1
|
Shao F, Zhang Y, Wan X, Duan Y, Cai M, Hu K, Zhang H. Hofmeister ion effects induced by different acidifiers and alkalizers improve the techno-functional properties of complex rapeseed protein during pH-driven self-assembly. Food Chem 2025; 464:141405. [PMID: 39406138 DOI: 10.1016/j.foodchem.2024.141405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 09/05/2024] [Accepted: 09/21/2024] [Indexed: 11/21/2024]
Abstract
pH-driven method is an effective strategy to prepare complex protein. This study provides guidance on how to select acidifiers and alkalizers from view of Hofmeister ion effects. Cations and anions regulated the molecular structure (particle size, surface charge, protein folding/unfolding, structural orderliness) of complex rapeseed proteins (CRPs) mainly via electrostatic and hydrogen bond. No evident changes were found in the molecular weight distribution, but their distribution on oil/air-water interface varied greatly. Various techno-functional properties of CRPs were synergistically improved: Citrate3- and Na+ increased the emulsifying activity index of CRPs from 80 to 102.21 m2/g; Citrate3-, K+ and Na+ made the foaming stability of CRPs close to 80 % after 60 min of storage. Moreover, the oil/water-holding and gel properties of CRPs were regulated effectively. These findings demonstrate the key role of Hofmeister ion effects in improving CRPs properties, contributing to develop, select, and apply novel acidifiers and alkalizers during pH-driven treatment.
Collapse
Affiliation(s)
- Feng Shao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuanlong Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xia Wan
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kai Hu
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Shao F, Zhang Y, Wan X, Duan Y, Cai M, Hu K, Zhang H. Regulation in protein hydrophobicity via whey protein-zein self-assembly for improving the techno-functional properties of protein. Food Chem 2025; 463:141174. [PMID: 39305670 DOI: 10.1016/j.foodchem.2024.141174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/10/2024] [Accepted: 09/05/2024] [Indexed: 11/06/2024]
Abstract
This work aims to verify the feasibility of improving protein function by regulating its hydrophobicity and reveal the relationship between structure and function. Whey protein (WP) and zein were the source of hydrophilic and hydrophobic polypeptide chains to prepare complex proteins (CPs) with much different structure and function. The results showed that the water- and oil-holding capacities, emulsifying properties and gel properties of CPs can be significantly improved via changing WP-zein ratio. All these can be attributed to the changes in protein hydrophobicity, which not only regulated the binding strength of protein to water and oil, but also modified their molecular structure (surface characteristics, availability of free thiols, α-helix, β-sheet, random coil and the formation of disulfide bonds). Notably, optimal protein hydrophobicity varies greatly among different functional properties. Overall, the techno-functional properties of protein can be improved via tuning its hydrophobicity, which may provide novel sights in protein modification.
Collapse
Affiliation(s)
- Feng Shao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuanlong Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xia Wan
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kai Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Zheng D, Yu D, Lin S, Ji L, Sun Y, Liu C, Zhang X, Yu Z. Enhancing salt-induced gelation of egg yolk granules through pH-ultrasound combined treatment: A physicochemical and microstructural analysis. ULTRASONICS SONOCHEMISTRY 2024; 111:107101. [PMID: 39426028 PMCID: PMC11513849 DOI: 10.1016/j.ultsonch.2024.107101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/13/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Salted duck eggs are a popular food product, but their high salt content and uneven salt distribution can reduce acceptability. This study investigated the effects of pH-high-intensity ultrasound combined treatment on the salt-induced gelation properties of egg yolk granules. The results showed that the pH5 + 150 W treatment group exhibited the best physical and gelation properties, with the smallest particle size (1597.33 nm), optimal dispersibility (PDI 0.29), and good stability. The gelation properties of this group also demonstrated excellent springiness (0.30 mm), cohesiveness (0.56), and gumminess (0.05 N). Furthermore, the pH5 + 150 W group had the highest water holding capacity of 97.42 % and relatively high hydrophobicity (173.39 μg). Notably, it also showed high oil exudation (2.83 %) and good sandiness (62.07 %). The pH5 + 150 W led to a significant redshift of the fluorescence peak at 335 nm and an enhancement of the peak intensity at 562 nm compared to the control group. Structural characterization revealed a more ordered protein structure and a uniform gel structure with enhanced electrostatic repulsion between oil droplets. Secondary structure analysis of the proteins showed a significant reduction in α-helix and β-sheet, while β-turn and random coil increased. In summary, the pH5 + 150 W treatment displayed the best gelation properties, providing theoretical guidance for enhancing the processing performance of yolk and expanding their application in the food industry.
Collapse
Affiliation(s)
- Dan Zheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Danrong Yu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Shuai Lin
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Liting Ji
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Yaogui Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Chunyou Liu
- Department of Food Science and Technology, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Xiaoyu Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Zhihui Yu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| |
Collapse
|
4
|
Zhang Y, Lyu H, Cao J, Wang J, Teng W, Wang Y. Constructing myosin/high-density lipoprotein composite emulsions: Roles of pH on emulsification stability, rheological and structural properties. Food Res Int 2024; 188:114440. [PMID: 38823857 DOI: 10.1016/j.foodres.2024.114440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/23/2024] [Accepted: 04/27/2024] [Indexed: 06/03/2024]
Abstract
The emulsification activity of myosin plays a significant role in affecting quality of emulsified meat products. High-density lipoprotein (HDL) possesses strong emulsification activity and stability due to its structural characteristics, suggesting potential for its utilization in developing functional emulsified meat products. In order to explore the effect of HDL addition on emulsification stability, rheological properties and structural features of myosin (MS) emulsions, HDL-MS emulsion was prepared by mixing soybean oil with isolated HDL and MS, with pH adjustments ranging from 3.0 to 11.0. The results found that emulsification activity and stability in two emulsion groups consistently improved as pH increased. Under identical pH, HDL-MS emulsion exhibited superior emulsification behavior as compared to MS emulsion. The HDL-MS emulsion under pH of 7.0-11.0 formed a viscoelastic protein layer at the interface, adsorbing more proteins and retarding oil droplet diffusion, leading to enhanced oxidative stability, compared to the MS emulsion. Raman spectroscopy analysis showed more flexible conformational changes in the HDL-MS emulsion. Microstructural observations corroborated these findings, showing a more uniform distribution of droplet sizes in the HDL-MS emulsion with smaller particle sizes. Overall, these determinations suggested that the addition of HDL enhanced the emulsification behavior of MS emulsions, and the composite emulsions demonstrated heightened responsiveness under alkaline conditions. This establishes a theoretical basis for the practical utilization of HDL in emulsified meat products.
Collapse
Affiliation(s)
- Yuemei Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Hangbin Lyu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Pharmaceutical Sciences, Ningbo University, 315211 Ningbo, China
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Jinpeng Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Wendi Teng
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Ying Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China.
| |
Collapse
|
5
|
Luo X, Tan J, Yao Y, Wu N, Chen S, Xu L, Zhao Y, Tu Y. Effects of different temperatures on the physicochemical characteristics, microstructure and protein structure of preserved egg yolk. Food Chem X 2024; 22:101278. [PMID: 38524781 PMCID: PMC10957459 DOI: 10.1016/j.fochx.2024.101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
To clarify the mechanism of lower temperatures promoted the solidification of preserved egg yolk, the effects of temperature (4 °C, 10 °C and 25 °C) on the physicochemical properties, microstructure and protein structure of preserved egg yolk were studied. Results showed that the exterior egg yolk (EEY) exhibited higher pH, hardness and free sulfhydryl content at low-temperature pickling. The microstructure showed that the EEY gradually formed a denser gel network structure at lower temperatures. Electrophoresis results and Fourier transform infrared spectroscopy (FTIR) indicated that there were different degrees of protein degradation and cross-linking of proteins in the IEY (the interior egg yolk) and EEY and the decrease of β-sheets in the secondary structure was accompanied by an increase of β-turns during the formation of egg yolk gels. These results indicated that egg yolk solidification was faster and denser gel structure at 4 °C and 10 °C.
Collapse
Affiliation(s)
- Xianlong Luo
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Nanchang 330045, China
| | - Ji'en Tan
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Nanchang 330045, China
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Nanchang 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Nanchang 330045, China
| | - Lilan Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Nanchang 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Nanchang 330045, China
| |
Collapse
|
6
|
Shao F, Zhang Y, Wan X, Duan Y, Cai M, Zhang H. Improving the properties of whey protein isolate-zein nanogels with novel acidifiers: Re-dispersity, stability and quercetin bioavailability. Int J Biol Macromol 2024; 266:131284. [PMID: 38569984 DOI: 10.1016/j.ijbiomac.2024.131284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Low bioavailability of quercetin (Que) reduces its preclinical and clinical benefits. In order to improve Que bioavailability, a novel whey protein isolate (WPI)-zein nanogel was prepared by pH-driven self-assembly and heat-induced gelatinization. The results showed that hydrochloric acid can be substituted by both acetic acid and citric acid during the pH-driven process. After encapsulation, the bioavailability of Que in nanogels (composed of 70 % WPI) induced by different acidifiers increased to 19.89 % (citric acid), 21.65 % (hydrochloric acid) and 24.34 % (acetic acid), respectively. Comparatively, nanogels induced by acetic acid showed higher stability (pH and storage stability), re-dispersibility (75.62 %), Que bioavailability (24.34 %), and antioxidant capacity (36.78 % for DPPH scavenging rates). s improved performance of nanogels. In mechanism, acetic acid significantly balanced different intermolecular forces by weakening "acid-induced denaturation" effect. Moreover, the faster binding of Que and protein as well as higher protein molecular flexibility and randomness (higher ratio of random coil) was also observed in nanogels induced by acetic acid. All of these changes contributed to improve nanogels performances. Overall, WPI-zein nanogels induced by acetic acid might be a safe, efficiency and stable delivery system to improve the bioavailability of hydrophobic active ingredients.
Collapse
Affiliation(s)
- Feng Shao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuanlong Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xia Wan
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
7
|
Li X, Huang Q, Zhang Y, Huang X, Wu Y, Geng F, Huang M, Luo P, Li X. Study on the Mechanism of Modified Cellulose Improve the Properties of Egg Yolk gel. Food Chem X 2023; 20:100877. [PMID: 38144820 PMCID: PMC10740026 DOI: 10.1016/j.fochx.2023.100877] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/27/2023] [Accepted: 09/11/2023] [Indexed: 12/26/2023] Open
Abstract
Natural fiber is not suitable for modifying yolk gel as a modifier because of its large size and high compactness. In this study, two kinds of modified cellulose were selected to improve the thermal gel properties of yolk. The results showed that the two kinds of cellulose promoted the formation of ordered structure in yolk gel. The ordered gel network not only improved the texture properties and rheological properties, but also improved the water retention of yolk gel significantly. CMC and CNFC at the same concentration, the modification effect of CMC on yolk gel was better than CNFC because of its excellent dispersion. However, high concentration of CNFC (1.20-1.60%) disrupted the cross-linking and ordered structure formation of yolk protein, and the quality of gel was significantly reduced.
Collapse
Affiliation(s)
- Xin Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Qun Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
| | - Yufeng Zhang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiang Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongyan Wu
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Mingzheng Huang
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
| | - Peng Luo
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Xiefei Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
8
|
Liu Y, Chi Y, Chi Y. Effects of CaCl 2 on the structure of high-density lipoprotein and low-density lipoprotein isolated from rapidly salted separated egg yolk. Food Res Int 2023; 173:113413. [PMID: 37803748 DOI: 10.1016/j.foodres.2023.113413] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
According to previous research, adding CaCl2 to the salting solution improves the quality of salted separated egg yolk. To further understand the improvement mechanism of CaCl2, this paper investigated the effect of CaCl2 on the structure of high-density lipoprotein (HDL) and low-density lipoprotein (LDL) during the salting process. The results indicated that the addition of CaCl2 can affect the composition of HDL and LDL apolipoproteins, improving the orderliness of the HDL structure and the looseness of the LDL structure. It was discovered by atomic force microscopy (AFM) that adding CaCl2 to the salting solution can weaken the aggregation behavior of HDL. Simultaneously, the addition of CaCl2 decreased the relative content of intermolecular β-sheets in the secondary structure of HDL and LDL, influenced their tertiary conformation, and prevented HDL and LDL from participating in the formation of a three-dimensional gel structure by influencing their hydrogen bonds and hydrophobic interactions.
Collapse
Affiliation(s)
- Yaotong Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
9
|
Zheng M, Chen S, Yao Y, Wu N, Xu M, Zhao Y, Tu Y. A review on the development of pickled eggs: rapid pickling and quality optimization. Poult Sci 2023; 102:102468. [PMID: 36682130 PMCID: PMC9876998 DOI: 10.1016/j.psj.2022.102468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023] Open
Abstract
Pickled eggs enjoy a long processing history with unique flavor and rich nutrition but suffer from long pickling cycle due to the limitations of traditional processing methods. In terms of quality, salted egg whites have the disadvantage of high sodium content, and salted egg yolks have problems such as hard core and black circle around outer layer. Likewise, the quality of preserved eggs is challenged by the black spots (dots) on the eggshells and the high content of heavy metals in the egg contents. The sustainable development of traditional pickled eggs are hindered by these defects and extensive research has been carried out in recent years. Based on the elaboration of the quality formation mechanism of salted eggs and preserved eggs, this paper reviewed the processing principles and applications of rapid pickling technologies like ultrasonic technology, magnetoelectric-assisted technology, water cycle technology, vacuum decompression technology, and pulsed pressure technology, as well as the quality optimization methods such as controlling the sodium content of the salted egg whites, improving the quality of salted egg yolks, promoting the quality of lead-free preserved eggs, and developing heavy metal-free preserved eggs. In the end, the future development trend of traditional pickled eggs was summarized and prospected in order to provide theoretical guidance for the actual production.
Collapse
Affiliation(s)
- Mengting Zheng
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
10
|
Xue H, Han T, Xu M, Yao Y, Wu N, Chen S, Zhang G, Wang W, Zhao Y, Tu Y. Processing technology, principle, and nutritional characteristics of preserved eggs: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Use of Incinerated Eggshells to Produce Pidan. SUSTAINABILITY 2022. [DOI: 10.3390/su14116797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Preserved eggs (pidans) are used in traditional Chinese cuisines. However, the alkaline conditions and metal ions generated during its preparation have caused some concerns. This study developed an innovative process for pidan processing using incinerated eggshell powder, an abundant by-product that can generate a highly alkaline solution and provide calcium ions (Ca2+). Either 0.5, 3, or 5% of the eggshell powder solution was used for basic pickling. Different combinations of ZnSO4 (0.175%), MgCl2 (0.08%), and CuSO4 (0.16%) were added. Duck eggs were pickled for 25 days at 25–27 °C, followed by 14 days of ripening. The pidan processed in 5% eggshell powder containing 0.175% ZnSO4 demonstrated the closest physiochemical and sensory characteristics to commercial pidans. Thus, the results offer a new technique to manufacture pidans and reduce the harmful impact of metal ions on human health and the environment.
Collapse
|
12
|
Emulsifying and emulsion stabilizing properties of hydrolysates of high-density lipoprotein from egg yolk. Food Chem 2022; 369:130891. [PMID: 34507089 DOI: 10.1016/j.foodchem.2021.130891] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/31/2021] [Accepted: 08/15/2021] [Indexed: 12/13/2022]
Abstract
High-density lipoprotein (HDL) was extracted from hen eggs and enzymatic hydrolysates were formed by neutral protease, trypsin and alkaline protease, which were named as EHN, EHT and EHA, respectively. The solubility of hydrolysates was significantly higher than that of HDL, especially that of EHA significantly increased from 7.69% to 27.54% when it was hydrolyzed for 1.5 h. The emulsifying properties of EHT, EHA and EHN exhibited an increase trend as a function of hydrolysis time and reached the peak values at 3.5, 1.5 and 3.5 h, respectively. This improvement was attributed to the generation of soluble peptides fragments and the exposure of ionizable residues. At different pH, temperatures and ionic strengths, the stability of emulsions stabilized by hydrolysates was higher than that of HDL, especially for emulsions prepared by EHT. These findings might indicate feasible guidance to broaden the application of HDL and enzymatic hydrolysates in emulsions.
Collapse
|
13
|
Liu WJ, Li XL, Xu BC, Zhang B. Self-Assembled Micellar Nanoparticles by Enzymatic Hydrolysis of High-Density Lipoprotein for the Formation and Stability of High Internal Phase Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11015-11025. [PMID: 34494822 DOI: 10.1021/acs.jafc.1c03070] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, the influence of pH on the conformational state of EHT, which was obtained from the enzymatic hydrolysis of trypsin, and the stabilizing properties of high internal phase emulsions have been demonstrated. Critical micelle concentration and transmission electron microscopy results exhibited the formation of micellar nanoparticles with mean diameters ranging from 108 to 1359.5 nm. The results of solubility, surface hydrophobicity, and conformations indicated that EHT tended to act as particulate emulsifiers at pH 3, 5, and 7, while at alkaline pH, it was more like a polymeric emulsifier, which could be proven by confocal laser scanning microscopy. The EHT at pH 7 exhibited better stabilizing properties than those at pH 9 and 11 as influenced by storage, temperature, and ionic strength. These findings might be of great importance for broadening the range of sustainable applications of amphiphilic peptides in foods and pharmaceuticals.
Collapse
Affiliation(s)
- Wen-Jie Liu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| | - Xiao-Long Li
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| | - Bao-Cai Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| | - Bao Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| |
Collapse
|
14
|
Li X, Wang YM, Sun CF, Lv JH, Yang YJ. Comparative Study on Foaming Properties of Egg White with Yolk Fractions and Their Hydrolysates. Foods 2021; 10:2238. [PMID: 34574348 PMCID: PMC8468132 DOI: 10.3390/foods10092238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 12/03/2022] Open
Abstract
As an excellent foaming agent, egg white protein (EWP) is always contaminated by egg yolk in the industrial processing, therefore, decreasing its foaming properties. The aim of this study was to simulate the industrial EWP (egg white protein with 0.5% w/w of egg yolk) and characterize their foaming and structural properties when hydrolyzed by two types of esterase (lipase and phospholipase A2). Results showed that egg yolk plasma might have been the main fraction, which led to the poor foaming properties of the contaminated egg white protein compared with egg yolk granules. After hydrolyzation, both foamability and foam stability of investigated systems thereof (egg white protein with egg yolk, egg white protein with egg yolk plasma, and egg white protein with egg yolk granules) increased significantly compared with unhydrolyzed ones. However, phospholipids A2 (PLP) seemed to be more effective on increasing their foaming properties as compared to those systems hydrolyzed by lipase (LP). The schematic diagrams of yolk fractions were proposed to explain the aggregation and dispersed behavior exposed in their changes of structures after hydrolysis, suggesting the aggregated effects of LP on yolk plasma and destructive effects of PLP on yolk granules, which may directly influence their foaming properties.
Collapse
Affiliation(s)
- Xin Li
- School of Life Sciences, Yantai University, Yantai 264005, China; (C.-F.S.); (J.-H.L.)
| | - Yue-Meng Wang
- School of Food and Biological Engineering, Yantai Institute of Technology, Yantai 264003, China;
| | - Cheng-Feng Sun
- School of Life Sciences, Yantai University, Yantai 264005, China; (C.-F.S.); (J.-H.L.)
| | - Jian-Hao Lv
- School of Life Sciences, Yantai University, Yantai 264005, China; (C.-F.S.); (J.-H.L.)
| | - Yan-Jun Yang
- School of Food Science, Jiangnan University, Wuxi 214122, China;
| |
Collapse
|
15
|
Cao D, Feng F, Xiong C, Li J, Xue H, Zhao Y, Wang Y, Tu Y, Zhao Y. Changes in lipid properties of duck egg yolks under extreme processing conditions. Poult Sci 2021; 100:101140. [PMID: 34091349 PMCID: PMC8182270 DOI: 10.1016/j.psj.2021.101140] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 11/20/2022] Open
Abstract
The changes in lipid properties of duck egg yolks during processing may affect the quality of egg yolks. In this paper, various physicochemical and instrumental methods were used to study the changes of lipid characteristics of duck egg yolks under extreme processing conditions such as high salt, high salt-heat synergy and strong alkali. The results showed that both the high salt and high salt-heat treatments resulted in the decrease of the moisture content and the increase of the oil exudation of egg yolks. The iodine value of the lipid extracted from salted egg yolks with or without heat treatment decreased. However, strong alkali treatment increased the moisture content of egg yolks, and the oil exudation increased at first and then decreased. The iodine value of the lipid obtained from preserved egg yolks showed an overall trend with first increase and then decrease, and the saponification value of the lipid got from preserved egg yolks was lower than the lipid got from the raw salted egg yolks. According to the conjugated diene acid value and thiobarbituric acid value, the lipid of egg yolks was oxidized to different degrees under the three processing conditions. At the end of pickling, the fatty acid content of the lipid acquired from egg yolks all increased. Therefore, all three extreme treatments significantly changed the lipid properties of duck egg yolks.
Collapse
Affiliation(s)
- Danhui Cao
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Feng Feng
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Chunhong Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianke Li
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hui Xue
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ying Zhao
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yuting Wang
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
16
|
Zhao Y, Feng F, Yang Y, Xiong C, Xu M, Tu Y. Gelation behavior of egg yolk under physical and chemical induction: A review. Food Chem 2021; 355:129569. [PMID: 33773456 DOI: 10.1016/j.foodchem.2021.129569] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/22/2021] [Accepted: 03/07/2021] [Indexed: 02/08/2023]
Abstract
Gelation is one of the most important functional properties of egg yolk. High content and rich variety of protein and lipid in egg yolk are the material basis of gel formation. The natural structure of proteins in egg yolk is unfolded under treatments such as heat, alkali, salt, etc., thus causing the interactions between protein-protein and protein-lipid and forming the gel. Under different methods of induction, egg yolk is solidified to form different three-dimensional network structures. Different inducing methods exhibit different gel formation mechanisms. In this paper, the gelation behavior of egg yolk and its internal molecular agglomeration mechanism induced by heat, alkali, salt, freezing, high pressure, and salt-heating synergy were reviewed to provide a reference for further studies on the formation mechanisms and product development of egg yolk gel.
Collapse
Affiliation(s)
- Yan Zhao
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China.
| | - Feng Feng
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China.
| | - Yuan Yang
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Chunhong Xiong
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China.
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|