1
|
Xu J, Lu J, Fu S, Li N, Zhao Y, Wang K, Liu Z, Chen T, Huang J, Zhu M. Simultaneous detection of amino acids and short-chain fatty acids in tea using rapid pre-column derivatization coupled with GC-MS: Exploring their spatial distribution in tea trees and the impact of processing techniques on their content. Food Chem 2025; 480:143800. [PMID: 40117814 DOI: 10.1016/j.foodchem.2025.143800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/19/2025] [Accepted: 03/06/2025] [Indexed: 03/23/2025]
Abstract
Amino acids (AAs) and short-chain fatty acids (SCFAs) are key to tea's flavor and health benefits. This study developed a novel GC-MS and GC-FID method using rapid (3 min), high-sensitivity (0.00062 μg mL-1 < LOD < 0.04964 μg mL-1) pre-column derivatization with propyl chloroformate to simultaneously measure 17 AAs and 9 SCFAs. The spatial distribution analysis revealed total AAs and theanine were enriched in tender stems, buds, and tender leaves, while mature and older leaves had lower concentrations. Within the same leaf, theanine, glutamic acid, and acetic acid are primarily located near the leaf veins. Six teas from the same raw material were analyzed for processing impacts, showing green, white, yellow, and oolong teas had higher AA and theanine levels than black and dark teas. Certain dark teas exhibited elevated acetic acid levels compared to other teas. This study enhances our understanding of AA and SCFA profiles, providing valuable insights for tea research.
Collapse
Affiliation(s)
- Junren Xu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Key Laboratory of Tea Science of Ministry of Education, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Jing Lu
- Technology Center of Changsha Customs, Hunan Key Laboratory of Food Safety Science & Technology, Changsha 410004, PR China
| | - Shanliang Fu
- Technology Center of Changsha Customs, Hunan Key Laboratory of Food Safety Science & Technology, Changsha 410004, PR China
| | - Na Li
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Key Laboratory of Tea Science of Ministry of Education, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Yiqiao Zhao
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Key Laboratory of Tea Science of Ministry of Education, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Kunbo Wang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Key Laboratory of Tea Science of Ministry of Education, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Zhonghua Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Key Laboratory of Tea Science of Ministry of Education, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Taolin Chen
- Tea College of Guizhou University, Guiyang 550025, China.
| | - Jianan Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Key Laboratory of Tea Science of Ministry of Education, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China.
| | - Mingzhi Zhu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Key Laboratory of Tea Science of Ministry of Education, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China.
| |
Collapse
|
2
|
Wu X, Li T, He Y, He H, Tong T, Fan B, Gao J, Xu J. Visualizing the spatial distribution of functional metabolites in the root of Codonopsis pilosula: An investigation integrating metabolomics, serum pharmacochemistry, and MALDI-MSI. J Pharm Biomed Anal 2025; 262:116873. [PMID: 40203560 DOI: 10.1016/j.jpba.2025.116873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Codonopsis pilosula is a traditional Chinese tonic herb commonly used as food and medicine, particularly for the treatment of spleen deficiency syndrome. However, the specific bioactive components responsible for C. pilosula effects remain unclear, and their distribution in the root of C. pilosula has not been fully elucidated due to the lack of efficient analytical techniques. In this work, we combined metabolomics with serum pharmacochemistry to investigate C. pilosula effects in a rat model of spleen deficiency syndrome. Pearson correlative analysis was applied to discover that 8 chemical compounds, including lobetyolin, atractylenolide III, syringin, luteolin, asperuloside, O-acetyl-L-serine, L-citrulline and creatine, were significantly correlated with biomarkers and considered as potential pharmacodynamic basis of C. pilosula. Furthermore, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was performed to visualize the spatial distribution of the bioactive substances in the root of C. pilosula. L-citrulline was widely distributed in roots. The content of atractylenolide III and luteolin in the cortex and xylem was much higher than that in the phloem. O-Acetyl-L-serine was present in the entire phloem and a small portion of the xylem. Creatine, lobetyolin, asperuloside, and syringin were mostly distributed in the peridermal cortex, and their contents were low. By integrating metabolomics, serum pharmacochemistry and MALDI-MSI, our proposed analytical method elucidated the material basis of C. pilosula and figured out their spatial distribution in the root of C. pilosula, which provides new insights for improving the quality of medicinal herbs.
Collapse
Affiliation(s)
- Xinjie Wu
- School of Pharmacy, Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Engineering Research Center of Characteristic Drug Development, Shanxi Medical University, Taiyuan 030001, PR China
| | - Tongtong Li
- School of Pharmacy, Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Engineering Research Center of Characteristic Drug Development, Shanxi Medical University, Taiyuan 030001, PR China
| | - Yan He
- School of Pharmacy, Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Engineering Research Center of Characteristic Drug Development, Shanxi Medical University, Taiyuan 030001, PR China
| | - Hui He
- School of Pharmacy, Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Engineering Research Center of Characteristic Drug Development, Shanxi Medical University, Taiyuan 030001, PR China
| | - Tong Tong
- School of Pharmacy, Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Engineering Research Center of Characteristic Drug Development, Shanxi Medical University, Taiyuan 030001, PR China
| | - Boyi Fan
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Jianping Gao
- School of Pharmacy, Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Engineering Research Center of Characteristic Drug Development, Shanxi Medical University, Taiyuan 030001, PR China.
| | - Jinfang Xu
- School of Pharmacy, Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Engineering Research Center of Characteristic Drug Development, Shanxi Medical University, Taiyuan 030001, PR China.
| |
Collapse
|
3
|
Sarkar J, Singh R, Chandel S. Understanding LC/MS-Based Metabolomics: A Detailed Reference for Natural Product Analysis. Proteomics Clin Appl 2025; 19:e202400048. [PMID: 39474988 DOI: 10.1002/prca.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 01/14/2025]
Abstract
Liquid chromatography, when used in conjunction with mass spectrometry (LC/MS), is a powerful tool for conducting accurate and reproducible investigations of numerous metabolites in natural products (NPs). LC/MS has gained prominence in metabolomic research due to its high throughput, the availability of multiple ionization techniques and its ability to provide comprehensive metabolite coverage. This unique method can significantly influence various scientific domains. This review offers a comprehensive overview of the current state of LC/MS-based metabolomics in the investigation of NPs. This review provides a thorough overview of the state of the art in LC/MS-based metabolomics for the investigation of NPs. It covers the principles of LC/MS, various aspects of LC/MS-based metabolomics such as sample preparation, LC modes, method development, ionization techniques and data pre-processing. Moreover, it presents the applications of LC/MS-based metabolomics in numerous fields of NPs research such as including biomarker discovery, the agricultural research, food analysis, the study of marine NPs and microbiological research. Additionally, this review discusses the challenges and limitations of LC/MS-based metabolomics, as well as emerging trends and developments in this field.
Collapse
Affiliation(s)
- Jyotirmay Sarkar
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Shivani Chandel
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
4
|
Norouzi H, Dastan D, Abdullah FO, Al-Qaaneh AM. Recent advances in methods of extraction, pre-concentration, purification, identification, and quantification of kaempferol. J Chromatogr A 2024; 1735:465297. [PMID: 39243588 DOI: 10.1016/j.chroma.2024.465297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
As a naturally widely-occurring dietary, cosmetic, and therapeutic flavonoid, kaempferol has gained much consideration for its nutritional and pharmaceutical properties in recent years. Although there have been performed a high number of studies associated with different aspects of kaempferol's analytical investigations, the lack of a comprehensive summary of the various methods and other plant sources that have been reported for this compound is being felt, especially for many biological applications. This study, aimed to provide a detailed compilation consisting of sources (plant species) and analytical information that was precisely related to the natural flavonoid (kaempferol). There is a trend in analytical research that supports the application of modern eco-friendly instruments and methods. In conclusion, ultrasound-assisted extraction (UAE) is the most general advanced method used widely today for the extraction of kaempferol. During recent years, there is an increasing tendency towards the identification of kaempferol by different methods.
Collapse
Affiliation(s)
- Hooman Norouzi
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Dara Dastan
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Fuad O Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq; Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, Iraq.
| | - Ayman M Al-Qaaneh
- Department of Allied Health Sciences, Al-Balqa Applied University (BAU), Al-Salt 19117 Jordan
| |
Collapse
|
5
|
Chen Y, Han Y, Tong H. Amino acids and flavonoids analysis reveals quality constituents difference among different albino tea resources. Food Chem 2024; 449:139200. [PMID: 38574523 DOI: 10.1016/j.foodchem.2024.139200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
Albino tea has attracted increased attention due to its unique flavor. To reveal the difference in key metabolites constituting the important quality of different tea resources, amino acids and flavonoids profiles in three albino resources with different degrees of albinism and one normal green variety were comprehensively investigated. K-means analysis revealed 35 amino acids were significantly enriched in 'Jibai', while 3 and 2 were specifically accumulated in 'Huangjinya' and 'Anjibaicha', respectively. Based on OPLS-DA models, 40, 31 and 45 significantly differential flavonoids were determined in 'Huangjinya', 'Anjibaicha' and 'Jibai' compared to 'Fudingdabaicha', and most were down-regulated. Among them, 10, 5 and 13 differential flavonoids were exclusively found in 'Huangjinya', 'Anjibaicha' and 'Jibai', respectively, which may contribute to unique quality for different resources. The differential flavonoids and amino acids involved in their metabolic pathways were obviously different among four resources, resulting in the difference in tea quality and flavor.
Collapse
Affiliation(s)
- Yingjuan Chen
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China.
| | - Yuxin Han
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Huarong Tong
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Xi H, Xu W, He F, Liu Z, Wang Y, Xie J. Spatial metabolome of biosynthesis and metabolism in Cyclocarya paliurus leaves. Food Chem 2024; 443:138519. [PMID: 38301549 DOI: 10.1016/j.foodchem.2024.138519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/15/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
A large number of plant metabolites were discovered, but their biosynthetic and metabolic pathways are still largely unknown. However, the spatial distribution of metabolites and their changes in metabolic pathways can be supplemented by mass spectrometry imaging (MSI) techniques. For this purpose, the combination of desorption electrospray ionization (DESI)-MSI and non-targeted metabolomics was used to obtain the spatial distribution information of metabolites in the leaves of Cyclocarya paliurus (Batal.) Iljinskaja (C. paliurus). The sample pretreatment method was optimized to have higher detection sensitivity in DESI. The changes of metabolites in C. paliurus were analyzed in depth with the integration of the spatial distribution information of metabolites. The main pathways for biosynthesis of flavonoid precursor and the effect of changes in compound structure on the spatial distribution were found. Spatial metabolomics can provide more metabolite information and a platform for the in-depth understanding of the biosynthesis and metabolism in plants.
Collapse
Affiliation(s)
- Huiting Xi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Weixiang Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Fengxia He
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Zhongwei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yuanxing Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
7
|
Wu W, Shi J, Jin J, Liu Z, Yuan Y, Chen Z, Zhang S, Dai W, Lin Z. Comprehensive metabolic analyses provide new insights into primary and secondary metabolites in different tissues of Jianghua Kucha tea ( Camellia sinensis var. assamica cv. Jianghua). Front Nutr 2023; 10:1181135. [PMID: 37275632 PMCID: PMC10235520 DOI: 10.3389/fnut.2023.1181135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/12/2023] [Indexed: 06/07/2023] Open
Abstract
Background Jianghua Kucha (JHKC) is a special tea germplasm with enriched specialized secondary metabolites, including theacrine, non-epimeric flavanols and methylated flavanols. Moreover, primary metabolites provide precursors and energy for the production of secondary metabolites. However, the accumulation patterns of primary and secondary metabolites in different tissues of JHKC are unclear. Methods The changes of primary and secondary metabolites and related metabolic pathways (primary and secondary metabolism) in different JHKC tissues (the bud, 1st-4th leaves, and new stem) were investigated via metabolomics analysis with ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS). Results Significant differences were observed in 68 primary and 51 secondary metabolites mainly related with the pathways of starch and sucrose, amino acids, caffeine, and flavanols metabolism and TCA cycle. The bud exhibited higher levels of glucose-6-phosphate, citric acid, most amino acids, theobromine, catechin-gallate, epicatechin-gallate, procyanidins, and theasinensins; the 1st leaf showed higher levels of caffeine and epigallocatechin-3-gallate; and the 4th leaf contained higher levels of most monosaccharides, theacrine, and epigallocatechin-3-O-(3"-O-methyl)-gallate. In addition, primary metabolites and important secondary metabolites had certain correlations. Conclusion This study provides comprehensive insight into primary and secondary metabolites in JHKC and offers guidelines for efficiently utilizing specialized metabolites of JHKC in the future.
Collapse
Affiliation(s)
- Wenliang Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Jiang Shi
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jiqiang Jin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Zhen Liu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Yong Yuan
- Hunan Tea Group Co., Ltd., Changsha, Hunan, China
| | - Zhida Chen
- Chenzhou Guyanxiang Tea Co., Ltd., Chenzhou, Hunan, China
| | - Shuguang Zhang
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Weidong Dai
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Li S, Lin P, Xing H, Li X, Yao Z, Zhang X, Yao X, Yang J, Qin Z. Unveiling the spatial metabolome and anti-atherosclerosis effects of Allium macrostemon Bunge and Allium chinense G. Don. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|
9
|
Wu L, Qi K, Liu C, Hu Y, Xu M, Pan Y. Enhanced Coverage and Sensitivity of Imprint DESI Mass Spectrometry Imaging for Plant Leaf Metabolites by Post-photoionization. Anal Chem 2022; 94:15108-15116. [PMID: 36201321 DOI: 10.1021/acs.analchem.2c03329] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plant metabolites exhibit a variety of different chemical properties, physiological activities, and biological functions. However, untargeted imaging of highly diverse metabolic profiles is still a great challenge. Here, metabolites in plant leaves were imaged via imprint, followed by desorption electrospray ionization/post-photoionization (imprint DESI/PI) mass spectrometry imaging. In contrast to the traditional imprint DESI method, quite a few metabolites, such as terpenoids, flavonoids, glycosides, alkylphenols, amino acids, phenolic acids, tannins, and lipids, in fresh sage leaves, ginkgo leaves, and tea leaves were well detected and imaged by imprint DESI/PI. More than 80 metabolites were additionally identified, and more than 1 order of magnitude higher signal intensities were obtained for most metabolites in the negative ion mode. By virtue of the significant improvement of coverage and sensitivity of PI, the catechin biosynthesis network in fresh tea leaves could be clearly illustrated, indicating the potential applicability of imprint DESI/PI in exploring the sites and pathways of plant metabolic conversion.
Collapse
Affiliation(s)
- Liutian Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Keke Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Chengyuan Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Yonghua Hu
- Center of Technology, China Tobacco Anhui Industrial Co, Ltd., Hefei 230088, Anhui, P. R. China
| | - Minggao Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| |
Collapse
|
10
|
Identification of Epigallocatechin-3-Gallate (EGCG) from Green Tea Using Mass Spectrometry. SEPARATIONS 2022. [DOI: 10.3390/separations9080209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In an era where humanity is reinstating its lost hope and expectation on natural products, green tea occupies quite a position for what it has proven to be, in its endeavors for human welfare and health. Epigallocatechin-3-gallate (EGCG) is the key to the vast biological activities of green tea. Green tea is no longer in the backdrop; it has emerged as the most viral, trending bioactive molecule when it comes to health benefits for human beings. This review focuses on the use of various analytical techniques for the analysis of EGCG. That which has been achieved so far, in terms of in vitro, pure component analysis, as well as those spikes in biological fluids and those in vivo in animal and human samples, was surveyed and presented. The use of MS-based techniques for the analysis of EGCG is elaborately reviewed and the need for improvising the applications is explained. The review emphasizes that there is plenty of room to explore matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) applications in this subject area.
Collapse
|
11
|
Targeted metabolomics and DIA proteomics-based analyses of proteinaceous amino acids and driving proteins in black tea during withering. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Advances in Plant Metabolomics and Its Applications in Stress and Single-Cell Biology. Int J Mol Sci 2022; 23:ijms23136985. [PMID: 35805979 PMCID: PMC9266571 DOI: 10.3390/ijms23136985] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/19/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023] Open
Abstract
In the past two decades, the post-genomic era envisaged high-throughput technologies, resulting in more species with available genome sequences. In-depth multi-omics approaches have evolved to integrate cellular processes at various levels into a systems biology knowledge base. Metabolomics plays a crucial role in molecular networking to bridge the gaps between genotypes and phenotypes. However, the greater complexity of metabolites with diverse chemical and physical properties has limited the advances in plant metabolomics. For several years, applications of liquid/gas chromatography (LC/GC)-mass spectrometry (MS) and nuclear magnetic resonance (NMR) have been constantly developed. Recently, ion mobility spectrometry (IMS)-MS has shown utility in resolving isomeric and isobaric metabolites. Both MS and NMR combined metabolomics significantly increased the identification and quantification of metabolites in an untargeted and targeted manner. Thus, hyphenated metabolomics tools will narrow the gap between the number of metabolite features and the identified metabolites. Metabolites change in response to environmental conditions, including biotic and abiotic stress factors. The spatial distribution of metabolites across different organs, tissues, cells and cellular compartments is a trending research area in metabolomics. Herein, we review recent technological advancements in metabolomics and their applications in understanding plant stress biology and different levels of spatial organization. In addition, we discuss the opportunities and challenges in multiple stress interactions, multi-omics, and single-cell metabolomics.
Collapse
|
13
|
Sun Z, Chen D, Zhu L, Zhao Y, Lin Z, Li X, Dai W. A comprehensive study of the differences in protein expression and chemical constituents in tea leaves (Camellia sinensis var. sinensis) with different maturity using a combined proteomics and metabolomics method. Food Res Int 2022; 157:111397. [DOI: 10.1016/j.foodres.2022.111397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/04/2022]
|
14
|
Wu W, Lu M, Peng J, Lv H, Shi J, Zhang S, Liu Z, Duan J, Chen D, Dai W, Lin Z. Nontargeted and targeted metabolomics analysis provides novel insight into nonvolatile metabolites in Jianghua Kucha tea germplasm ( Camellia sinensis var. Assamica cv. Jianghua). Food Chem X 2022; 13:100270. [PMID: 35499018 PMCID: PMC9040034 DOI: 10.1016/j.fochx.2022.100270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/27/2022] [Accepted: 02/22/2022] [Indexed: 01/01/2023] Open
Abstract
Jianghua Kucha (JHKC) is a special tea germplasm with high bitterness growing in China; however, the chemical characteristics of JHKC are not completely understood. In this study, 61 differential metabolites were identified between 11 wild JHKC individuals and 3 control cultivars of Fudingdabai, Yunkang 10, and Zhuyeqi using comprehensive nontargeted and targeted metabolomics approach. The JHKC accessions mainly possessed significantly higher levels of purine alkaloids of theacrine (12.06 ± 5.23 mg/g) and 1,3,7-trimethyluric acid, non-epi-form flavanols (catechin, gallocatechin, catechin gallate, and gallocatechin gallate), and methylated flavanols of epigallocatechin-3-O-(3″-O-methyl)-gallate (4.79 ± 1.45 mg/g) and epicatechin-3-O-(3″-O-methyl)-gallate (1.02 ± 0.34 mg/g), as well as significantly lower levels of flavonol glycosides, which indicated that caffeine metabolism, flavonoid biosynthesis, and flavonol and flavone biosynthesis are mostly differential metabolic pathways. Our study demonstrated that JHKC germplasm is a promising resource for breeding novel tea cultivars with high contents of theacrine, non-epi-form flavanols, and methylated flavanols.
Collapse
Affiliation(s)
- Wenliang Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China.,Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, PR China
| | - Meiling Lu
- Agilent Technologies (China) Limited, 3 Wangjing North Road, Chaoyang District, Beijing 100102, PR China
| | - Jiakun Peng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Jiang Shi
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Shuguang Zhang
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, PR China
| | - Zhen Liu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, PR China
| | - Jihua Duan
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, PR China
| | - Dan Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Weidong Dai
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| |
Collapse
|
15
|
A targeted and nontargeted metabolomics study on the oral processing of epicatechins from green tea. Food Chem 2022; 378:132129. [PMID: 35042106 DOI: 10.1016/j.foodchem.2022.132129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/30/2021] [Accepted: 01/08/2022] [Indexed: 01/14/2023]
Abstract
Oral processing (OP), referring to the whole process of food digestion in human mouth, has a major influence on food flavor perception. This study focused on the compositional changes of the four green tea epicatechins (viz., EC, EGC, ECG, EGCG) during OP, based on targeted and nontargeted metabolomics. It was found that the four epicatechins were all extensively lost through transformation undergoing OP, among which EC was the most stable one, whereas EGCG the least. EGCG was further revealed to be susceptible to human oral cavity in the simulated OP in vitro. It could be converted physically by precipitating with mucin in saliva, and chemically through hydrolysis and dimerization, mediated mainly by the neutral pH condition. The OP of epicatechins also caused salivary composition changes possibly involving health benefits of green tea. These findings could raise awareness of the interactions between epicatechins, or any other food materials, with human mouth.
Collapse
|
16
|
Genetic, morphological, and chemical discrepancies between Camellia sinensis (L.) O. Kuntze and its close relatives. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Peng J, Dai W, Lu M, Yan Y, Zhang Y, Chen D, Wu W, Gao J, Dong M, Lin Z. New insights into the influences of baking and storage on the nonvolatile compounds in oolong tea: A nontargeted and targeted metabolomics study. Food Chem 2021; 375:131872. [PMID: 34953237 DOI: 10.1016/j.foodchem.2021.131872] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022]
Abstract
A nontargeted and targeted metabolomics method was applied to comprehensively investigate the influences of baking and storage on chemical constituents in fresh-, strong-, and aged-scent types of Foshou oolong teas. The contents of N-ethyl-2-pyrrolidone-substituted flavanols (EPSFs), flavone C-glycosides, gallic acid, and most lipids increased after baking and storage, while the contents of cis-flavanols, alkaloids, flavonol O-glycosides, and most amino acids decreased. Degradation, epimerization, and interaction with theanine were main pathways for the decrease in cis-flavanols. Approximately 20.7%, 12.8%, and 11.6% of epigallocatechin gallate were degraded, epimerized, and interacted with theanine after baking, respectively; 22.5% and 8.71% of epigallocatechin gallate were degraded and interacted with theanine after 10-year storage, respectively. Simulated reactions confirmed that the increases in EPSFs and apigenin C-glycosides were caused by interactions between theanine and flavanols and between apigenin aglycone and glucose, respectively. This study offers novel insights into chemical changes during baking and storage of oolong tea.
Collapse
Affiliation(s)
- Jiakun Peng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weidong Dai
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China.
| | - Meiling Lu
- Agilent Technologies (China) Limited, Beijing 100102, China
| | - Yongquan Yan
- Yongchun County Agricultural and Rural Bureau, Quanzhou, Fujian 362600, China
| | - Yue Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China
| | - Dan Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China
| | - Wenliang Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China
| | - Jianjian Gao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Minghua Dong
- Yongchun County Agricultural and Rural Bureau, Quanzhou, Fujian 362600, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China.
| |
Collapse
|
18
|
Chen D, Zhao Y, Peng J, Zhang Y, Gao J, Wu W, Xie D, Hu Z, Lin Z, Dai W. Metabolomics Analysis Reveals Four Novel N-Ethyl-2-pyrrolidinone-Substituted Theaflavins as Storage-Related Marker Compounds in Black Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14037-14047. [PMID: 34780189 DOI: 10.1021/acs.jafc.1c05850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tea market is currently oversupplied, and unsold tea often needs to be properly stored for a period of time. However, the chemical changes occurring in black tea during storage are limitedly understood. In this study, a comprehensive nontargeted and targeted metabolomics approach was used to investigate the dynamic changes in compounds in time-series (0-19 months)-stored black teas. The contents of flavanols, theaflavins (TFs), theasinensins, procyanidins, most phenolic acids, amino acids, quercetin-O-glycosides, and myricetin-O-glycosides decreased during storage, while the contents of N-ethyl-2-pyrrolidinone-substituted flavanols, flavone-C-glycosides, and most kaempferol-O-glycosides increased. More importantly, four novel compounds strongly positively correlated with storage duration (r = 0.922-0.969) were structurally assigned as N-ethyl-2-pyrrolidinone-substituted TFs and validated with synthetic reactions of TFs and theanine standards. The content of N-ethyl-2-pyrrolidinone-substituted TFs was 51.54 μg/g in black tea stored for 19 months. To the best of our knowledge, N-ethyl-2-pyrrolidinone-substituted TFs were discovered in tea for the first time.
Collapse
Affiliation(s)
- Dan Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Yanni Zhao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Jiakun Peng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
| | - Yue Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
| | - Jianjian Gao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
| | - Wenliang Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, P. R. China
| | - Dongchao Xie
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
| | - Zhengyan Hu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, P. R. China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
| | - Weidong Dai
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
| |
Collapse
|
19
|
Ntezimana B, Li Y, He C, Yu X, Zhou J, Chen Y, Yu Z, Ni D. Different Withering Times Affect Sensory Qualities, Chemical Components, and Nutritional Characteristics of Black Tea. Foods 2021; 10:foods10112627. [PMID: 34828907 PMCID: PMC8618261 DOI: 10.3390/foods10112627] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
The present study emphasizes the effect of withering time set at 4 ± 0.5 h (WT4), 6 ± 0.5 h (WT6), 8 ± 0.5 h (WT8), 10 ± 0.5 h (WT10), and 12 ± 0.5 h (WT12) on the sensory qualities, chemical components, and nutritional characteristics of black tea. The sensory evaluation revealed high total quality scores at WT8 and WT10. Polysaccharides, amino acids, and soluble sugars significantly increased with an increase in withering time, and an apparent peak value was obtained at WT10. However, polyphenols, flavonoids, glycosides, organic acids, catechins, alkanoids, and theaflavins decreased with an increase in withering time. With an increase in withering time, the content of aromatic substances showed a trend of increasing first and then decreasing. The peaks of alcohols, aldehydes, and acids appeared at 10 ± 0.5 h, 10 ± 0.5 h, and 8 ± 0.5 h, respectively. The content of esters, ketones, and hydrocarbons showed a downward trend with an increase in withering time. Aroma analysis revealed that withering time could not exceed 10 ± 0.5 h. Black tea withered up to WT10 showed enhanced inhibition of α-glucosidase and α-amylase activity with good sensorial attributes. Glucose uptake inhibition capacity increased up 6 ± 0.5 h and then decreased, while antioxidant capacity decreased with an increase in withering time. The overall results show that the 8 ± 0.5 h to 10 ± 0.5 h withering time could improve black tea quality and nutritional characteristics.
Collapse
Affiliation(s)
- Bernard Ntezimana
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (B.N.); (Y.L.); (C.H.); (X.Y.); (J.Z.); (Y.C.); (Z.Y.)
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
| | - Yuchuan Li
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (B.N.); (Y.L.); (C.H.); (X.Y.); (J.Z.); (Y.C.); (Z.Y.)
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
| | - Chang He
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (B.N.); (Y.L.); (C.H.); (X.Y.); (J.Z.); (Y.C.); (Z.Y.)
| | - Xinlei Yu
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (B.N.); (Y.L.); (C.H.); (X.Y.); (J.Z.); (Y.C.); (Z.Y.)
| | - Jingtao Zhou
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (B.N.); (Y.L.); (C.H.); (X.Y.); (J.Z.); (Y.C.); (Z.Y.)
| | - Yuqiong Chen
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (B.N.); (Y.L.); (C.H.); (X.Y.); (J.Z.); (Y.C.); (Z.Y.)
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
| | - Zhi Yu
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (B.N.); (Y.L.); (C.H.); (X.Y.); (J.Z.); (Y.C.); (Z.Y.)
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
| | - Dejiang Ni
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (B.N.); (Y.L.); (C.H.); (X.Y.); (J.Z.); (Y.C.); (Z.Y.)
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
- Correspondence: ; Fax: +86-27-8728-2010
| |
Collapse
|
20
|
Ong P, Chen S, Tsai CY, Chuang YK. Prediction of tea theanine content using near-infrared spectroscopy and flower pollination algorithm. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119657. [PMID: 33744842 DOI: 10.1016/j.saa.2021.119657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/16/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
In this study, near-infrared (NIR) spectroscopy was exploited for non-destructive determination of theanine content of oolong tea. The NIR spectral data (400-2500 nm) were correlated with the theanine level of 161 tea samples using partial least squares regression (PLSR) with different wavelengths selection methods, including the regression coefficient-based selection, uninformative variable elimination, variable importance in projection, selectivity ratio and flower pollination algorithm (FPA). The potential of using the FPA to select the discriminative wavelengths for PLSR was examined for the first time. The analysis showed that the PLSR with FPA method achieved better predictive results than the PLSR with full spectrum (PLSR-full). The developed simplified model using on FPA based on 12 latent variables and 89 selected wavelengths produced R-squared (R2) value and root mean squared error (RMSE) of 0.9542, 0.8794 and 0.2045, 0.3219 for calibration and prediction, respectively. For PLSR-full, the R2 values of 0.9068, 0.8412 and RMSEs of 0.2916, 0.3693, were achieved for calibration and prediction. Also, the optimized model using FPA outperformed other wavelengths selection methods considered in this study. The obtained results indicated the feasibility of FPA to improve the predictability of the PLSR and reduce the model complexity. The nonlinear regression models of support vector machine regression and Gaussian process regression (GPR) were further utilized to evaluate the superiority of using the FPA in the wavelength selection. The results demonstrated that utilizing the wavelength selection method of FPA and nonlinear regression model of GPR could improve the predictive performance.
Collapse
Affiliation(s)
- Pauline Ong
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan; Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia.
| | - Suming Chen
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Chao-Yin Tsai
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Yung-Kun Chuang
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan; School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
21
|
Zhou Y, Shao L, Zhu J, Li H, Duan H. Comparative analysis of tuberous root metabolites between cultivated and wild varieties of Rehmannia glutinosa by widely targeted metabolomics. Sci Rep 2021; 11:11460. [PMID: 34075137 PMCID: PMC8169854 DOI: 10.1038/s41598-021-90961-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/17/2021] [Indexed: 01/06/2023] Open
Abstract
Differential metabolites between tuberous roots from cultivated variety (ZP) and wild variety (YS) of Rehmannia glutinosa were analyzed by widely targeted metabolomics, and annotated to KEGG pathways. 228 secondary metabolites (SM) in ZP and YS were detected, of which 58 were differential metabolites (DM), including 41 flavonoids, 10 phenolic acids, 3 terpenoids, 2 alkaloids and 2 others, and 170 were unchanged; Among 58 DMs, 44 (75.9%) were up-regulated in YS, of which 30 were unique to YS, while 14 (24.1%) were down-regulated in YS, of which 10 were unique to ZP; Among flavonoids, 33 (80.5%) were more highly expressed in YS than in ZP; Among phenolic acids, 7 (70%) were more highly expressed in YS than in ZP; 12 of 58 DMs were annotated into 17 types of KEGG pathways. Among them, benzoic acid and p-Coumaryl alcohol were up-regulated in YS, and annotated into 10 pathways (58.8%) and 4 pathways (23.5%), respectively. In addition, much of DMs possess various pharmacological effects. These results indicated better quality of YS than ZP and the necessity of YS domestication. Taken together, this study will provide a reference for the scientific introduction, comprehensive development and utilization of wild Rehmannia glutinosa.
Collapse
Affiliation(s)
- Yanqing Zhou
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China.
| | - Luying Shao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Jialin Zhu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Huimin Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Hongying Duan
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| |
Collapse
|
22
|
Villate A, San Nicolas M, Gallastegi M, Aulas PA, Olivares M, Usobiaga A, Etxebarria N, Aizpurua-Olaizola O. Review: Metabolomics as a prediction tool for plants performance under environmental stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110789. [PMID: 33487364 DOI: 10.1016/j.plantsci.2020.110789] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/30/2020] [Accepted: 12/05/2020] [Indexed: 05/05/2023]
Abstract
Metabolomics as a diagnosis tool for plant performance has shown good features for breeding and crop improvement. Additionally, due to limitations in land area and the increasing climate changes, breeding projects focusing on abiotic stress tolerance are becoming essential. Nowadays no universal method is available to identify predictive metabolic markers. As a result, research aims must dictate the best method or combination of methods. To this end, we will introduce the key aspects to consider regarding growth scenarios and sampling strategies and discuss major analytical and data treatment approaches that are available to find metabolic markers of plant performance.
Collapse
Affiliation(s)
- Aitor Villate
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - Markel San Nicolas
- Dinafem Seeds (Pot Sistemak S.L.), 20018, San Sebastian, Basque Country, Spain; Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Sovereign Fields S.L., 20006, San Sebastian, Basque Country, Spain
| | - Mara Gallastegi
- Dinafem Seeds (Pot Sistemak S.L.), 20018, San Sebastian, Basque Country, Spain; Sovereign Fields S.L., 20006, San Sebastian, Basque Country, Spain
| | - Pierre-Antoine Aulas
- Dinafem Seeds (Pot Sistemak S.L.), 20018, San Sebastian, Basque Country, Spain; Sovereign Fields S.L., 20006, San Sebastian, Basque Country, Spain
| | - Maitane Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Aresatz Usobiaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Nestor Etxebarria
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Oier Aizpurua-Olaizola
- Dinafem Seeds (Pot Sistemak S.L.), 20018, San Sebastian, Basque Country, Spain; Sovereign Fields S.L., 20006, San Sebastian, Basque Country, Spain.
| |
Collapse
|
23
|
Liao Y, Fu X, Zeng L, Yang Z. Strategies for studying in vivo biochemical formation pathways and multilevel distributions of quality or function-related specialized metabolites in tea (Camellia sinensis). Crit Rev Food Sci Nutr 2020; 62:429-442. [DOI: 10.1080/10408398.2020.1819195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yinyin Liao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiumin Fu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
24
|
Dai W, Xie D, Lin Z, Yang C, Peng Q, Tan J, Lin Z. A nontargeted and targeted metabolomics study on the dynamic changes in metabolite levels during the anaerobic treatment of γ-aminobutyric acid (GABA) tea. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|