1
|
de Abreu DJM, Nadaleti DHS, Andrade RP, dos Santos TL, Tavares DG, Botelho CE, de Resende MLV, Duarte WF. Kluyveromyces lactis and Saccharomyces cerevisiae for Fermentation of Four Different Coffee Varieties. Foods 2025; 14:111. [PMID: 39796402 PMCID: PMC11719620 DOI: 10.3390/foods14010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
One strategy for adding unique characteristics and flavors to improve coffee quality is the selection of starter microorganisms. Here, we aimed to evaluate the effect of Saccharomyces cerevisiae LNFCA11 and Kluyveromyces lactis B10 as starter cultures on the quality of four different wet-fermented coffee varieties. Microbiological, molecular, and chemical analyses were carried out to identify yeast, bacteria, volatile compounds, carbohydrates and bioactive compounds in coffee. Sensory analysis was performed by Q-graders certified in coffee. Starter yeasts affected bioactive and volatile compounds as well as sensory descriptors in the coffee varieties. S. cerevisiae CA11 allowed a higher content of trigonelline and chlorogenic acid in MGS Paraíso 2 (P2) and Catuai Amarelo IAC62 (CA62) varieties. K. lactis B10 fermentation resulted in higher chlorogenic acid only on the P2 cultivar and MGS Catucaí Pioneira (CP). In addition, 5-methyl-2-furfuryl alcohol and n-hexadecanoic acid were produced exclusively by yeast fermentation compared to spontaneous fermentation. The coffee cultivars P2 presented more complex sensory descriptors and the attributes of aroma, acidity, and balance when fermented with S. cerevisiae CA11. Sensory descriptors such as lemongrass, citrus, and lemon with honey were related to K. lactis B10. Starter cultures allowed the coffees to be classified as specialty coffees. The fermentation showed that the choice of starter yeast depends on the desired sensory descriptors in the final product.
Collapse
Affiliation(s)
- Danilo José Machado de Abreu
- Instituto Nacional de Ciência e Tecnologia do Café (INCT), Lavras CEP 37203-202, MG, Brazil; (D.J.M.d.A.); (R.P.A.); (T.L.d.S.)
- Biology Department, Federal University of Lavras (UFLA), Lavras CEP 37203-202, MG, Brazil
| | | | - Rafaela Pereira Andrade
- Instituto Nacional de Ciência e Tecnologia do Café (INCT), Lavras CEP 37203-202, MG, Brazil; (D.J.M.d.A.); (R.P.A.); (T.L.d.S.)
| | - Tamara Leite dos Santos
- Instituto Nacional de Ciência e Tecnologia do Café (INCT), Lavras CEP 37203-202, MG, Brazil; (D.J.M.d.A.); (R.P.A.); (T.L.d.S.)
| | | | - Cesar Elias Botelho
- Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG), Lavras CEP 37203-202, MG, Brazil; (D.H.S.N.); (C.E.B.)
| | - Mário Lúcio Vilela de Resende
- Instituto Nacional de Ciência e Tecnologia do Café (INCT), Lavras CEP 37203-202, MG, Brazil; (D.J.M.d.A.); (R.P.A.); (T.L.d.S.)
- Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG), Lavras CEP 37203-202, MG, Brazil; (D.H.S.N.); (C.E.B.)
| | - Whasley Ferreira Duarte
- Instituto Nacional de Ciência e Tecnologia do Café (INCT), Lavras CEP 37203-202, MG, Brazil; (D.J.M.d.A.); (R.P.A.); (T.L.d.S.)
- Biology Department, Federal University of Lavras (UFLA), Lavras CEP 37203-202, MG, Brazil
| |
Collapse
|
2
|
Entringer TL, da Luz JMR, Veloso TGR, Pereira LL, Menezes KMS, Brioschi Júnior D, Kasuya MCM, da Silva MDCS. Genetic diversity of the fungal community that contributes to the sensory quality of coffee beverage after carbonic maceration and fermentation. 3 Biotech 2024; 14:272. [PMID: 39434956 PMCID: PMC11490598 DOI: 10.1007/s13205-024-04099-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/18/2024] [Indexed: 10/23/2024] Open
Abstract
Understanding the effects of microorganisms on coffee fermentation is crucial to ensure sensory quality and food security. The analysis of the dynamics of the microbial community during fermentation can contribute to a better understanding of the beneficial and harmful effects of microorganisms and help select starter cultures to improve coffee quality. Furthermore, the anaerobic environment produced by carbonic maceration of the coffee fruits inhibits aerobic respiratory processes and stimulates fermentative metabolism, modulating the microbial community during coffee fermentation. This study evaluated the effects of carbonic maceration in the fungal community dynamics during the fermentation of Coffea arabica fruits at 18, 28, and 38 °C for 24, 48, 72, 96, and 120 h. Fungal diversity was accompanied by high-throughput sequencing (NGS) of the Internal Transcribed Spacer (ITS) region. During the coffee fermentation, the fungal community changed over time, with the most significant changes occurring at 18 and 28 °C after 72 h. However, at 38 °C, there were greater variations in fungal composition and fungal diversity was highest after 120 h. The yeast Pichia cephalocereana was predominant in the fermentations. These results indicated that temperature and fermentation conditions influence the fungal community during coffee fermentation. Lower temperatures might favor a more stable microbial environment, while higher temperatures lead to more intense changes. Thus, our data from NGS can help in the identification, isolation, and metabolic characterization of fungi for the fermentation of coffee fruits.
Collapse
Affiliation(s)
- Thaynara Lorenzoni Entringer
- Departamento de Microbiologia, Laboratório de Associações Micorrízicas -LAMIC, Universidade Federal de Viçosa (UFV), Avenida PH Rolfs S/N, Viçosa, Minas Gerais-MG 36570-000 Brazil
| | - José Maria Rodrigues da Luz
- Departamento de Microbiologia, Laboratório de Associações Micorrízicas -LAMIC, Universidade Federal de Viçosa (UFV), Avenida PH Rolfs S/N, Viçosa, Minas Gerais-MG 36570-000 Brazil
| | - Tomás Gomes Reis Veloso
- Departamento de Microbiologia, Laboratório de Associações Micorrízicas -LAMIC, Universidade Federal de Viçosa (UFV), Avenida PH Rolfs S/N, Viçosa, Minas Gerais-MG 36570-000 Brazil
| | - Lucas Louzada Pereira
- Coffee Design Group, Federal Institute of Espírito Santo (IFES), Rua Elizabeth Minete Perim, S/N, Bairro São Rafael, Venda Nova do Imigrante, Espírito Santo-ES 29375-000 Brazil
| | - Karen Mirella Souza Menezes
- Departamento de Microbiologia, Laboratório de Associações Micorrízicas -LAMIC, Universidade Federal de Viçosa (UFV), Avenida PH Rolfs S/N, Viçosa, Minas Gerais-MG 36570-000 Brazil
| | | | - Maria Catarina Megumi Kasuya
- Departamento de Microbiologia, Laboratório de Associações Micorrízicas -LAMIC, Universidade Federal de Viçosa (UFV), Avenida PH Rolfs S/N, Viçosa, Minas Gerais-MG 36570-000 Brazil
| | - Marliane de Cássia Soares da Silva
- Departamento de Microbiologia, Laboratório de Associações Micorrízicas -LAMIC, Universidade Federal de Viçosa (UFV), Avenida PH Rolfs S/N, Viçosa, Minas Gerais-MG 36570-000 Brazil
| |
Collapse
|
3
|
Costa GXR, Silva LCF, de Oliveira LM, Santos LD. Microbiota of arabica coffee: insights from soil to fruit. World J Microbiol Biotechnol 2024; 40:308. [PMID: 39172263 DOI: 10.1007/s11274-024-04110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
Studies have shown that a diverse and metabolically active microbiota exists throughout different stages of coffee processing, from pre- to post-harvest. This microbiota originates from both the cultivation and processing environments. Additionally, microorganisms from the soil can be found on the fruit due to the transfer between them. This study reviews the microbiota present in Arabica coffee fruits and the soils where the plants are grown. It examines how microbial profiles are related to coffee variety, altitude, cultivation region, and processing method, and establishes a connection between the microbiota in soil and fruit. A diverse microbiota was observed in both coffee fruits and soils, with similar microorganisms identified across different growing regions, processing methods, and coffee varieties. However, exclusive detections of some microorganisms were also observed. These differences highlight the influence of terroir on coffee's microbial composition, confirming that environmental conditions, genetic factors, and processing methods shape coffee microbiota. Since microbial development during coffee fermentation can affect the beverage's quality, the data presented in this review offer valuable insights for researchers and producers. Understanding the influence of processing methods, coffee varieties, and cultivation regions on coffee microbiota enables the selection of specific fermentation conditions or starter cultures to enhance terroir characteristics or adjust microbial populations to favor or introduce microorganisms beneficial for coffee quality.
Collapse
Affiliation(s)
- Gisele Xavier Ribeiro Costa
- Faculty of Chemical Engineering, Federal University of Uberlândia (UFU), Patos de Minas - Minas Gerais, Uberlândia, Brazil
| | - Lívia Carneiro Fidélis Silva
- Institute of Biotechnology, Federal University of Uberlândia (UFU), Patos de Minas - Minas Gerais, Uberlândia, Brazil
| | - Liliane Maciel de Oliveira
- Department of Food Engineering, Federal University of São João del-Rei - UFSJ, Sete Lagoas - Minas Gerais, 47, MG 424 road, Sete Lagoas, Uberlândia, 35701-970, mailbox 56, MG, Brazil.
| | - Líbia Diniz Santos
- Faculty of Chemical Engineering, Federal University of Uberlândia (UFU), Patos de Minas - Minas Gerais, Uberlândia, Brazil
| |
Collapse
|
4
|
Zhai H, Dong W, Fu X, Li G, Hu F. Integration of widely targeted metabolomics and the e-tongue reveals the chemical variation and taste quality of Yunnan Arabica coffee prepared using different primary processing methods. Food Chem X 2024; 22:101286. [PMID: 38562182 PMCID: PMC10982556 DOI: 10.1016/j.fochx.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
UPLC-Q-TOF-MS and electronic tongue analysis were applied to analyse the metabolic profile and taste quality of Yunnan Arabica coffee under seven primary processing methods. The total phenolic content ranged from 34.44 to 44.42 mg/g DW, the e-tongue results revealed the strongest umami sensor response value in the sample prepared with traditional dry processing, while the samples prepared via honey processing II had the strongest astringency sensor response value. Metabolomics analysis identified 221 differential metabolites, with higher contents of amino acids and derivatives within dry processing II sample, and increased contents of lipids and phenolic acids in the honey processing III sample. The astringency and aftertaste-astringency of the coffee samples positively correlated with the trigonelline, 3,5-di-caffeoylquinic acid and 4-caffeoylquinic acid content. The results contributed to a better understanding of how the primary processing process affects coffee quality, and supply useful information for the enrichment of coffee biochemistry theory.
Collapse
Affiliation(s)
- Huinan Zhai
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, Inner Mongolia 014109, China
| | - Wenjiang Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China
| | - Xingfei Fu
- Tropical and Subtropical Economic Crops Research Institute, Yunnan Academy of Tropical Sciences, Baoshan, Yunnan 678000, China
| | - Guiping Li
- Tropical and Subtropical Economic Crops Research Institute, Yunnan Academy of Tropical Sciences, Baoshan, Yunnan 678000, China
| | - Faguang Hu
- Tropical and Subtropical Economic Crops Research Institute, Yunnan Academy of Tropical Sciences, Baoshan, Yunnan 678000, China
| |
Collapse
|
5
|
Tirado-Kulieva V, Quijano-Jara C, Avila-George H, Castro W. Predicting the evolution of pH and total soluble solids during coffee fermentation using near-infrared spectroscopy coupled with chemometrics. Curr Res Food Sci 2024; 9:100788. [PMID: 39005496 PMCID: PMC11245949 DOI: 10.1016/j.crfs.2024.100788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Currently, coffee fermentation is visually operated, which results in incomplete or excessive processes and coffees with undesirable characteristics. In front of it, pH and total soluble solids (TSS) have been shown to be good fermentation indicators, although this requires rapid, accurate, and chemical-free measurement techniques such as NIR spectroscopy. However, the complexity of the NIR spectra requires optimization steps in which variable selection techniques simplify profiles and subsequent models. This work tests a new covering array feature selection (CAFS) approach on NIR spectra to optimize prediction models in coffee samples during fermentation. Spectral profiles in the range 1100-2100 nm were extracted from coffee beans (Typica, Caturra, and Catimor varieties) raw and during fermentation (4, 8, 12, 16, 20, and 24 h). Partial least-squares regressions (PLSR) were performed using full spectra using a five-fold cross-validation strategy for training and validation. The relevant wavelengths were then selected using the β coefficients, the important projection of variables (VIP), and the CAFS method. Finally, optimized models were performed using the relevant wavelengths and compared among these using their statistical metrics. The models performed using the selected variables (22-47) of CAFS showed the best performance in predicting pH (R 2 = 0.825-0.903, RMSE = 0.096-0.158, RPD = 6.33-10.38) and TSS (R 2 = 0.865-0.922, RMSE = 0.688-1.059, RPD = 0.94-1.45) compared to the other methods. These findings suggest that simple and efficient models could be performed and implemented in routine analysis due to the maximum coverage and minimum cardinality of CAFS.
Collapse
Affiliation(s)
- Vicente Tirado-Kulieva
- Instituto de Investigación para el Desarrollo Sostenible y Cambio Climático, Universidad Nacional de Frontera, Sullana, 20100, Piura, Peru
- Escuela de Posgrado, Universidad Nacional de Trujillo, Trujillo, Peru
| | - Carlos Quijano-Jara
- Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Trujillo, Peru
| | - Himer Avila-George
- Departamento de Ciencias Computacionales e Ingenierías, Universidad de Guadalajara, Ameca, 46600, Jalisco, Mexico
| | - Wilson Castro
- Facultad de Ingeniería de Industrias Alimentarias y Biotecnología, Universidad Nacional de Frontera, Sullana, 20100, Piura, Peru
| |
Collapse
|
6
|
Dos Santos Gomes W, Pereira LL, Rodrigues da Luz JM, Soares da Silva MDC, Reis Veloso TG, Partelli FL. Exploring the microbiome of coffee plants: Implications for coffee quality and production. Food Res Int 2024; 179:113972. [PMID: 38342526 DOI: 10.1016/j.foodres.2024.113972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 02/13/2024]
Abstract
Coffee stands as one of the world's most popular beverages, and its quality undergoes the influence of numerous pre- and post-harvest procedures. These encompass genetic variety, cultivation environment, management practices, harvesting methods, and post-harvest processing. Notably, microbial communities active during fermentation hold substantial sway over the ultimate quality and sensory characteristics of the final product. The interaction between plants and microorganisms assumes critical significance, with specific microbes assuming pivotal roles in coffee plant growth, fruit development, and, subsequently, the fruit's quality. Microbial activities can synthesize or degrade compounds that influence the sensory profile of the beverage. However, studies on the metabolic products generated by various coffee-related microorganisms and their chemical functionality, especially in building sensory profiles, remain scarce. The primary aim of this study was to conduct a literature review, based on a narrative methodology, on the current understanding of the plant-microorganism interaction in coffee production. Additionally, it aimed to explore the impacts of microorganisms on plant growth, fruit production, and the fermentation processes, directly influencing the ultimate quality of the coffee beverage. Articles were sourced from ScienceDirect, Scopus, Web of Science, and Google Scholar using specific search terms such as "coffee microorganisms", "microorganisms-coffee interactions", "coffee fermentation", "coffee quality", and 'coffee post-harvest processing". The articles used were published in English between 2000 and 2023. Selection criteria involved thoroughly examining articles to ensure their inclusion was based on results about the contribution of microorganisms to both the production and quality of the coffee beverage. The exploration of microorganisms associated with the coffee plant and its fruit presents opportunities for bioprospecting, potentially leading to targeted fermentations via starter cultures, consequently generating new profiles. This study synthesizes existing data on the current understanding of the coffee-associated microbiome, its functionalities within ecosystems, the metabolic products generated by microorganisms, and their impacts on fermentation processes and grain and beverage quality. It highlights the importance of plant-microorganism interactions in the coffee production chain.
Collapse
Affiliation(s)
- Willian Dos Santos Gomes
- Genetic Improvement Program, Federal University of Espírito Santo, S/N Guararema, Alegre 29375-000, Brazil
| | - Lucas Louzada Pereira
- Coffee Design Group, Venda Nova Do Imigrante, Federal Institute of Espírito Santo (IFES), Rua Elizabeth Minete Perim, S/N, Bairro São Rafael, Espírito Santo-ES 29375-000, Brazil.
| | - José Maria Rodrigues da Luz
- Department of Microbiology, Mycorrhizal Associations Laboratory - LAMIC Universidade Federal de Viçosa (UFV), Ph Rolfs Avenue S/N, Viçosa, Minas Gerais-MG 6570-000, Brazil
| | - Marliane de Cássia Soares da Silva
- Department of Microbiology, Mycorrhizal Associations Laboratory - LAMIC Universidade Federal de Viçosa (UFV), Ph Rolfs Avenue S/N, Viçosa, Minas Gerais-MG 6570-000, Brazil
| | - Tomás Gomes Reis Veloso
- Department of Microbiology, Mycorrhizal Associations Laboratory - LAMIC Universidade Federal de Viçosa (UFV), Ph Rolfs Avenue S/N, Viçosa, Minas Gerais-MG 6570-000, Brazil
| | - Fábio Luiz Partelli
- Genetic Improvement Program, Federal University of Espírito Santo, S/N Guararema, Alegre 29375-000, Brazil
| |
Collapse
|
7
|
Aswathi KN, Shirke A, Praveen A, Murthy PS. Functioning of Saccharomyces cerevisiae in honey coffee (Coffea canephora) and their effect on metabolites, volatiles and flavor profiles. Food Res Int 2024; 180:114092. [PMID: 38395561 DOI: 10.1016/j.foodres.2024.114092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Post-harvesting and microbial activity of coffee play a critical role in the metabolites and the sensory quality of the brew. The pulped natural/honey coffee process is an improvised semi-dry technique consisting of prolonged fermentation of depulped coffee beans excluding washing steps. The starter culture application in coffee industry plays an important role to enhance the cup quality. This work focuses on the fermentation of pulped natural/honey Robusta coffee with a starter culture (Saccharomyces cerevisiae MTCC 173) and the identification of fermentation patterns through 1H NMR, microbial ecology, volatomics and organoleptics of brew. Fermentation was accelerated by yeast populace (10 cfu log/mL) for 192 h. Principal compound analysis performed on 1H NMR led to the investigation of metabolites such as sugars, alkaloids, alcohols, organic acids and amino acids. Detection of some sugars and organic acids represented that the starter cultures imparted few metabolic changes during the process. A major activity of sugars in fermentation with 83.3 % variance in PC 1 and 16.7 % in PC 2 was observed. The chemical characteristics such as carbohydrates (41.88 ± 0.77 mg/g), polyphenols (34.16 ± 0.79 mg/g), proteins (58.54 ± 0.66 mg/g), caffeine (26.54 ± 0.06 mg/g), and CGA (21.83 ± 0.04 mg/g) were also evaluated. The heatmap-based visualization of GC-MS accorded characterization of additional 5 compounds in treated (T) coffee contributing to sweet, fruity and caramelly odor notes compared to untreated (UT). The sensory outlines 72.5 in T and 70.5 in UT scores. Preparation of honey coffee with Saccharomyces cerevisiae is the first report, which modulated the flavor and quality of coffee.
Collapse
Affiliation(s)
- K N Aswathi
- Department of Plantation Products, Spices and Flavor Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ayusha Shirke
- Department of Plantation Products, Spices and Flavor Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
| | - Aishwarya Praveen
- Department of Plantation Products, Spices and Flavor Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pushpa S Murthy
- Department of Plantation Products, Spices and Flavor Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Rocha RAR, da Cruz MAD, Silva LCF, Costa GXR, Amaral LR, Bertarini PLL, Gomes MS, Santos LD. Evaluation of Arabica Coffee Fermentation Using Machine Learning. Foods 2024; 13:454. [PMID: 38338590 PMCID: PMC10855612 DOI: 10.3390/foods13030454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 02/12/2024] Open
Abstract
This study explores the variances in the organic, chemical, and sensory attributes of fermented coffee beans, specifically examining how post-harvest processes influence cup quality. Coffee fruits from the Catuaí IAC-144 variety were processed using both natural coffee (NC) and pulped coffee (PC) methods. The fruits were then subjected to self-induced anaerobic fermentation (SIAF) using one of the following fermentation methods: solid-state fermentation (SSF) or submerged fermentation (SMF). Within these methods, either spontaneous fermentation (SPF) or starter culture fermentation (SCF) was applied. Each method was conducted over periods of 24, 48, and 72 h. For this purpose, two-hundred-liter bioreactors were used, along with two control treatments. Numerous parameters were monitored throughout the fermentation process. A comprehensive chemical profiling and sensory analysis, adhering to the guidelines of the Specialty Coffee Association, were conducted to evaluate the influence of these fermentation processes on the flavor, aroma, and body characteristics of the coffee beverage across multiple dimensions. Data analysis and predictive modeling were performed using machine learning techniques. This study found that NC exhibited a higher production of acids (citric, malic, succinic, and lactic) compared to PC, resulting in distinct chemical and sensory profiles. The decision tree showed that fructose and malic and succinic acids were identified as the main factors enhancing sensory notes during cupping. SMF promoted higher concentrations of lactic acid, while SSF led to increased ethanol content. Consequently, the SIAF process enhances the sensory quality of coffee, adding value to the product by generating diverse sensory profiles.
Collapse
Affiliation(s)
- Renata A. R. Rocha
- Biotechnology Institute, University Federal of Uberlândia, Patos de Minas 38700-002, MG, Brazil; (R.A.R.R.); (M.A.D.d.C.); (L.C.F.S.)
| | - Marcelo A. D. da Cruz
- Biotechnology Institute, University Federal of Uberlândia, Patos de Minas 38700-002, MG, Brazil; (R.A.R.R.); (M.A.D.d.C.); (L.C.F.S.)
| | - Lívia C. F. Silva
- Biotechnology Institute, University Federal of Uberlândia, Patos de Minas 38700-002, MG, Brazil; (R.A.R.R.); (M.A.D.d.C.); (L.C.F.S.)
| | - Gisele X. R. Costa
- Faculty of Chemical Engineering, Federal University of Uberlândia, Patos de Minas 38702-178, MG, Brazil;
| | - Laurence R. Amaral
- Laboratory of Bioinformatics and Molecular Analysis (LBAM), Federal University of Uberlândia, Patos de Minas 38702-178, MG, Brazil; (L.R.A.); (M.S.G.)
| | - Pedro L. L. Bertarini
- Faculty of Electrical Engineering, Federal University of Uberlândia, Patos de Minas 38702-178, MG, Brazil;
| | - Matheus S. Gomes
- Laboratory of Bioinformatics and Molecular Analysis (LBAM), Federal University of Uberlândia, Patos de Minas 38702-178, MG, Brazil; (L.R.A.); (M.S.G.)
| | - Líbia D. Santos
- Faculty of Chemical Engineering, Federal University of Uberlândia, Patos de Minas 38702-178, MG, Brazil;
| |
Collapse
|
9
|
Huang L, Liu M, Li B, Chitrakar B, Duan X. Terahertz Spectroscopic Identification of Roast Degree and Variety of Coffee Beans. Foods 2024; 13:389. [PMID: 38338523 PMCID: PMC10855191 DOI: 10.3390/foods13030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/06/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
In this study, terahertz time-domain spectroscopy (THz-TDS) was proposed to identify coffee of three different varieties and three different roasting degrees of one variety. Principal component analysis (PCA) was applied to extract features from frequency-domain spectral data, and the extracted features were used for classification prediction through linear discrimination (LD), support vector machine (SVM), naive Bayes (NB), and k-nearest neighbors (KNN). The classification effect and misclassification of the model were analyzed via confusion matrix. The coffee varieties, namely Catimor, Typica 1, and Typica 2, under the condition of shallow drying were used for comparative tests. The LD classification model combined with PCA had the best effect of dimension reduction classification, while the speed and accuracy reached 20 ms and 100%, respectively. The LD model was found with the highest speed (25 ms) and accuracy (100%) by comparing the classification results of Typica 1 for three different roasting degrees. The coffee bean quality detection method based on THz-TDS combined with a modeling analysis method had a higher accuracy, faster speed, and simpler operation, and it is expected to become an effective detection method in coffee identification.
Collapse
Affiliation(s)
- Luelue Huang
- School of Food and Drug, Shenzhen Polytechnic University, No. 2190, Liuxian Road, Shenzhen 518055, China; (L.H.); (M.L.)
| | - Miaoling Liu
- School of Food and Drug, Shenzhen Polytechnic University, No. 2190, Liuxian Road, Shenzhen 518055, China; (L.H.); (M.L.)
| | - Bin Li
- School of Food and Drug, Shenzhen Polytechnic University, No. 2190, Liuxian Road, Shenzhen 518055, China; (L.H.); (M.L.)
| | - Bimal Chitrakar
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China;
| | - Xu Duan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
10
|
Halagarda M, Obrok P. Influence of Post-Harvest Processing on Functional Properties of Coffee ( Coffea arabica L.). Molecules 2023; 28:7386. [PMID: 37959805 PMCID: PMC10650074 DOI: 10.3390/molecules28217386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Coffee is one of the most popular beverages worldwide, valued for its sensory properties as well as for its psychoactive effects that are associated with caffeine content. Nevertheless, coffee also contains antioxidant substances. Therefore, it can be considered a functional beverage. The aim of this study is to evaluate the influence of four selected post-harvest coffee fruit treatments (natural, full washed, washed-extended fermentation, and anaerobic) on the antioxidant and psychoactive properties of Arabica coffee. Additionally, the impact of coffee processing on the selected quality parameters was checked. For this purpose, results for caffeine content, total phenolic content (TPC), DPPH assay, pH, titratable acidity, and water content were determined. The results show that natural and anaerobic processing allow the highest caffeine concentration to be retained. The selection of the processing method does not have a significant influence on the TPC or antiradical activity of coffee. The identified differences concerning water content and pH along with lack of significant discrepancies in titratable acidity may have an influence on the sensory profile of coffee.
Collapse
Affiliation(s)
- Michał Halagarda
- Department of Food Product Quality, Krakow University of Economics, Ul. Sienkiewicza 5, 30-033 Krakow, Poland
| | | |
Collapse
|
11
|
Wang Y, Wang X, Hu G, Zhang Z, Al-Romaima A, Bai X, Li J, Zhou L, Li Z, Qiu M. Comparative studies of fermented coffee fruits post-treatments on chemical and sensory properties of roasted beans in Yunnan, China. Food Chem 2023; 423:136332. [PMID: 37182497 DOI: 10.1016/j.foodchem.2023.136332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
In this study, medium roasted coffee with four different fermented coffee fruits post-treatments (dry, wet, semi-dry and hot air dry) was used as the material. Chemical profile and sensorial analysis were used to comprehensively analyze the effects of post-treatments on coffee flavor characteristics from multiple dimensions. A total of 31 water-soluble chemical components and 39 volatile compounds were identified in roasted coffee, and distinct post-treatments based on chemical orientation make coffee highly differentiated. In addition, the principal component analysis (PCA) of the chemical composition integrated data set showed that the first two principal components could explain 54.9% of the sample variability. All four post-treatments can be classified as "specialty coffees" according to the Specialty Coffee Association (SCA) protocol, with various organoleptic characteristics and flavor attributes. As a result, the fermented coffee fruits post-treatment method further determines the quality characteristics of coffee, thus meeting the needs of different niche markets.
Collapse
Affiliation(s)
- Yanbing Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China; Dehong Tropical Agriculture Research Institute of Yunnan, Ruili 678600, Yunnan, PR China; College of Agriculture, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Xiaoyuan Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China; Dehong Tropical Agriculture Research Institute of Yunnan, Ruili 678600, Yunnan, PR China; College of Agriculture, Guangxi University, Nanning 530004, Guangxi, PR China.
| | - Guilin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| | - Zhirun Zhang
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili 678600, Yunnan, PR China
| | - Abdulbaset Al-Romaima
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| | - Xuehui Bai
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili 678600, Yunnan, PR China
| | - Jinhong Li
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili 678600, Yunnan, PR China
| | - Lin Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| | - Zhongrong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China.
| |
Collapse
|
12
|
Chemical profile and sensory perception of coffee produced in agroforestry management. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04228-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
13
|
Duque‐Dussán E, Sanz‐Uribe JR, Dussán‐Lubert C, Banout J. Thermophysical properties of parchment coffee: New Colombian varieties. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- Eduardo Duque‐Dussán
- Department of Sustainable Technologies, Faculty of Tropical AgriSciences Czech University of Life Sciences Prague Prague‐Suchdol Czech Republic
| | - Juan R. Sanz‐Uribe
- Postharvest Discipline National Coffee Research Center—CENICAFE Caldas Colombia
| | | | - Jan Banout
- Department of Sustainable Technologies, Faculty of Tropical AgriSciences Czech University of Life Sciences Prague Prague‐Suchdol Czech Republic
| |
Collapse
|
14
|
The Impact of Wet Fermentation on Coffee Quality Traits and Volatile Compounds Using Digital Technologies. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Fermentation is critical for developing coffee’s physicochemical properties. This study aimed to assess the differences in quality traits between fermented and unfermented coffee with four grinding sizes of coffee powder using multiple digital technologies. A total of N = 2 coffee treatments—(i) dry processing and (ii) wet fermentation—with grinding levels (250, 350, 550, and 750 µm) were analysed using near-infrared spectrometry (NIR), electronic nose (e-nose), and headspace/gas chromatography–mass spectrometry (HS-SPME-GC-MS) coupled with machine learning (ML) modelling. Most overtones detected by NIR were within the ranges of 1700–2000 nm and 2200–2396 nm, while the enhanced peak responses of fermented coffee were lower. The overall voltage of nine e-nose sensors obtained from fermented coffee (250 µm) was significantly higher. There were two ML classification models to classify processing and brewing methods using NIR (Model 1) and e-nose (Model 2) values as inputs that were highly accurate (93.9% and 91.2%, respectively). Highly precise ML regression Model 3 and Model 4 based on the same inputs for NIR (R = 0.96) and e-nose (R = 0.99) were developed, respectively, to assess 14 volatile aromatic compounds obtained by GC-MS. Fermented coffee showed higher 2-methylpyrazine (2.20 ng/mL) and furfuryl acetate (2.36 ng/mL) content, which induces a stronger fruity aroma. This proposed rapid, reliable, and low-cost method was shown to be effective in distinguishing coffee postharvest processing methods and evaluating their volatile compounds, which has the potential to be applied for coffee differentiation and quality assurance and control.
Collapse
|
15
|
Effect of Three Post-Harvest Methods at Different Altitudes on the Organoleptic Quality of C. canephora Coffee. BEVERAGES 2022. [DOI: 10.3390/beverages8040083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
C. canephora (syn. C. robusta) is distinctive due to its rising industrial value and pathogen resistance. Both altitude and post-harvest methods influence coffee cup quality; however, modest information is known about this coffee species. Therefore, the aim of this study was to determine the relationship between four different altitudes and post-harvest processes (dry, honey, and wet) to the improvement of the organoleptic quality of the C. canephora congolensis and conilon drink. For dry processing, congolensis and conilon showed the lowest scores in terms of fragrance/aroma, flavour, aftertaste, salt–acid, bitter–sweet, and body. Above 625 m, coffees from dry, honey, and wet processes increased scores in their sensory attributes, but there was no difference at such high altitudes when comparing post-harvest samples. Dry-processed coffee samples had total scores over 80 points at high altitudes. Conilon was perceived to have the best sensory attributes at high altitudes using honey processing. In general, the wet-processed congolensis and conilon samples had a tastier profile than dry-processed ones.
Collapse
|
16
|
Fioresi DB, Ramos AC, Bertolazi AA, Pereira LL. Adherence and concordance among
Q‐Graders
in the sensory analysis of coffees. J SENS STUD 2022. [DOI: 10.1111/joss.12805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Deusélio Bassini Fioresi
- Federal Institute of Espírito Santo, Coffee Design Group Venda Nova do Imigrante, Rua Elizabeth Minete Perim Espírito Santo Brazil
| | | | | | - Lucas Louzada Pereira
- Federal Institute of Espírito Santo, Coffee Design Group Venda Nova do Imigrante, Rua Elizabeth Minete Perim Espírito Santo Brazil
| |
Collapse
|
17
|
Nadaleti DHS, de Rezende Abrahão JC, Malta MR, Dos Santos CS, Pereira AA, Carvalho GR. Influence of postharvest processing on the quality and sensory profile of groups of arabica coffee genotypesc. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6899-6906. [PMID: 35661162 DOI: 10.1002/jsfa.12051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND This study combined qualitative and quantitative approaches to obtain a better understanding of the sensory quality of beverages made from Arabic coffee genotypes subjected to different processing methods. Over 3 consecutive years, 270 accessions of Arabic coffee from the germplasm collection of Minas Gerais State, Brazil, were sensorially characterized after dry postharvest processing. At the end of this period, the 26 genotypes with the greatest potential for the production of specialty coffees were subjected to dry and wet processing. Granulometry and sensory quality were evaluated by scoring and describing the sensory profiles of the samples. RESULTS Adequate management during all postharvest stages maintained the potential coffee quality, regardless of processing. All of the coffees studied were classified as special. There was variation in the perceived nuances of the sensory attributes among the groups of genotypes and as a function of postharvest processing, with emphasis on the increased frequency of high levels of sweetness in wet processing. Among the aroma/flavor sensory attributes, the caramel subcategory, as a long and pleasant aftertaste, were predominant in all of the genotypes studied, regardless of the type of processing. CONCLUSION The differences in the perceptions of aroma/flavor and aftertaste in different processes were easier to identify in the commercial cultivars studied, as well as in the Bourbon accessions of Timor Hybrid and their derivatives. The access MG 0159 Maragogipe Hybrid F1 stood out in terms of all of the evaluated characteristics, regardless of the processing method used. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Marcelo Ribeiro Malta
- Epamig South, Empresa de Pesquisa Agropecuária de Minas Gerais/EPAMIG, Lavras, Brazil
| | | | - Antonio Alves Pereira
- Epamig South, Empresa de Pesquisa Agropecuária de Minas Gerais/EPAMIG, Lavras, Brazil
| | | |
Collapse
|
18
|
Zani Agnoletti B, dos Santos Gomes W, Falquetto de Oliveira G, Henrique da Cunha P, Helena Cassago Nascimento M, Cunha Neto Á, Louzada Pereira L, Vinicius Ribeiro de Castro E, Catarina da Silva Oliveira E, Roberto Filgueiras P. Effect of fermentation on the quality of conilon coffee (Coffea canephora): Chemical and sensory aspects. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Duque‐Dussán E, Banout J. Improving the drying performance of parchment coffee due to the newly redesigned drying chamber. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eduardo Duque‐Dussán
- Department of Sustainable Technologies, Faculty of Tropical AgriSciences Czech University of Life Sciences Prague Prague ‐ Suchdol Czech Republic
| | - Jan Banout
- Department of Sustainable Technologies, Faculty of Tropical AgriSciences Czech University of Life Sciences Prague Prague ‐ Suchdol Czech Republic
| |
Collapse
|
20
|
Relationship between physical changes in the coffee bean due to roasting profiles and the sensory attributes of the coffee beverage. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Simmer MMB, Soares da Silva MDC, Pereira LL, Moreira TR, Guarçoni RC, Veloso TGR, da Silva IMR, Entringer TL, Kasuya MCM, da Luz JMR, Moreli AP, da Silva Oliveira EC. Edaphoclimatic conditions and the soil and fruit microbiota influence on the chemical and sensory quality of the coffee beverage. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Does Coffee Have Terroir and How Should It Be Assessed? Foods 2022; 11:foods11131907. [PMID: 35804722 PMCID: PMC9265435 DOI: 10.3390/foods11131907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023] Open
Abstract
The terroir of coffee is defined as the unique sensory experience derived from a single origin roasted coffee that embodies its source. Environmental conditions such as temperature, altitude, shade cover, rainfall, and agronomy are considered the major parameters that define coffee terroir. However, many other parameters such as post-harvest processing, roasting, grinding, and brewing can combine to influence the perception of terroir. In this review, we discuss the contribution of these parameters and their influence on coffee terroir. Assessment of terroir requires defined sensory descriptors, as provided by the World Coffee Research Lexicon, and standardized roast level, grind size, and brew method. The choice of the post-harvest processing method is often environmentally dependent, suggesting that an inclusion into the coffee terroir definition is warranted. Coffee terroir is often not intentionally created but results from the contributions of the Coffea species and variety planted, environmental and agricultural parameters, and both the harvest and post-harvest method used. The unique combination of these parameters gives the consumer a unique cup of coffee, reminiscent of the place the coffee was produced.
Collapse
|
23
|
Guerra LS, Cevallos-Cevallos JM, Weckx S, Ruales J. Traditional Fermented Foods from Ecuador: A Review with a Focus on Microbial Diversity. Foods 2022; 11:foods11131854. [PMID: 35804670 PMCID: PMC9265738 DOI: 10.3390/foods11131854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
The development of early civilizations was greatly associated with populations’ ability to exploit natural resources. The development of methods for food preservation was one of the pillars for the economy of early societies. In Ecuador, food fermentation significantly contributed to social advances and fermented foods were considered exclusive to the elite or for religious ceremonies. With the advancement of the scientific research on bioprocesses, together with the implementation of novel sequencing tools for the accurate identification of microorganisms, potential health benefits and the formation of flavor and aroma compounds in fermented foods are progressively being described. This review focuses on describing traditional fermented foods from Ecuador, including cacao and coffee as well as less popular fermented foods. It is important to provide new knowledge associated with nutritional and health benefits of the traditional fermented foods.
Collapse
Affiliation(s)
- Luis Santiago Guerra
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, P.O. Box 17-01-2759, Quito 170517, Ecuador;
| | - Juan Manuel Cevallos-Cevallos
- Centro de Investigaciones Biotecnologicas del Ecuador (CIBE), Campus Gustavo Galindo, Escuela Superior Politécnica del Litoral (ESPOL), Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 090112, Ecuador;
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium;
| | - Jenny Ruales
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, P.O. Box 17-01-2759, Quito 170517, Ecuador;
- Correspondence:
| |
Collapse
|
24
|
Evaluation of Energy Potential from Coffee Pulp in a Hydrothermal Power Market through System Dynamics: The Case of Colombia. SUSTAINABILITY 2022. [DOI: 10.3390/su14105884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Colombia has abundant solar, wind, and biomass resources for energy production with non-conventional renewable energy (NCREs) sources. However, the current participation of NCREs is negligible in the electricity mix of the country, which has historically depended on hydroelectric plants. Meteorological phenomena, such as the El Niño–Southern Oscillation (ENSO), threaten the energy supply during periods of drought, and the generation of energy using fossil fuels is necessary to offset the hydric deficit. Since Colombia is one of the largest coffee producers in the world, this study used system dynamics to evaluate the energy potential from cherry coffee pulp and analyze trends in the energy supply for different energy sources in scenarios of climatic vulnerability. First, the causal relationship of the system was identified, and the key variables of the model were projected. Then, the behavior of the system was evaluated by simulating a 120-month period. The results showed a generation potential from coffee pulp of 177 GWh per year and a power generation of 11,250 GWh and 7537 GWh with solar and wind resources, respectively, by 2030. Finally, it was confirmed that including new renewable resources is a key factor in supporting hydraulic generation in the warm phase of ENSO while reducing thermal generation dependence.
Collapse
|
25
|
Wang X, Wang Y, Hu G, Hong D, Guo T, Li J, Li Z, Qiu M. Review on factors affecting coffee volatiles: from seed to cup. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1341-1352. [PMID: 34778973 DOI: 10.1002/jsfa.11647] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/20/2021] [Accepted: 11/15/2021] [Indexed: 05/05/2023]
Abstract
The objective of this review is to evaluate the influence of six factors on coffee volatiles. At present, the poor aroma from robusta or low-quality arabica coffee can be significantly improved by advanced technology, and this subject will continue to be further studied. On the other hand, inoculating various starter cultures in green coffee beans has become a popular research direction for promoting coffee aroma and flavor. Several surveys have indicated that shade and altitude can affect the content of coffee aroma precursors and volatile organic compounds (VOCs), which remain to be fully elucidated. The emergence of the new roasting process has greatly enriched the aroma composition of coffee. Cold-brew coffee is one of the most popular trends in coffee extraction currently, and its influence on coffee aroma is worthy of in-depth and detailed study. Omics technology will be one of the most important means to analyze coffee aroma components and their quality formation mechanism. A better understanding of the effect of each parameter on VOCs would assist coffee researchers and producers in the optimal selection of post-harvest parameters that favor the continuous production of flavorful and top-class coffee beans and beverages. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- College of Agriculture, Guangxi University, Nanning, PR China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Yanbing Wang
- College of Agriculture, Guangxi University, Nanning, PR China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Guilin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Defu Hong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Tieying Guo
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Jinhong Li
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Zhongrong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| |
Collapse
|
26
|
da Silva MCS, da Luz JMR, Veloso TGR, Gomes WDS, Oliveira ECDS, Anastácio LM, Cunha Neto A, Moreli AP, Guarçoni RC, Kasuya MCM, Pereira LL. Processing techniques and microbial fermentation on microbial profile and chemical and sensory quality of the coffee beverage. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-03980-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Machado JL, Tomaz MA, da Luz JMR, Osório VM, Costa AV, Colodetti TV, Debona DG, Pereira LL. Evaluation of genetic divergence of coffee genotypes using the volatile compounds and sensory attributes profile. J Food Sci 2021; 87:383-395. [PMID: 34907528 DOI: 10.1111/1750-3841.15986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/09/2021] [Accepted: 10/25/2021] [Indexed: 12/30/2022]
Abstract
The quality of the coffee beverage is related to the chemical, physical, and sensory attributes of the coffee beans that vary with the geographic location of the crop, genetic factors, and post-harvest processing. So, the objective of this study was to evaluate the genetic divergence of 27 genotypes of Coffea canephora using the volatile compounds and sensory attributes profile to select genotypes that produce a coffee beverage with high sensory quality. This genetic diversity was estimated from the Euclidean distance matrix using non-standard data and the Unweighted Pair-Group Method Using Arithmetic Averages (UPGMA). The 2-furyl-methanol, 4-ethenyl-2-methoxyphenol, furfural, 5-methylfurfural, methylpyrazine, and 2,6-dimethylpyrazine were predominating volatile compounds in the genotypes. The sensory attributes had a positive Pearson's correlation with the total score. The volatile compounds had a different relative contribution to the genetic divergence between the genotypes of C. canephora. The 4-ethenyl-2-methoxyphenol, 2-furyl-methanol, and furfural were volatile compounds that most contributed to the formation of the groups in the UPGMA dendrogram. The relative contribution of sensory attributes to dissimilarity among genotypes was 6.42% to 20.20%. Therefore, this study verified the relative contribution of volatile compounds, in specially 4-ethenyl-2-methoxyphenol, 2-furyl-methanol, and furfural, and sensory attributes (flavor, mouthfeel, and bitterness/sweetness) to the genetic divergence between the genotypes of the three clonal varieties. Thus, this work points out compounds that positively contribute to the sensory quality of the Conilon coffee beverage.
Collapse
Affiliation(s)
- Jéssica Louzada Machado
- Graduate Program in Agrochemistry, Federal University of Espírito Santo/UFES, Alegre, Espírito Santo, Brazil
| | - Marcelo Antonio Tomaz
- Agronomy Department, Federal University of Espírito Santo/UFES, Alegre, Espírito Santo, Brazil
| | | | - Vanessa Moreira Osório
- Chemistry and Physical Department, Federal University of Espírito Santo/UFES, Alegre, Espírito Santo, Brazil
| | - Adilson Vidal Costa
- Chemistry and Physical Department, Federal University of Espírito Santo/UFES, Alegre, Espírito Santo, Brazil
| | | | - Danieli Grancieri Debona
- Department of Coffee Research Analysis Laboratory, Federal Institute of Espírito Santo, Venda Nova do Imigrante, Espírito Santo, Brazil
| | - Lucas Louzada Pereira
- Department of Coffee Research Analysis Laboratory, Federal Institute of Espírito Santo, Venda Nova do Imigrante, Espírito Santo, Brazil
| |
Collapse
|
28
|
da Silva Oliveira EC, da Luz JMR, de Castro MG, Filgueiras PR, Guarçoni RC, de Castro EVR, da Silva MDCS, Pereira LL. Chemical and sensory discrimination of coffee: impacts of the planting altitude and fermentation. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03912-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
From Plantation to Cup: Changes in Bioactive Compounds during Coffee Processing. Foods 2021; 10:foods10112827. [PMID: 34829108 PMCID: PMC8620865 DOI: 10.3390/foods10112827] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Coffee is consumed not just for its flavor, but also for its health advantages. The quality of coffee beverages is affected by a number of elements and a series of processes, including: the environment, cultivation, post-harvest, fermentation, storage, roasting, and brewing to produce a cup of coffee. The chemical components of coffee beans alter throughout this procedure. The purpose of this article is to present information about changes in chemical components and bioactive compounds in coffee during preharvest and postharvest. The selection of the appropriate cherry maturity level is the first step in the coffee manufacturing process. The coffee cherry has specific flavor-precursor components and other chemical components that become raw materials in the fermentation process. During the fermentation process, there are not many changes in the phenolic or other bioactive components of coffee. Metabolites fermented by microbes diffuse into the seeds, which improves their quality. A germination process occurs during wet processing, which increases the quantity of amino acids, while the dry process induces an increase in non-protein amino acid γ-aminobutyric acid (GABA). In the roasting process, there is a change in the aroma precursors from the phenolic compounds, especially chlorogenic acid, amino acids, and sugars found in coffee beans, to produce a distinctive coffee taste.
Collapse
|
30
|
Agnoletti BZ, Folli GS, Pereira LL, Pinheiro PF, Guarçoni RC, da Silva Oliveira EC, Filgueiras PR. Multivariate calibration applied to study of volatile predictors of arabica coffee quality. Food Chem 2021; 367:130679. [PMID: 34352695 DOI: 10.1016/j.foodchem.2021.130679] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/09/2021] [Accepted: 07/20/2021] [Indexed: 01/29/2023]
Abstract
The chemical complexity of coffee influences the sensory evaluation of the beverage, the main method used to define the quality of the coffee. In view of the subjectivity that method offers, we propose the association of an instrumental method with multivariate calibration (PLS and GA-SVR) to predict the quality of arabica coffee as support for sensory analysis. Arabica coffee samples were submitted to sensory evaluation using the Specialty Coffee Association (SCA) protocol and HS-SPME-GC/MS analysis. The models presented RMSEp results from 0.20 to 0.25, within the evaluation range the quality levels of sensory attributes (0.25). For the fragrance/aroma attribute, a value of R2p equal to 0.8503 was reached. 15 volatile compounds were identified as responsible for predicting the quality of arabica coffee, among which, 1-nonadecene was first reported as an impact compound in the prediction of important sensory attributes.
Collapse
Affiliation(s)
- Bárbara Zani Agnoletti
- Federal University of Espirito Santo/UFES, Department of Chemistry, Campus Goiabeiras, Avenida Fernando Ferrari, 514, CEP 29075-910 Vitória, Espírito Santo, Brazil.
| | - Gabriely Silveira Folli
- Federal University of Espirito Santo/UFES, Department of Chemistry, Campus Goiabeiras, Avenida Fernando Ferrari, 514, CEP 29075-910 Vitória, Espírito Santo, Brazil
| | - Lucas Louzada Pereira
- Federal Institute of Espírito Santo, Department of Food Science and Technology, Avenida Elizabeth Minete Perim, S/N, Bairro São Rafael, CEP 29375-000 Venda Nova do Imigrante, Espírito Santo, Brazil
| | - Patrícia Fontes Pinheiro
- Federal University of Viçosa, Department of Chemistry, Avenida Peter Henry Rolfs, S/N, CEP 36570-900 Viçosa, Minas Gerais, Brazil
| | - Rogério Carvalho Guarçoni
- Capixaba Institute of Technical Assistance, Research and Extension - INCAPER, Department of Statistics, Rua Afonso Sarlo, 160, Bento Ferreira, CEP 29052-010 Vitória, Espírito Santo, Brazil
| | - Emanuele Catarina da Silva Oliveira
- Federal Institute of Espírito Santo, Department of Food Science and Technology, Avenida Elizabeth Minete Perim, S/N, Bairro São Rafael, CEP 29375-000 Venda Nova do Imigrante, Espírito Santo, Brazil
| | - Paulo Roberto Filgueiras
- Federal University of Espirito Santo/UFES, Department of Chemistry, Campus Goiabeiras, Avenida Fernando Ferrari, 514, CEP 29075-910 Vitória, Espírito Santo, Brazil
| |
Collapse
|
31
|
Pires FDC, Pereira RGFA, Baqueta MR, Valderrama P, Alves da Rocha R. Near-infrared spectroscopy and multivariate calibration as an alternative to the Agtron to predict roasting degrees in coffee beans and ground coffees. Food Chem 2021; 365:130471. [PMID: 34252622 DOI: 10.1016/j.foodchem.2021.130471] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/14/2021] [Accepted: 06/24/2021] [Indexed: 11/30/2022]
Abstract
Agtron method is widely used in the industry to determine roasting degrees in whole and ground coffee but it suffers from some inconveniences associated with unavailability of equipment, high cost, and lack of reproductive results. This study investigates the feasibility to determine roasting degrees in coffee beans and ground specialty coffees using near-infrared (NIR) spectroscopy combined with multivariate calibration based on partial least squares (PLS) regression. Representative data sets were considered to cover all Agtron roasting profiles for whole and ground coffees. Proper development of models with outlier evaluation and complete validation using parameters of merit such as accuracy, adjust, residual prediction deviation, linearity, analytical sensitivity, and limits of detection and quantification are presented to prove their performance. The results indicated that predictive chemometric models, for intact coffee beans and ground coffee, could be used in the coffee industry as an alternative to Agtron, thus digitalizing the roasting quality control.
Collapse
Affiliation(s)
| | | | - Michel Rocha Baqueta
- Universidade Tecnológica Federal do Paraná (UTFPR), Campo Mourão, PR 87301-899, Brazil
| | - Patrícia Valderrama
- Universidade Tecnológica Federal do Paraná (UTFPR), Campo Mourão, PR 87301-899, Brazil.
| | - Roney Alves da Rocha
- Engineering Department, Federal University of Lavras (UFLA), Lavras, MG 37200-000, Brazil.
| |
Collapse
|
32
|
Infrared spectroscopy coupled with chemometrics in coffee post-harvest processes as complement to the sensory analysis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Fioresi DB, Pereira LL, Catarina da Silva Oliveira E, Moreira TR, Ramos AC. Mid infrared spectroscopy for comparative analysis of fermented arabica and robusta coffee. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107625] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Abstract
Coffee is one of the most consumed beverages in the world, and its popularity has prompted the necessity to constantly increase the variety and improve the characteristics of coffee as a general commodity. The popularity of coffee as a staple drink has also brought undesired side effects, since coffee production, processing and consumption are all accompanied by impressive quantities of coffee-related wastes which can be a threat to the environment. In this review, we integrated the main studies on fermentative yeasts used in coffee-related industries with emphasis on two different directions: (1) the role of yeast strains in the postharvest processing of coffee, the possibilities to use them as starting cultures for controlled fermentation and their impact on the sensorial quality of processed coffee, and (2) the potential to use yeasts to capitalize on coffee wastes—especially spent coffee grounds—in the form of eco-friendly biomass, biofuel or fine chemical production.
Collapse
|
35
|
Pereira LL, Júnior DB, de Sousa LHBP, dos Santos Gomes W, Cardoso WS, Guarçoni RC, ten Caten CS. Relationship Between Coffee Processing and Fermentation. FOOD ENGINEERING SERIES 2021. [DOI: 10.1007/978-3-030-54437-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Is Coffee (Coffea arabica L.) Quality Related to a Combined Farmer–Farm Profile? SUSTAINABILITY 2020. [DOI: 10.3390/su12229518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study proposed a classification model for 125 agricultural productive units (APUs) in Tolima, Colombia, to establish whether they are related to the quality of coffee produced. The model considered two aspects related to farmer profile and farm profile. The following proposed categories resulted from the coordinate obtained in relation to the two aspects: Low-Low, High-Low, Low-High, and High-High. The variables for each aspect were prioritized using the analysis hierarchical process (AHP). The coffee’s quality, sensory profile by attribute, and specific descriptors for each category were determined employing the Specialty Coffee Association (SCA) protocol. The sensory attributes were analyzed by way of one-way analysis of variance (ANOVA), and the Bonferroni test was used to compare by category, both with a significance level of α = 0.05. The model grouped the APUs by category and cup quality, with the High-High category achieving the best scores in the sensory analysis. The variables with the greatest relative weight within the AHP model constituted farmer stance regarding the use of good agricultural practices (44.5%) and farmer attitude toward excellence (40.6%) in the farmer’s profile. As part of the farm’s profile, environmental commitment level (38.0%) and international certifications (29.1%) were the greatest relative weights. Coffee in the High-High category was characterized by its notes of cinnamon, cocoa, chocolate, and dried vegetables.
Collapse
|
37
|
Brioschi Junior D, Carvalho Guarçoni R, de Cássia Soares da Silva M, Gomes Reis Veloso T, Catarina Megumi Kasuya M, Catarina da Silva Oliveira E, Maria Rodrigues da Luz J, Rizzo Moreira T, Grancieri Debona D, Louzada Pereira L. Microbial fermentation affects sensorial, chemical, and microbial profile of coffee under carbonic maceration. Food Chem 2020; 342:128296. [PMID: 33046284 DOI: 10.1016/j.foodchem.2020.128296] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 01/08/2023]
Abstract
In view of the possibility of diversifying metabolic routes promoted by fermentation, this study proposed a new processing method for coffee, which consists of adapting a technique already consolidated in winemaking, carbonic maceration. The assay occurred under anaerobic conditions with different time and temperature fermentation. The aim of this study was to determine the differences in coffee characteristics (sensorial, chemical, and microbial) after carbonic maceration and fermentation. Specialty Coffee Association protocol, nuclear magnetic resonance, and denaturing gradient gel electrophoresis were used in these analyzes. A significant functional relationship between global score and temperature (38 °C), for the fermentation time of 96 h was observed. Bacterial diversity and sensory characteristics had a positive correlation. Furthermore, trigonelline, formic acid, hydroxymethylfurfural, lipids, and γ-butyrolactone also contributed to score and sensory quality of coffee beverage. Thus, our data show consistent factors to infer on the microbiological action on the sensory quality of coffee beverage.
Collapse
Affiliation(s)
- Dério Brioschi Junior
- Instituto Federal do Espírito Santo, Laboratório de Análises e Pesquisa em Café - LAPC, Avenida Elizabeth Minete Perim, S/N, Bairro São Rafael, CEP: 29375-000, Venda Nova do Imigrante, Espírito Santo, Brazil
| | - Rogério Carvalho Guarçoni
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural (Incaper), Departamento de Estatística, Rua Afonso Sarlo, 160, Bento Ferreira, CEP: 29052-010, Vitória, Espírito Santo, Brazil
| | | | - Tomás Gomes Reis Veloso
- Universidade Federal de Viçosa, Departamento de Microbiologia, Avenida PH Rolfs S/N Viçosa, Minas Gerais-Mg 36570-000, Brazil
| | - Maria Catarina Megumi Kasuya
- Universidade Federal de Viçosa, Departamento de Microbiologia, Avenida PH Rolfs S/N Viçosa, Minas Gerais-Mg 36570-000, Brazil
| | - Emanuele Catarina da Silva Oliveira
- Instituto Federal do Espírito Santo, Laboratório de Análises e Pesquisa em Café - LAPC, Avenida Elizabeth Minete Perim, S/N, Bairro São Rafael, CEP: 29375-000, Venda Nova do Imigrante, Espírito Santo, Brazil
| | - José Maria Rodrigues da Luz
- Programa de Pós-graduação Multicêntrico em Bioquímica e Biologia Molecular, Instituto de Ciências Farmacêuticas, Universidade Federal de Alagoas, Brazil
| | - Taís Rizzo Moreira
- Universidade Federal do Espírito Santo, Departamento de Ciências Florestais e Madeireiras, Centro de Ciências e Engenharia Agrárias, Av. Governador Lindemberg, 316, CEP: 29550-000, Jerônimo Monteiro, Espírito Santo, Brazil
| | - Danieli Grancieri Debona
- Instituto Federal do Espírito Santo, Laboratório de Análises e Pesquisa em Café - LAPC, Avenida Elizabeth Minete Perim, S/N, Bairro São Rafael, CEP: 29375-000, Venda Nova do Imigrante, Espírito Santo, Brazil
| | - Lucas Louzada Pereira
- Instituto Federal do Espírito Santo, Laboratório de Análises e Pesquisa em Café - LAPC, Avenida Elizabeth Minete Perim, S/N, Bairro São Rafael, CEP: 29375-000, Venda Nova do Imigrante, Espírito Santo, Brazil.
| |
Collapse
|
38
|
Wang C, Sun J, Lassabliere B, Yu B, Liu SQ. Coffee flavour modification through controlled fermentation of green coffee beans by Saccharomyces cerevisiae and Pichia kluyveri: Part II. Mixed cultures with or without lactic acid bacteria. Food Res Int 2020; 136:109452. [PMID: 32846547 DOI: 10.1016/j.foodres.2020.109452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/13/2020] [Accepted: 06/14/2020] [Indexed: 10/24/2022]
Abstract
This study attempted to achieve coffee flavour biotransformation through controlled fermentation of sterilsed green coffee beans with a coculture of Saccharomyces cerevisiae and Pichia kluyveri (FYco) and a sequential inoculation of Lc. lactis subsp. cremoris and the yeast coculture (FLYco). Isoamyl acetate, 2-phenylethyl acetate, and ethyl octanoate were produced by 5.76, 1.35 and 0.54 mg/kg, respectively, in FYco fermented green coffee beans. Compared to the green coffee bean fermented by the yeast monocultures in previous study, FYco led to a 1.2- and 4.1-times elevation in production of isoamyl acetate and 2-phenylethyl acetate, respectively. FLYco further increased acetate ester production by more than 2 times relative to FYco. The esters produced in FYco and FLYco partially survived the roasting process and imparted the roasted coffees with considerable fruity and winey aromas. The lactic acid fermentation in FLYco increased the acidity in green coffee beans, which promoted the formation of caramel-smelling furfurals and preservation of acidity and sweetness in the roasted coffees. Apart from the mere additions of flavour modification from individual strains, the proper combination of multiple strains can result in synergistic effects that enhanced the modulating activities of individual strains and further enhance flavour complexity of the resulted coffee.
Collapse
Affiliation(s)
- Chenhui Wang
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117546, Singapore
| | - Jingcan Sun
- Mane SEA PTE LTD, Biopolis Drive 3, 138623, Singapore
| | | | - Bin Yu
- Mane SEA PTE LTD, Biopolis Drive 3, 138623, Singapore
| | - Shao Quan Liu
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117546, Singapore; National University of Singapore (Suzhou) Research Institute, No. 377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| |
Collapse
|