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Grazielle Castagna Cezimbra Weis
- Post-Graduate Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Jéssica Righi da Rosa
- Post-Graduate Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Beatriz da Silva Rosa Bonadiman
- Post-Graduate Program in Biochemistry, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Audrei de Oliveira Alves
- Post-Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Maria Rosa Chitolina Schetinger
- Post-Graduate Program in Biological Sciences, Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | | | - Vera Maria Melchiors Morsch
- Post-Graduate Program in Biological Sciences, Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Ivana Beatrice Mânica da Cruz
- Post-Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil; Post-Graduate Program in Gerontology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|
32
|
Do NQ, Zheng S, Park B, Nguyen QTN, Choi BR, Fang M, Kim M, Jeong J, Choi J, Yang SJ, Yi TH. Camu-Camu Fruit Extract Inhibits Oxidative Stress and Inflammatory Responses by Regulating NFAT and Nrf2 Signaling Pathways in High Glucose-Induced Human Keratinocytes. Molecules 2021; 26:3174. [PMID: 34073317 PMCID: PMC8198278 DOI: 10.3390/molecules26113174] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022] Open
Abstract
Myrciaria dubia (HBK) McVaugh (camu-camu) belongs to the family Myrtaceae. Although camu-camu has received a great deal of attention for its potential pharmacological activities, there is little information on the anti-oxidative stress and anti-inflammatory effects of camu-camu fruit in skin diseases. In the present study, we investigated the preventative effect of 70% ethanol camu-camu fruit extract against high glucose-induced human keratinocytes. High glucose-induced overproduction of reactive oxygen species (ROS) was inhibited by camu-camu fruit treatment. In response to ROS reduction, camu-camu fruit modulated the mitogen-activated protein kinases (MAPK)/activator protein-1 (AP-1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nuclear factor of activated T cells (NFAT) signaling pathways related to inflammation by downregulating the expression of proinflammatory cytokines and chemokines. Furthermore, camu-camu fruit treatment activated the expression of nuclear factor E2-related factor 2 (Nrf2) and subsequently increased the NAD(P)H:quinone oxidoreductase1 (NQO1) expression to protect keratinocytes against high-glucose-induced oxidative stress. These results indicate that camu-camu fruit is a promising material for preventing oxidative stress and skin inflammation induced by high glucose level.
Collapse
Affiliation(s)
- Nhung Quynh Do
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-Daero, Giheung-gu, Yongin-si 17104, Gyeonggi-do, Korea; (N.Q.D.); (S.Z.); (B.P.); (Q.T.N.N.); (M.F.); (M.K.); (J.C.)
| | - Shengdao Zheng
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-Daero, Giheung-gu, Yongin-si 17104, Gyeonggi-do, Korea; (N.Q.D.); (S.Z.); (B.P.); (Q.T.N.N.); (M.F.); (M.K.); (J.C.)
| | - Bom Park
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-Daero, Giheung-gu, Yongin-si 17104, Gyeonggi-do, Korea; (N.Q.D.); (S.Z.); (B.P.); (Q.T.N.N.); (M.F.); (M.K.); (J.C.)
| | - Quynh T. N. Nguyen
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-Daero, Giheung-gu, Yongin-si 17104, Gyeonggi-do, Korea; (N.Q.D.); (S.Z.); (B.P.); (Q.T.N.N.); (M.F.); (M.K.); (J.C.)
| | - Bo-Ram Choi
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea;
| | - Minzhe Fang
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-Daero, Giheung-gu, Yongin-si 17104, Gyeonggi-do, Korea; (N.Q.D.); (S.Z.); (B.P.); (Q.T.N.N.); (M.F.); (M.K.); (J.C.)
| | - Minseon Kim
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-Daero, Giheung-gu, Yongin-si 17104, Gyeonggi-do, Korea; (N.Q.D.); (S.Z.); (B.P.); (Q.T.N.N.); (M.F.); (M.K.); (J.C.)
- Snow White Factory Co., Ltd., 807 Nonhyeonro, Gangnam-gu, Seoul 06032, Korea;
| | - Jeehaeng Jeong
- Snow White Factory Co., Ltd., 807 Nonhyeonro, Gangnam-gu, Seoul 06032, Korea;
| | - Junhui Choi
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-Daero, Giheung-gu, Yongin-si 17104, Gyeonggi-do, Korea; (N.Q.D.); (S.Z.); (B.P.); (Q.T.N.N.); (M.F.); (M.K.); (J.C.)
| | - Su-Jin Yang
- Gu Star Co., Ltd., 7/F, Cheongho B/D, 19, Eonju-ro 148-gil, Gangnam-gu, Seoul 06054, Korea;
| | - Tae-Hoo Yi
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-Daero, Giheung-gu, Yongin-si 17104, Gyeonggi-do, Korea; (N.Q.D.); (S.Z.); (B.P.); (Q.T.N.N.); (M.F.); (M.K.); (J.C.)
| |
Collapse
|
33
|
Cruz TM, Santos JS, do Carmo MAV, Hellström J, Pihlava JM, Azevedo L, Granato D, Marques MB. Extraction optimization of bioactive compounds from ora-pro-nobis (Pereskia aculeata Miller) leaves and their in vitro antioxidant and antihemolytic activities. Food Chem 2021; 361:130078. [PMID: 34023692 DOI: 10.1016/j.foodchem.2021.130078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/29/2021] [Accepted: 05/08/2021] [Indexed: 11/18/2022]
Abstract
Ora-pro-nobis (Pereskia aculeata Miller) is a non-conventional food plant common in Brazil. The objective of this study was to optimize the extraction of bioactive phenolic compounds from ora-pro-nobis leaves by employing solvent mixtures. Ten extracts were obtained with water, ethanol, acetone, and their binary and ternary mixtures, evaluating the chemical composition, antioxidant activity and bioactivities in vitro. The response surface methodology was applied to model the results and calculate the optimal solvent composition, which is 60% water, 40% ethanol and 0% acetone. The optimized extract is rich in phenolic compounds (64 mg GAE/g) and proteins (823 mg/g) and presents antioxidant activity (in intracellular media as well) and inhibits lipid peroxidation (32%) along with hypotonic hemolysis (H50 = 0.339%), it does not present toxicity in vitro against cancer and normal cells. This is the first report of chicoric, caffeoyl-hexaric and coumaroyl-hexaric acids and some glycosylate derivatives of flavonols in ora-pro-nobis leaves.
Collapse
Affiliation(s)
- Thiago Mendanha Cruz
- Graduation Program in Chemistry, State University of Ponta Grossa, Av. Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR, Brazil
| | - Jânio Sousa Santos
- Graduation Program in Food Science and Technology, State University of Ponta Grossa, Av. Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR, Brazil
| | | | - Jarkko Hellström
- Food Processing and Quality, Production Systems Unit - Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Juha-Matti Pihlava
- Food Processing and Quality, Production Systems Unit - Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Luciana Azevedo
- Nutrition Faculty, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 714, 37130-000 Alfenas, MG, Brazil
| | - Daniel Granato
- Graduation Program in Food Science and Technology, State University of Ponta Grossa, Av. Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR, Brazil; Food Processing and Quality, Production Systems Unit - Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Mariza Boscacci Marques
- Graduation Program in Chemistry, State University of Ponta Grossa, Av. Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR, Brazil.
| |
Collapse
|
34
|
de Souza Silva AP, Rosalen PL, de Camargo AC, Lazarini JG, Rocha G, Shahidi F, Franchin M, de Alencar SM. Inajá oil processing by-product: A novel source of bioactive catechins and procyanidins from a Brazilian native fruit. Food Res Int 2021; 144:110353. [PMID: 34053546 DOI: 10.1016/j.foodres.2021.110353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 12/30/2022]
Abstract
Agro-industrial activities generate large amounts of solid residues, which are generally discarded or used as animal feed. Interestingly, some of these by-products could serve as natural sources of bioactive compounds with great potential for industrial exploitation. This study aimed to optimize the extraction of phenolic antioxidants from the pulp residue (oil processing by-product) of inajá (Maximiliana maripa, a native species found in the Brazilian Amazon). The antioxidant properties of the optimized extract and its phenolic profile by high-resolution mass spectrometry (LC-ESI-QTOF-MS) were further determined. Central composite rotatable design and statistical analysis demonstrated that the temperature of 70 °C and 50% (v/v) ethanol concentration improved the extraction of phenolic compounds with antioxidant properties. The optimized extract also showed scavenging activity against the ABTS radical cation and reactive oxygen species (ROS; peroxyl and superoxide radical, and hypochlorous acid). Moreover, the optimized extract was able to reduce NF-κB activation and TNF-α release, which are modulated by ROS. Flavan-3-ols were the major phenolics present in the optimized extract. Collectively, our findings support the use of inajá cake as a new source of bioactive catechins and procyanidins. This innovative approach adds value to this agro-industrial by-product in the functional food, nutraceutical, pharmaceutical, and/or cosmetic industries and complies with the circular economy agenda.
Collapse
Affiliation(s)
- Anna Paula de Souza Silva
- Agri-food Industry, Food and Nutrition Department, Luiz de Queiroz College of Agriculture, University of São Paulo, ESALQ/USP, Piracicaba, São Paulo, Brazil
| | - Pedro Luiz Rosalen
- Department of Biosciences, Piracicaba Dental School, University of Campinas, UNICAMP, São Paulo, Brazil; Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Adriano Costa de Camargo
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago, Chile
| | - Josy Goldoni Lazarini
- Department of Biosciences, Piracicaba Dental School, University of Campinas, UNICAMP, São Paulo, Brazil
| | - Gabriela Rocha
- Citróleo Industry and Commerce of Essential Oils, LTDA, Research, Development and Innovation Department, Torrinha, São Paulo, Brazil
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, NL A1B 3X9, Canada
| | - Marcelo Franchin
- Department of Biosciences, Piracicaba Dental School, University of Campinas, UNICAMP, São Paulo, Brazil; Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Severino Matias de Alencar
- Agri-food Industry, Food and Nutrition Department, Luiz de Queiroz College of Agriculture, University of São Paulo, ESALQ/USP, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
35
|
das Chagas EGL, Vanin FM, dos Santos Garcia VA, Yoshida CMP, de Carvalho RA. Enrichment of antioxidants compounds in cookies produced with camu-camu (Myrciaria dubia) coproducts powders. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Fidelis M, Santos JS, Escher GB, Rocha RS, Cruz AG, Cruz TM, Marques MB, Nunes JB, do Carmo MAV, de Almeida LA, Kaneshima T, Azevedo L, Granato D. Polyphenols of jabuticaba [Myrciaria jaboticaba (Vell.) O.Berg] seeds incorporated in a yogurt model exert antioxidant activity and modulate gut microbiota of 1,2-dimethylhydrazine-induced colon cancer in rats. Food Chem 2021; 334:127565. [PMID: 32717686 DOI: 10.1016/j.foodchem.2020.127565] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022]
Abstract
The chemical composition, antioxidant activity (AA), cytotoxic activity, antihemolytic effects, and enzyme inhibition (EI) of lyophilized jabuticaba (Myrciaria jaboticaba) seed extract (LJE) was studied. The main compounds found were castalagin, vescalagin, procyanidin A2, and ellagic acid. LJE was more toxic to cancer cells than to normal cells, meaning relative toxicological safety. This cytotoxic effect can be attributed to the pro-oxidant effect observed in the reactive oxygen species (ROS) generation assay. LJE inhibited α-amylase, α-glucosidase, and ACE-I activities and protected human erythrocytes from hemolysis. LJE was incorporated into yogurts at different concentrations and the total phenolic content, AA, and EI increased in a dose-dependent manner. LJE-containing yogurt presented 86% sensory acceptance. The yogurt was administered to Wistar rats bearing cancer and it modulated the gut bacterial microbiota, having a prebiotic effect. LJE is a potential functional ingredient for food companies looking for TPC, AA, and prebiotic effect in vivo.
Collapse
Affiliation(s)
- Marina Fidelis
- Department of Food Engineering, State University of Ponta Grossa (UEPG), Av. Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, Brazil
| | - Jânio Sousa Santos
- Department of Food Engineering, State University of Ponta Grossa (UEPG), Av. Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, Brazil
| | - Graziela Bragueto Escher
- Department of Food Engineering, State University of Ponta Grossa (UEPG), Av. Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, Brazil
| | - Ramon Silva Rocha
- Federal Institute of Education, Science and Technology from Rio de Janeiro (IFRJ), 20270-021 Rio de Janeiro, Brazil
| | - Adriano Gomes Cruz
- Federal Institute of Education, Science and Technology from Rio de Janeiro (IFRJ), 20270-021 Rio de Janeiro, Brazil
| | - Thiago Mendanha Cruz
- Department of Chemistry, State University of Ponta Grossa, 84030-900, Ponta Grossa, Brazil
| | | | - Juliana Barbosa Nunes
- Department of Pathology, College of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Leonardo Augusto de Almeida
- Department of Microbiology and Immunology, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 714, 37130-000, Alfenas, Brazil
| | - Tai Kaneshima
- Department of Nutritional Science and Food Safety, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Luciana Azevedo
- Faculty of Nutrition, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 714, 37130-000, Alfenas, Brazil.
| | - Daniel Granato
- Department of Food Engineering, State University of Ponta Grossa (UEPG), Av. Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, Brazil; Food Processing and Quality, Innovative Food System, Production Systems Unit, Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland.
| |
Collapse
|
37
|
Montero L, Schmitz OJ, Meckelmann SW. Chemical characterization of eight herbal liqueurs by means of liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry. J Chromatogr A 2020; 1631:461560. [PMID: 32992146 DOI: 10.1016/j.chroma.2020.461560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 12/25/2022]
Abstract
Herbal liqueurs are a large group of diverse alcoholic beverages with an ancient tradition produced by maceration of various herbs and spices and are commonly drunken before or after a meal to aid in the digestion because of their potential functional properties. In the presented work, eight different commercial herbal liqueurs were investigated with regard to their composition of phenolic compounds by liquid chromatography ion mobility quadrupole time-of-flight mass spectrometry (LC-IM-QTOF-MS). This multidimensional analytical platform uses all-ion fragmentation for a deep coverage of the foodome. After an extensive data clean-up, 3225 features were found. 213 features were manually annotated due to the absence of databases and software tools able to consider the drift time or Collison Cross Section (CCS) together with high resolution MS/MS spectra for identification. The identified compounds reflected the large variance between the investigated samples and a wealth of potential bioactive compounds that these liqueurs harbor.
Collapse
Affiliation(s)
- Lidia Montero
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitaetsstrasse 5, Essen 45141, Germany; Teaching and Research Center for Separation, University of Duisburg-Essen, Universitaetsstrasse 5, Essen 45141, Germany
| | - Oliver J Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitaetsstrasse 5, Essen 45141, Germany; Teaching and Research Center for Separation, University of Duisburg-Essen, Universitaetsstrasse 5, Essen 45141, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitaetsstrasse 5, Essen 45141, Germany; Teaching and Research Center for Separation, University of Duisburg-Essen, Universitaetsstrasse 5, Essen 45141, Germany.
| |
Collapse
|
38
|
Cádiz-Gurrea MDLL, Villegas-Aguilar MDC, Leyva-Jiménez FJ, Pimentel-Moral S, Fernández-Ochoa Á, Alañón ME, Segura-Carretero A. Revalorization of bioactive compounds from tropical fruit by-products and industrial applications by means of sustainable approaches. Food Res Int 2020; 138:109786. [PMID: 33288172 DOI: 10.1016/j.foodres.2020.109786] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023]
Abstract
Tropical fruits trade is on the rise due to the claimed health benefits related with their consumption. Functional activities are exerted by the presence of bioactive compounds which could be used for prevention or amelioration diseases. However, the occurrence of bioactive compounds is found mainly in non-edible fraction of tropical fruits which are usually discarded. Therefore, the revalorization of tropical fruits by-products as source of functional compounds is on the cutting-edge research. The implementation of this challenge not only allows the enhancement of the tropical fruits by-products management, but also the production of value-added products. This review compiles the latest comprehensive information about the revalorization of bioactive compounds from tropical fruits by-products. A revision of the sustainable green technologies used for the isolation of valuable compounds has been carried out as well as the current food, functional, cosmeceutical and bioenergetics industrial applications of bioactive compounds extracted from tropical fruits by-products.
Collapse
Affiliation(s)
- María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Spain; Research and Development of Functional Food Centre (CIDAF), Granada, Spain
| | - María Del Carmen Villegas-Aguilar
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Spain; Research and Development of Functional Food Centre (CIDAF), Granada, Spain
| | | | - Sandra Pimentel-Moral
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Spain; Research and Development of Functional Food Centre (CIDAF), Granada, Spain
| | - Álvaro Fernández-Ochoa
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Spain; Berlin Institute of Health Metabolomics Platform, 10178 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - María Elena Alañón
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Spain; Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ciudad Real, Spain.
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Spain; Research and Development of Functional Food Centre (CIDAF), Granada, Spain
| |
Collapse
|
39
|
do Carmo MAV, Fidelis M, Sanchez CA, Castro AP, Camps I, Colombo FA, Marques MJ, Myoda T, Granato D, Azevedo L. Camu-camu (Myrciaria dubia) seeds as a novel source of bioactive compounds with promising antimalarial and antischistosomicidal properties. Food Res Int 2020; 136:109334. [DOI: 10.1016/j.foodres.2020.109334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 12/23/2022]
|
40
|
Xu YQ, Gao Y, Granato D. Effects of epigallocatechin gallate, epigallocatechin and epicatechin gallate on the chemical and cell-based antioxidant activity, sensory properties, and cytotoxicity of a catechin-free model beverage. Food Chem 2020; 339:128060. [PMID: 32950901 DOI: 10.1016/j.foodchem.2020.128060] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/23/2022]
Abstract
The effects of epigallocatechin gallate (EGCG), epigallocatechin (EGC) and epicatechin gallate (ECG) on the chemical and cell-based antioxidant activity, sensory properties, and cytotoxicity of a catechin-free model beverage were modeled using response surface methodology. Results showed that ECG presented the highest reducing capacity while EGCG presented the highest Cu2+ chelating ability. Binary interactions (EGCG/EGC and EGCG/ECG) had an additive effect on CUPRAC, DPPH and Cu2+ chelating ability. The mixture containing 67.4% ECG and 32.6% EGCG was the optimal combination of flavanols (OPC). In a beverage model - chrysanthemum tea - OPC enhanced the anti-proliferative activity in relation to OVCAR-3, HEK293 and HFL1 cells and decreased the intracellular generation of reactive oxygen species. OPC enhanced the bitterness and astringency of the beverage models impacting in a decrease in overall acceptance. The pasteurization process did not decrease the antioxidant activity and the flavanol concentration of the beverages.
Collapse
Affiliation(s)
- Yong-Quan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Ying Gao
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Daniel Granato
- Natural Resources Institute Finland (Luke), Food Processing and Quality, Tietotie 2, 02150 Espoo, Finland.
| |
Collapse
|
41
|
Response surface optimization of phenolic compounds from jabuticaba (Myrciaria cauliflora [Mart.] O.Berg) seeds: Antioxidant, antimicrobial, antihyperglycemic, antihypertensive and cytotoxic assessments. Food Chem Toxicol 2020; 142:111439. [PMID: 32450285 DOI: 10.1016/j.fct.2020.111439] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022]
Abstract
The aim of this study was to evaluate the effects of different solvents and maximize the extraction of bioactive compounds from jabuticaba (Myrciaria cauliflora) seeds. In general, the solvent system composed of water and propanone (52:48 v/v) modified the extract polarity and increased extraction yield of bioactive compounds. The optimized extract presented antioxidant capacity measured by different chemical and biological assays. The optimized extract exerted antiproliferative and cytotoxic effects against A549 and HCT8 cells, antimicrobial and antihemolytic effects, inhibited α-amylase/α-glucosidase activities and presented in vitro antihypertensive effect. Nonetheless, the optimized extract showed no cytotoxicity in a human cell model (IMR90). Vescalagin, castalagin and ellagic acid were the major phenolic compounds in the optimized extract. Our results show that jabuticaba seed may be a potential ingredient for the development of potentially functional foods.
Collapse
|
42
|
Protection of natural antioxidants against low-density lipoprotein oxidation. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020. [PMID: 32711864 DOI: 10.1016/bs.afnr.2020.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
This chapter reports essential information about the protective action of antioxidants against LDL oxidation. The activity of individual compounds (tocopherols, vitamin C, phenolic compounds) as well as extracts obtained from plant material (cereals, fruits, legumes, nuts, mushrooms, by-products of food industry) is reported. The structure-antioxidant activity relationship of phenolic compounds is discussed. This article summarizes the findings to date of both in vitro and in vivo studies using foods or phenolic extracts isolated from foodstuffs at inhibiting the incidence of LDL oxidation. This chapter summarizes also the reportings to date of in vivo studies using foods or beverages at inhibiting the incidence of LDL oxidation.
Collapse
|
43
|
Alcántara C, Žugčić T, Abdelkebir R, García-Pérez JV, Jambrak AR, Lorenzo JM, Collado MC, Granato D, Barba FJ. Effects of Ultrasound-Assisted Extraction and Solvent on the Phenolic Profile, Bacterial Growth, and Anti-Inflammatory/Antioxidant Activities of Mediterranean Olive and Fig Leaves Extracts. Molecules 2020; 25:molecules25071718. [PMID: 32283592 PMCID: PMC7180590 DOI: 10.3390/molecules25071718] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 11/16/2022] Open
Abstract
Mediterranean plants, such as fig and olive leaves, are well-known to exert beneficial effects in humans because of the presence of a wide range of bioactive compounds. However, scarce information regarding the impact of extraction methods, such as ultrasound and types of solvents, on their profile of antioxidant and anti-inflammatory compounds is provided. In addition, no information is available on the effects of extraction methods and solvents on the inhibition of pathogenic bacteria or promoting probiotic growth. In this scenario, this study was aimed to study the effects of ultrasound-assisted extraction (UAE) and solvent on the phenolic profile (Triple TOF-LC-MS/MS), antioxidant and anti-inflammatory compounds of olive and fig leaves. Results showed that UAE extracted more carotenoids compared to conventional extraction, while the conventional extraction impacted on higher flavonoids (olive leaves) and total phenolics (fig leaves). The antioxidant capacity of aqueous extract of fig leaves was three times higher than the extract obtained with ethanol for conventional extraction and four times higher for UAE. In general terms, hydroethanolic extracts presented the highest bacterial growth inhibition, and showed the highest anti-inflammatory activity. In conclusion, these side streams can be used as sources of bioactive compounds for further development of high-added-value products.
Collapse
Affiliation(s)
- Cristina Alcántara
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Av. Agustin Escardino 7, 46980 Valencia, Spain;
| | - Tihana Žugčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (T.Ž.); (A.R.J.)
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Universitat de València, Avda. Vicent Andrés Estellés, 46100 València, Spain;
| | - Radhia Abdelkebir
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Universitat de València, Avda. Vicent Andrés Estellés, 46100 València, Spain;
- Range Ecology Laboratory in the Institute of Arid Regions (IRA) of Medenine, 4100 Medenine, Tunisia
| | - Jose V. García-Pérez
- Grupo de Análisis y Simulación de Procesos Agroalimentarios (ASPA), Departamento de Tecnología de Alimentos, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (T.Ž.); (A.R.J.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
| | - María Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Av. Agustin Escardino 7, 46980 Valencia, Spain;
- Correspondence: (M.C.C.); (D.G.); (F.J.B.)
| | - Daniel Granato
- Food Processing and Quality, Production Systems Unit-Natural Resources Institute Finland (Luke)-Tietotie 2, FI-02150 Espoo, Finland
- Correspondence: (M.C.C.); (D.G.); (F.J.B.)
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Universitat de València, Avda. Vicent Andrés Estellés, 46100 València, Spain;
- Correspondence: (M.C.C.); (D.G.); (F.J.B.)
| |
Collapse
|
44
|
Santos JS, Escher GB, Vieira do Carmo M, Azevedo L, Boscacci Marques M, Daguer H, Molognoni L, Inés Genovese M, Wen M, Zhang L, Oh WY, Shahidi F, Granato D. A new analytical concept based on chemistry and toxicology for herbal extracts analysis: From phenolic composition to bioactivity. Food Res Int 2020; 132:109090. [PMID: 32331681 DOI: 10.1016/j.foodres.2020.109090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 12/30/2022]
Abstract
Studies regarding the bioactivity of teas are mainly based on the phenolic composition and in vitro antioxidant activity of the herbal species used in their preparation. The aim of this study was to compare the in vitro and ex vivo antioxidant activity, cytotoxic/antiproliferative activity against cancer cells, the inhibitory activity of α-amylase, α-glucosidase and angiotensin I-converting enzymes, as well as the inhibition of DNA-induced fission of the peroxyl radical, in relation to aqueous extracts of Camellia sinensis var. sinensis (CS), Ilex paraguariensis (IP), Aspalathus linearis (AL) and an optimised extract (OT) containing the three herb species. A bivariate and multivariate statistical approach was employed to associate functional activities with individual phenolic composition. The CS and OT extracts showed the highest levels of hesperidin, quercetin-3-rutinoside, (-)-epigallocatechin-3-gallate and isoquercitrin. The CS and OT extracts showed the highest antioxidant activity, greater ability to inhibit α-amylase and proliferation of HCT8 cells, and greater ability to reduce Folin-Ciocalteu reagent. The AL extract, which is the major source of quercetin-3-rutinoside, hesperidin and isoquercitrin, showed the highest ability to inhibit α-glucosidase, the inhibition of LDL oxidation and protection of human erythrocytes. The IP extract showed the highest inhibition of lipoperoxidation in brain homogenate of Wistar rats, antihypertensive activity, and A549 cell proliferation; chlorogenic acid was its major phenolic compound. In general, the in vitro functionality of each extract was dependent on its chemical composition and the OT extract presented the most varied phenolic composition, and biological activity similar to the CS sample. In conclusion, the mixture of CS, AL, and IP represents a chemical and functional-based strategy to develop functional teas.
Collapse
Affiliation(s)
- Jânio Sousa Santos
- Graduate Program in Food Science and Technology, State University of Ponta Grossa, Avenida Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR, Brazil.
| | - Graziela Bragueto Escher
- Graduate Program in Food Science and Technology, State University of Ponta Grossa, Avenida Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR, Brazil
| | - Mariana Vieira do Carmo
- Faculty of Nutrition, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 714, 37130-000 Alfenas, MG, Brazil
| | - Luciana Azevedo
- Faculty of Nutrition, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 714, 37130-000 Alfenas, MG, Brazil
| | - Mariza Boscacci Marques
- Department of Chemistry, State University of Ponta Grossa, Av. Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR, Brazil
| | - Heitor Daguer
- Brazilian Ministry of Agriculture, Livestock, and Food Supply (MAPA), Federal Agricultural Defense Laboratory, 88102-600 São José, SC, Brazil
| | - Luciano Molognoni
- Brazilian Ministry of Agriculture, Livestock, and Food Supply (MAPA), Federal Agricultural Defense Laboratory, 88102-600 São José, SC, Brazil
| | - Maria Inés Genovese
- Laboratory of Food Bioactive Compounds, Department of Food and Experimental Nutrition, University of São Paulo, 05508-900 São Paulo, SP, Brazil
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036 Hefei, PR China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036 Hefei, PR China
| | - Won Young Oh
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Daniel Granato
- Graduate Program in Food Science and Technology, State University of Ponta Grossa, Avenida Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR, Brazil; Food Processing and Quality, Production Systems Unit - Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland.
| |
Collapse
|