1
|
Gong P, Yue S, Wang J, Xu K, Yang W, Li N, Wang J, Zhao Y, Chen F, Guo Y. Effect of ultrasound synergistic pH shift modification treatment on Hericium erinaceus protein structure and its application in 3D printing. Int J Biol Macromol 2025; 295:139562. [PMID: 39788265 DOI: 10.1016/j.ijbiomac.2025.139562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/28/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
This study investigates the effects of ultrasound synergistic pH shift modification on the structural and functional properties of Hericium erinaceus (HE) proteins. The modification resulted in significant changes in the molecular structure of HE proteins, including increased solubility (49.69 % at pH 1.5 and 61.30 % at pH 12.5), enhanced surface hydrophobicity (from 721.00 to 3377.00), and the exposure of free sulfhydryl groups, which rose from 9.3 μmol/g in the control to 19.9 μmol/g at pH 12.5. The modification also led to a reduction in particle size, improving oil-holding capacity and foaming properties, with foaming stability increasing from 10.5 % to 60.3 % at pH 12.5. Furthermore, the emulsification activity was significantly enhanced (187.5 % at pH 12.5). Rheological analysis revealed that ultrasound-modified proteins exhibited improved flow stress and gelation properties, with a shear recovery rate of 65.71 %. In 3D printing applications, the modified HE proteins demonstrated better printability, structural stability, and mechanical integrity, attributed to the enhanced molecular interaction and gelation properties. These findings suggest that ultrasound-assisted pH shift modification effectively alters the structure and functionality of HE proteins, making them suitable for use as a versatile raw material in food applications, particularly in 3D food printing.
Collapse
Affiliation(s)
- Pin Gong
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China; Xi' an Key Laboratory of Precision Nutrition and Functional Product Innovation, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Shan Yue
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China; Xi' an Key Laboratory of Precision Nutrition and Functional Product Innovation, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jie Wang
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China; Xi' an Key Laboratory of Precision Nutrition and Functional Product Innovation, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ke Xu
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China; Xi' an Key Laboratory of Precision Nutrition and Functional Product Innovation, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenjuan Yang
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China; Xi' an Key Laboratory of Precision Nutrition and Functional Product Innovation, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Nan Li
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China; Xi' an Key Laboratory of Precision Nutrition and Functional Product Innovation, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jing Wang
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China; Xi' an Key Laboratory of Precision Nutrition and Functional Product Innovation, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yanni Zhao
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China; Xi' an Key Laboratory of Precision Nutrition and Functional Product Innovation, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yuxi Guo
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China; Xi' an Key Laboratory of Precision Nutrition and Functional Product Innovation, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
2
|
Chen P, Tan X, Xiao L, Gong Z, Qin X, Nie J, Zhu H, Zhong S. Isolation, purification, structural characterization, and antitumor activity of Gynura divaricata polysaccharides. Int J Biol Macromol 2025; 290:138928. [PMID: 39701250 DOI: 10.1016/j.ijbiomac.2024.138928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
In this study, a water-soluble, homogeneous polysaccharide, GDPs-1, was isolated from Gynura divaricata and purified. It was subsequently subjected to structural characterization and biological activity assessment. Structural characterization revealed that GDPs-1 was mainly composed of glucose, galactose, and arabinose, with a molecular weight of 55.1 kDa. Its main structural backbone was →[4)-α-D-Glcp-(1]22 → 4)-α-D-Glcp-(1 → 4)-α-D-Glcp-(1 → [4)-β-D-Galp-(1]11→, with two additional branched structures. In vitro experiments demonstrated that GDPs-1 induced cancer cell apoptosis, caused cell cycle blockade, increased the Bax/Bcl-2 protein ratio, attenuated epithelial-mesenchymal transition, and activated caspase-3 protein in carcinoma cells, thereby exerting antitumor effects on tumor cells without affecting the growth of normal cells. Therefore, GDPs-1 may be further explored as a novel medicine to treat lung and liver cancer.
Collapse
Affiliation(s)
- Ping Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiao Tan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - LiuYue Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zan Gong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiangxiang Qin
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jing Nie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hua Zhu
- Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Hunan Provincial Key Laboratory of the Research and Development of Novel, Pharmaceutical Preparations, the "Double-First Class" Applicatio Characteristic, Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China.
| |
Collapse
|
3
|
Stepień AE, Trojniak J, Tabarkiewicz J. Anti-Oxidant and Anti-Cancer Properties of Flaxseed. Int J Mol Sci 2025; 26:1226. [PMID: 39940995 PMCID: PMC11818310 DOI: 10.3390/ijms26031226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/12/2024] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Bioactive molecules present in plant products determine their very valuable health-promoting properties. Among the plants, due to these properties, particular attention is paid to the seeds of common flax (Linum usitatissimum L.), which have been used for over 6000 years and are known for their benefits. A review of 117 scientific articles indexed in PubMed/MEDLINE, ScienceDirect, and Wiley Online Library, published between 1997 and 2024, was conducted. These seeds are characterized by a high content of valuable nutrients, such as essential omega-3 fatty acids, including α-linolenic acid (ALA), lignans, isoflavones, phytoestrogens, flavonoids, vitamins, and minerals that influence the digestive system function and have anti-cancer properties. The presence of these bioactive compounds in flaxseeds provide anti-cancer properties.
Collapse
Affiliation(s)
- Agnieszka Ewa Stepień
- Institute of Health Sciences, Medical College of Rzeszów University, University of Rzeszow, 35-959 Rzeszów, Poland;
| | - Julia Trojniak
- Student’s Scientific Club of Immunology, Institute of Medical Sciences, Medical College of Rzeszów University, University of Rzeszow, 35-959 Rzeszów, Poland;
| | - Jacek Tabarkiewicz
- Department of Human Immunology, Institute of Medical Sciences, Medical College of Rzeszów University, University of Rzeszow, 35-959 Rzeszów, Poland
| |
Collapse
|
4
|
Mi S, Shen M, Liu Z, Yu Y, Shan H, Cao J, McClements DJ, Cao C, Xu X, Yuan B. A glutenin protein corona ameliorated TiO 2 nanoparticle-induced gut barrier dysfunction and altered the gut microbiota composition. Food Funct 2024; 15:12101-12117. [PMID: 39575505 DOI: 10.1039/d4fo04355c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Previously, we found that glutenin proteins formed a protein corona around food-grade titanium dioxide (TiO2) nanoparticles. The protein corona would alter the gastrointestinal behavior and biological activity of the nanoparticles. Here, in this study, the influence of protein corona formation on the adverse effects of TiO2 nanoparticles on gut barrier function using in vitro and in vivo assays and the potential mechanism were investigated and elucidated. Our findings showed that the presence of the protein corona mitigated gut barrier injury caused by TiO2 nanoparticles while increasing gene expression for tight junction proteins; for example, in vitro gastrointestinal digestion and fermentation experiments showed that the glutenin-TiO2 protein corona was relatively stable to digestion and influenced the composition of the gut microbiota. Specifically, the glutenin-TiO2 protein corona increased the relative abundance of beneficial bacteria such as Bifidobacterium, Parasutterella, and Bacillus while reducing the relative abundance of harmful bacteria like Streptococcus. Moreover, the formation of the protein corona reduced the cytotoxicity of the TiO2 nanoparticles to Caco-2 and RAW264.7 cells. Mechanistically, we found that the presence of the glutenin-TiO2 protein corona decreased the production of reactive oxygen species and increased the mitochondrial membrane potential in both Caco-2 and RAW264.7 cells compared to TiO2 nanoparticles alone. This study provides valuable mechanistic insights into the potential biological effects of protein corona formation around food inorganic nanoparticles in the food industry.
Collapse
Affiliation(s)
- Shichao Mi
- Department of Food Quality and Safety, National Research and Development Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Mingyang Shen
- College of Life Science, Nanjing Agricultural University, Jiangsu, 210095, China
| | - Zimo Liu
- Department of Food Quality and Safety, National Research and Development Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Yingying Yu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China.
| | - Honghong Shan
- Department of Food Quality and Safety, National Research and Development Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Jin Cao
- National Institutes for Food and Drug Control, Beijing 100050, China
| | | | - Chongjiang Cao
- Department of Food Quality and Safety, National Research and Development Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Xiao Xu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China.
| | - Biao Yuan
- Department of Food Quality and Safety, National Research and Development Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
5
|
Gong H, Tan X, Hou J, Gong Z, Qin X, Nie J, Zhu H, Zhong S. Separation, purification, structure characterization, and immune activity of a polysaccharide from Alocasia cucullata obtained by freeze-thaw treatment. Int J Biol Macromol 2024; 282:137232. [PMID: 39521204 DOI: 10.1016/j.ijbiomac.2024.137232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/11/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
In this study, ACP-1, a water-soluble polysaccharide was isolated from the roots of Alocasia cucullata (AC) using freeze-thaw treatment (FTT). Structural characterization revealed ACP-1 (2.10×105 Da) to be a homogeneous heteropolysaccharide primarily consisting of glucose, galactose, and arabinose, and a trace of fucose, rhamnose, and glucuronic acid. Methylation analysis and nuclear magnetic resonance spectroscopy revealed that the backbone of ACP-1 consisted of →[3)-β-D-Galp-(1]4→3,6)-β-D-Glcp-(1→3,6)-β-D-Glcp-(1→, with a branch at C-3. In vitro experiments demonstrated that ACP-1 significantly enhanced the proliferation and phagocytosis of RAW264.7 cells, upregulated the expression of co-stimulatory molecules (CD80 and CD86), and activated RAW264.7 cells via the nuclear factor kappa-B signal transduction pathway, resulting in nitric monoxide release and the secretion of the cytokines tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. Overall, ACP-1 shows potential as a novel immunostimulant.
Collapse
Affiliation(s)
- Huxuan Gong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiao Tan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jiaojiao Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zan Gong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiangxiang Qin
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jing Nie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hua Zhu
- Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China.
| |
Collapse
|
6
|
Zou X, Shen M, Li J, Sun P, Zhong X, Yang K. Isolation, structure characterization and in vitro immune-enhancing activity of a glucan from the peels of stem lettuce (Lactuca sativa). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2097-2109. [PMID: 38009323 DOI: 10.1002/jsfa.13166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Stem lettuce is a medicinal and edible plant. The peels, accounting for 300-400 g kg-1 raw stem lettuce and containing polysaccharides 200 g kg-1 , are discarded as industrial waste, causing environment pollution and resource waste. RESULTS A polysaccharide named PPSL10-2 was obtained from the peels of stem lettuce after hot water extraction, and gradation with cascade ultrafiltration and purification using DEAE-Sepharose cellulose. The purity and molecular weight of PPSL10-2 is 96.10% and 2.2 × 104 Da respectively, as detected by high-performance gel permeation chromatography. PPSL10-2 was found to be an α-(1→4)-d-glucan that branched at O-6 with a terminal 1-linked α-d-Glcp as side chain, and devoid of helix conformation, which was characterized by monosaccharide composition analysis, Fourier-transform infrared spectroscopy, Congo red test, scanning electron microscopy, methylation analysis and NMR spectroscopy. Furthermore, PPSL10-2 exhibited potent immune-enhancing effect by improving proliferation and phagocytosis, promoting the secretion of nitric oxide and cytokines, as well as the expression of related genes in RAW264.7 macrophages. CONCLUSION The findings of the present study suggest that peels as an agricultural by-product of stem lettuce are good sources of polysaccharides, which could be developed as immunopotentiator for improving human health. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xianguo Zou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
| | - Mingjie Shen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Jingjing Li
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
| | - Xianfeng Zhong
- School of Food Science and Engineering, Foshan University, Foshan, China
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
| |
Collapse
|
7
|
Zheng YZ, Chen QR, Yang HM, Zhao JA, Ren LZ, Wu YQ, Long YL, Li TM, Yu Y. Modulation of gut microbiota by crude mulberry polysaccharide attenuates knee osteoarthritis progression in rats. Int J Biol Macromol 2024; 262:129936. [PMID: 38309391 DOI: 10.1016/j.ijbiomac.2024.129936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Mulberry (Morus alba L.), a kind of common fruits widely cultivated worldwide, has been proven various biological activities. However, its potential role in the progression of knee osteoarthritis (KOA) remains unclear. This study aims to investigate the potential protective effects of crude polysaccharide extracted from mulberry fruit, referred to as a complex blend of polysaccharides and other unidentified extracted impurities, on KOA progression. The KOA rats were established by injection of 1 mg sodium monoiodoacetate into knee, and administrated with crude mulberry polysaccharide (Mup) by gastric gavage for 4 weeks. Furthermore, intestinal bacteria clearance assay (IBCA) and fecal microbiota transplantation were conducted for the evaluation of the effect of gut microbiota (GM) on KOA. Our findings demonstrated that Mup, particularly at a dosage of 200 mg/kg, effectively improved abnormal gait patterns, reduced the level of inflammation, mitigated subchondral bone loss, restored compromised joint surfaces, alleviated cartilage destruction, and positively modulated the dysregulated profile of GM in KOA rats. Moreover, IBCA compromised the protective effects of Mup, while transplantation of fecal bacteria from Mup-treated rats facilitated KOA recovery. Collectively, our study suggested that Mup had the potential to ameliorate the progression of KOA, potentially through its modulation of GM profile.
Collapse
Affiliation(s)
- Yi-Zhou Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Qing-Rou Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Hong-Mei Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ji-Ao Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ling-Zhi Ren
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ye-Qun Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yong-Ling Long
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Tong-Ming Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Yang Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
8
|
Abtahi M, Mirlohi A. Quality assessment of flax advanced breeding lines varying in seed coat color and their potential use in the food and industrial applications. BMC PLANT BIOLOGY 2024; 24:60. [PMID: 38254037 PMCID: PMC10804595 DOI: 10.1186/s12870-024-04733-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND With the increasing consumer awareness of the strong relationship between food and health, flax became a promising functional food due to its bioactive nutraceutical composition. Intra-specific crosses of eight contrasting flax genotypes were performed previously, and within segregating F6 progeny families, we investigated a close-up composition of phytochemicals derived from whole seeds. RESULTS The considerable genetic variation among the flax F6 families suggested that intra-specific hybridization is essential in flax breeding to obtain and broaden genetic variability and largely affirmed the opportunity for selecting promising lines. Also, significant variations in the targeted metabolite contents and antioxidant properties were observed among brown and yellow-seeded families. Notably, brown-seeded families expressed the highest average values of saturated fatty acids, protein, fiber, tocopherol, phenolics, SDG, and SECO lignans. Yellow-seeded families represented the highest average content of unsaturated fatty acids and mucilage. The cultivation year significantly affects flaxseed's composition and functional properties, presumably due to temperature, humidity, and sunshine time differences. Interestingly, the seeds obtained in warmer conditions were more potent and had more chemical constituents. The favorable genetic correlations among all evaluated traits suggest the possibility of joint genetic selection for several nutritional and phytochemical characteristics in flax. The current study highlights the importance and utilization of 19 top families as their seeds and oil play imperative roles in the pharmaceuticals and food industries. The antioxidant capacity of the seeds showed that families 84B, 23B, 35Y, 95Y, 30B, 88B, and 78B serve as a natural source of dietary antioxidants beneficial to human health. To increase the oxidative stability of the flaxseed oil, the quality evaluation identified some families with low levels of linolenic acid. CONCLUSIONS These findings are essential to improving flaxseed's nutritional quality and therapeutic properties through a bulk breeding program.
Collapse
Affiliation(s)
- Mozhgan Abtahi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Isfahan, 84156-83111, Iran.
| | - Aghafakhr Mirlohi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Isfahan, 84156-83111, Iran
| |
Collapse
|
9
|
Liu Y, Xiao X, Wang Z, Shan X, Liu G, Wei B. Metabolomic analysis of black sesame seeds: Effects of processing and active compounds in antioxidant and anti-inflammatory properties. Food Res Int 2024; 176:113789. [PMID: 38163704 DOI: 10.1016/j.foodres.2023.113789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Black sesame seeds (BSS) have been recognized as a functional food due to their nutritional and therapeutic value for many years. In China, BSS is traditionally processed and consumed through two methods, namely, nine steaming nine sun-drying and stir-frying. The present study aimed to evaluate the effects of these processing techniques on the antioxidant and anti-inflammatory activities of BSS. UPLC-QTOF/MS was used for untargeted metabolomics to analyze the composition changes. The results indicated that the different samples had good antioxidant and anti-inflammatory activities, but thermal treatment reduced their activities. Untargeted metabolomics identified a total of 196 metabolites. Molecular docking studies targeting proteins associated with inflammation (iNOS) demonstrated that compounds acting as inhibitors were significantly reduced under both treatments. These results indicate that both nine steaming nine sun-drying and stir-frying lead to substantial loss of antioxidant, anti-inflammatory, and bioactive metabolites in BSS, which provides an important reference for its rational utilization.
Collapse
Affiliation(s)
- Yu Liu
- School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang 110122, PR China
| | - Xia Xiao
- School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang 110122, PR China
| | - Ziwei Wang
- School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang 110122, PR China
| | - Xiao Shan
- School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang 110122, PR China
| | - Guojie Liu
- Department of Chemistry, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang 110122, PR China.
| | - Binbin Wei
- School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang 110122, PR China.
| |
Collapse
|
10
|
Bushra R, Ahmad M, Seidi F, Qurtulen, Song J, Jin Y, Xiao H. Polysaccharide-based nanoassemblies: From synthesis methodologies and industrial applications to future prospects. Adv Colloid Interface Sci 2023; 318:102953. [PMID: 37399637 DOI: 10.1016/j.cis.2023.102953] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Polysaccharides, due to their remarkable features, have gained significant prominence in the sustainable production of nanoparticles (NPs). High market demand and minimal production cost, compared to the chemically synthesised NPs, demonstrate a drive towards polysaccharide-based nanoparticles (PSNPs) benign to environment. Various approaches are used for the synthesis of PSNPs including cross-linking, polyelectrolyte complexation, and self-assembly. PSNPs have the potential to replace a wide diversity of chemical-based agents within the food, health, medical and pharmacy sectors. Nevertheless, the considerable challenges associated with optimising the characteristics of PSNPs to meet specific targeting applications are of utmost importance. This review provides a detailed compilation of recent accomplishments in the synthesis of PSNPs, the fundamental principles and critical factors that govern their rational fabrication, as well as various characterisation techniques. Noteworthy, the multiple use of PSNPs in different disciplines such as biomedical, cosmetics agrochemicals, energy storage, water detoxification, and food-related realms, is accounted in detail. Insights into the toxicological impacts of the PSNPs and their possible risks to human health are addressed, and efforts made in terms of PSNPs development and optimising strategies that allow for enhanced delivery are highlighted. Finally, limitations, potential drawbacks, market diffusion, economic viability and future possibilities for PSNPs to achieve widespread commercial use are also discussed.
Collapse
Affiliation(s)
- Rani Bushra
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Mehraj Ahmad
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; College of Light Industry and Food, Department of Food Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qurtulen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Junlong Song
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yongcan Jin
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
11
|
Pasdaran A, Hassani B, Tavakoli A, Kozuharova E, Hamedi A. A Review of the Potential Benefits of Herbal Medicines, Small Molecules of Natural Sources, and Supplements for Health Promotion in Lupus Conditions. Life (Basel) 2023; 13:1589. [PMID: 37511964 PMCID: PMC10416186 DOI: 10.3390/life13071589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The Latin word lupus, meaning wolf, was in the medical literature prior to the 1200s to describe skin lesions that devour flesh, and the resources available to physicians to help people were limited. The present text reviews the ethnobotanical and pharmacological aspects of medicinal plants and purified molecules from natural sources with efficacy against lupus conditions. Among these molecules are artemisinin and its derivatives, antroquinonol, baicalin, curcumin, emodin, mangiferin, salvianolic acid A, triptolide, the total glycosides of paeony (TGP), and other supplements such as fatty acids and vitamins. In addition, medicinal plants, herbal remedies, mushrooms, and fungi that have been investigated for their effects on different lupus conditions through clinical trials, in vivo, in vitro, or in silico studies are reviewed. A special emphasis was placed on clinical trials, active phytochemicals, and their mechanisms of action. This review can be helpful for researchers in designing new goal-oriented studies. It can also help practitioners gain insight into recent updates on supplements that might help patients suffering from lupus conditions.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran;
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Bahareh Hassani
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran;
| | - Ali Tavakoli
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran;
| | - Ekaterina Kozuharova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Azadeh Hamedi
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran;
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| |
Collapse
|
12
|
Wang Z, Zhou X, Shu Z, Zheng Y, Hu X, Zhang P, Huang H, Sheng L, Zhang P, Wang Q, Wang X, Li N. Regulation strategy, bioactivity, and physical property of plant and microbial polysaccharides based on molecular weight. Int J Biol Macromol 2023; 244:125360. [PMID: 37321440 DOI: 10.1016/j.ijbiomac.2023.125360] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/17/2023]
Abstract
Structural features affect the bioactivity, physical property, and application of plant and microbial polysaccharides. However, an indistinct structure-function relationship limits the production, preparation, and utilization of plant and microbial polysaccharides. Molecular weight is an easily regulated structural feature that affects the bioactivity and physical property of plant and microbial polysaccharides, and plant and microbial polysaccharides with a specific molecular weight are important for exerting their bioactivity and physical property. Therefore, this review summarized the regulation strategies of molecular weight via metabolic regulation; physical, chemical, and enzymic degradations; and the influence of molecular weight on the bioactivity and physical property of plant and microbial polysaccharides. Moreover, further problems and suggestions must be paid attention to during regulation, and the molecular weight of plant and microbial polysaccharides must be analyzed. The present work will promote the production, preparation, utilization, and investigation of the structure-function relationship of plant and microbial polysaccharides based on their molecular weight.
Collapse
Affiliation(s)
- Zichao Wang
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueyan Zhou
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhihan Shu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yi Zheng
- School of International Education, Henan University of Technology, Zhengzhou 450001,China
| | - Xilei Hu
- School of International Education, Henan University of Technology, Zhengzhou 450001,China
| | - Peiyao Zhang
- School of International Education, Henan University of Technology, Zhengzhou 450001,China
| | - Hongtao Huang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Lili Sheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Pengshuai Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qi Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Xueqin Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Na Li
- Henan Provincial Key Laboratory of Ultrasound Imaging and Artificial Intelligence, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
13
|
Study of Varietal Differences in the Composition of Heteropolysaccharides of Oil Flax and Fiber Flax. POLYSACCHARIDES 2023. [DOI: 10.3390/polysaccharides4010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Flaxseed mucilage and its derivatives have been extensively investigated over the last decade, mainly due to their inherent techno-functional (thickening, gelling, interface-stabilizing, and film-forming) properties that are relevant in the food industry. Hydrocolloids are used to modify food properties, such as for stabilization and emulsion, and are also used to control the microstructure of the food. Increasing research attention has been paid to the application of hydrocolloid materials in gel particles for encapsulation or texture control in food, pharmaceutical, cosmetic, and probiotic products. Thus, it is important to investigate the properties of hydrocolloids manufactured from various sources and explore their possible applications in the food industry. The applied nature of the study of plant mucus substances is associated with the ever-increasing demand for their use in the food, cosmetic, and pharmacological industries, determining the related research priorities, including the development of the most effective methods for the extraction of glycans and the search for highly productive raw materials for the production of polysaccharides. The aim of this work was to study varietal differences in the compositions of heteropolysaccharides in the mucus samples of oilseed and fiber flax varieties using a modern methodological approach for obtaining glycans based on the ultrasonic extraction of polysaccharides. The seeds of 10 flax varieties were studied, differing in their morphotype, place, and time of creation. The obtained results indicated significant differences in the quantitative and qualitative compositions of the heteropolysaccharides of flax seeds of various varieties. The contents of reducing sugars in the studied varieties ranged from 5.61 ± 0.01 to 18.81 ± 0.01 mg/g, indicating significant differences in the structural organization of glycans in different flax varieties. Additionally, the results obtained here allowed us to conclude that the range of reducing sugars for flax heteropolysaccharides is significantly less than this range for oilseed flax varieties. The obtained results of the study of the composition of flax seed heteropolysaccharides allowed us to consider them as selection trait and genetic markers.
Collapse
|
14
|
Yang G, Su F, Hu D, Ruan C, Che P, Zhang Y, Wang J. Optimization of the Extraction Process and Antioxidant Activity of Polysaccharide Extracted from Centipeda minima. Chem Biodivers 2023; 20:e202200626. [PMID: 36448941 DOI: 10.1002/cbdv.202200626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
The purpose of this study is to optimize the extraction process and study antioxidant activity of Polysaccharide extracted from Centipeda minima. The Box-Behnken design-response surface methodology was adopted to optimize the extraction process of polysaccharides from Centipeda minima. We purified the crude polysaccharides from Centipeda minima, as well as determined the purity, monosaccharide composition, and molecular weight of the purified fraction. Fourier transform infrared spectrometer (FT-IR) and scanning electron microscopy (SEM) were used to analyze the structural features of the polysaccharides. Further, we investigated the antioxidant activities of different fractions of polysaccharides. Consequently, the results showed that the optimum extraction conditions for polysaccharides were: a liquid-solid ratio of 26 mL/g, extraction temperature of 85.5 °C, and extraction time of 2.4 h. Moreover, the yield of polysaccharides measured under these conditions was close to the predicted value. After purification, we obtained four components of Centipeda minima polysaccharides (CMP). The purity, monosaccharide composition, molecular weight, and structural characteristics of CMP were different, but with similar infrared absorption spectra. CMP exhibited a typical infrared absorption characteristic of a polysaccharide. Besides, CMP displayed good antioxidant activity, with potential to scavenge DPPH radical, hydroxyl radical, and superoxide radical. Therefore, this study provides a reference for future research on the structure and biological activity of CMP, and lays a theoretical foundation for food processing and medicinal development of CMP.
Collapse
Affiliation(s)
- Gan Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, P. R. China
| | - Fan Su
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, P. R. China
| | - Datong Hu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, P. R. China
| | - Chen Ruan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, P. R. China
| | - Ping Che
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, P. R. China
| | - Yingying Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, P. R. China
| | - Jing Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, P. R. China
| |
Collapse
|
15
|
Structural characterization and immune-enhancing activity of a novel acid proteoglycan from Black soybean. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
16
|
Mueed A, Shibli S, Jahangir M, Jabbar S, Deng Z. A comprehensive review of flaxseed ( Linum usitatissimum L.): health-affecting compounds, mechanism of toxicity, detoxification, anticancer and potential risk. Crit Rev Food Sci Nutr 2022; 63:11081-11104. [PMID: 35833457 DOI: 10.1080/10408398.2022.2092718] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Flaxseed consumption (Linum usitatissimum L.) has increased due to its potential health benefits, such as protection against inflammation, diabetes, cancer, and cardiovascular diseases. However, flaxseeds also contains various anti-nutritive and toxic compounds such as cyanogenic glycosides, and phytic acids etc. In this case, the long-term consumption of flaxseed may pose health risks due to these non-nutritional substances, which may be life threatening if consumed in high doses, although if appropriately utilized these may prevent/treat various diseases by preventing/inhibiting and or reversing the toxicity induced by other compounds. Therefore, it is necessary to remove or suppress the harmful and anti-nutritive effects of flaxseeds before these are utilized for large-scale as food for human consumption. Interestingly, the toxic compounds of flaxseed also undergoes biochemical detoxification in the body, transforming into less toxic or inactive forms like α-ketoglutarate cyanohydrin etc. However, such detoxification is also a challenge for the development, scalability, and real-time quantification of these bioactive substances. This review focuses on the health affecting composition of flaxseed, along with health benefits and potential toxicity of its components, detoxification methods and mechanisms with evidence supported by animal and human studies.
Collapse
Affiliation(s)
- Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Sahar Shibli
- Food Science Research Institute, National Agriculture Research Center, Islamabad, Pakistan
| | - Muhammad Jahangir
- Department of Food Science & Technology, The University of Haripur, Haripur, Khyber-Pakhtunkhwa, Pakistan
| | - Saqib Jabbar
- Food Science Research Institute, National Agriculture Research Center, Islamabad, Pakistan
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
17
|
Zhang S, Chen H, Geng F, Peng D, Xie B, Sun Z, Chen Y, Deng Q. Natural oil bodies from typical oilseeds: Structural characterization and their potentials as natural delivery system for curcumin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Xiao Z, Li J, Wang H, Zhang Q, Ge Q, Mao J, Sha R. Hemicellulosic Polysaccharides From Bamboo Leaves Promoted by Phosphotungstic Acids and Its Attenuation of Oxidative Stress in HepG2 Cells. Front Nutr 2022; 9:917432. [PMID: 35769382 PMCID: PMC9234559 DOI: 10.3389/fnut.2022.917432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
In this work, we exploited an efficient method to release hemicellulosic polysaccharides (BLHP) from bamboo (Phyllostachys pubescens Mazel) leaves assisted by a small amount of phosphotungstic acid. Structural unit analysis proved that BLHP-A1 and BLHP-B1 samples possessed abundant low-branch chains in →4)-β-D-Xylp-(1→ skeleton mainly consisting of Xylp, Manp, Glcp, Galp, and Araf residues. According to the results of the antioxidant activity assays in vitro, both of the two fractions demonstrated the activity for scavenging DPPH⋅ and ABTS+ radicals and exhibited relatively a high reducing ability compared to the recently reported polysaccharides. Moreover, the antioxidant activities of purified polysaccharides were evaluated against H2O2-induced oxidative stress damage in HepG2 cells. BLHP-B1 showed more activity for preventing damages from H2O2 in HepG2 cells by improving the enzyme activities of SOD, CAT, and GSH-Px and decreasing the production of MDA as well as suppressing reactive oxygen species (ROS) formation. This study implied that BLHP could demonstrate its attenuation ability for oxidative stress in HepG2 cells.
Collapse
Affiliation(s)
- Zhuqian Xiao
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang University of Science and Technology, Hangzhou, China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
- *Correspondence: Zhuqian Xiao,
| | - Jiajie Li
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang University of Science and Technology, Hangzhou, China
| | - Hongpeng Wang
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang University of Science and Technology, Hangzhou, China
| | - Qiang Zhang
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang University of Science and Technology, Hangzhou, China
| | - Qing Ge
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang University of Science and Technology, Hangzhou, China
| | - Jianwei Mao
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang University of Science and Technology, Hangzhou, China
| | - Ruyi Sha
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
19
|
Bo S, Dan M, Han W, Ochir S, Bao L, Liu L, Muschin T, Baigude H. Physicochemical properties, immunostimulatory and antioxidant activities of a novel polysaccharide isolated from Mirabilis himalaica (Edgew) Heim. RSC Adv 2022; 12:17264-17275. [PMID: 35765428 PMCID: PMC9185703 DOI: 10.1039/d2ra00060a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
Herbal medicines often contain bioactive polysaccharides. However, many medicinal herbs have not been explored for any active saccharides that may play key roles in their bioactivities. Herein, we extracted a novel polysaccharide from Mirabilis himalaica (Edgew) heim (denoted MHHP), a popular medicinal ingredient in traditional medicines. The structural and morphological characteristics of MHHP were measured and elucidated by high-performance gel permeation chromatography, gas chromatography connected with mass spectrometry, Fourier transform infrared and nuclear magnetic resonance spectroscopy as well as scanning electron microscopy. MHHP was homogeneous with a molecular weight of 16.1 kDa, M w/M n = 1.33, containing mainly α-d-glucan residues with (1→4)-linkage. The biological activities of MHHP upon proliferation of splenic lymphocyte, activation of related cytokine and production of nitric oxide (NO) in RAW264.7 cells were investigated in vitro. MHHP induced proliferation of mouse spleen lymphocytes and significantly promoted the secretion in TNF-α, IL-6 and NO production in RAW264.7 cells. Meanwhile, MHHP exhibited relatively low antioxidant abilities. Our data suggested that MHHP may have potential immunoregulatory and anti-inflammatory activity, with a moderate antioxidant activity.
Collapse
Affiliation(s)
- Surina Bo
- College of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone Hohhot Inner Mongolia 010110 P. R. China
| | - Mu Dan
- College of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone Hohhot Inner Mongolia 010110 P. R. China
| | - Wenjie Han
- College of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone Hohhot Inner Mongolia 010110 P. R. China
| | - Sarangua Ochir
- Academy of Mongolian Medicine, Inner Mongolia Medical University, Jinshan Development Zone Hohhot Inner Mongolia 010110 P. R. China +86-0471-6653165
| | - Liang Bao
- Academy of Mongolian Medicine, Inner Mongolia Medical University, Jinshan Development Zone Hohhot Inner Mongolia 010110 P. R. China +86-0471-6653165
| | - Lingwei Liu
- Academy of Mongolian Medicine, Inner Mongolia Medical University, Jinshan Development Zone Hohhot Inner Mongolia 010110 P. R. China +86-0471-6653165
| | - Tegshi Muschin
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University Inner Mongolia 010022 P. R. China +86-0471-6990751
| | - Huricha Baigude
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University Hohhot Inner Mongolia 010020 P. R. China +86 471 4992511 +86 471 4992511
| |
Collapse
|
20
|
Chemical Composition and Rheological Properties of Seed Mucilages of Various Yellow- and Brown-Seeded Flax ( Linum usitatissimum L.) Cultivars. Polymers (Basel) 2022; 14:polym14102040. [PMID: 35631922 PMCID: PMC9145172 DOI: 10.3390/polym14102040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
When seeds sown in the soil become wet, their hulls secrete viscous matter that can retain water and thus support germination. Flaxseed mucilage (FSM) is an example of such a material and is attractive for food, cosmetic, and pharmaceutical applications due to its suitable rheological properties. FSM consists mainly of two polysaccharides, namely, arabinoxylan and rhamnogalacturonan I, and it also contains some proteins, minerals, and phenolic compounds. The genotype and the year of the flax harvest can significantly affect the composition and functional properties of FSM. In this work, FSM samples were isolated from flax seeds of different cultivars and harvest years, and their structural and rheological properties were compared using statistical methods. The samples showed significant variability in composition and rheological properties depending on the cultivar and storage time. It was found that the ratio of two polysaccharide fractions and the contribution of less-prevalent proteins are important factors determining the rheological parameters of FSM, characterizing the shear-thinning, thixotropic, and dynamic viscoelastic behavior of this material in aqueous solutions. The yield strength and the hysteresis loop were found to be associated with the contribution of the pectin fraction, which included homogalacturonan and rhamnogalacturonan I. In contrast, the shear-thinning and especially the dynamic viscoelastic properties depended on the arabinoxylan content. Proteins also affected the viscoelastic properties and maintained the elastic component of FSM in the solution. The above structural and rheological characteristics should be taken into account when considering effective applications for this material.
Collapse
|
21
|
Wang D, Wang J, Liu H, Liu M, Yang Y, Zhong S. The Main Structural Unit Elucidation and Immunomodulatory Activity In Vitro of a Selenium-Enriched Polysaccharide Produced by Pleurotus ostreatus. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082591. [PMID: 35458788 PMCID: PMC9027278 DOI: 10.3390/molecules27082591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
In recent years, the structure of selenium-enriched polysaccharides and their application in immunomodulation have attracted much attention. In previous studies, we extracted and purified a novel selenium-enriched Pleurotus ostreatus polysaccharide called Se-POP-21, but its structure and immunomodulatory activity were still unclear. In this study, the main structural unit formula of Se-POP-21 was characterized by methylation analysis and an NMR experiment. The results showed that the backbone of Se-POP-21 was →[2,6)-α-D-Galp-(1→6)-α-D-Galp-(1]4→2,4)-β-L-Arap-(1→[2,6)-α-D-Galp-(1→6)-α-D-Galp-(1]4→, branched chain of β-D-Manp-(1→ and β-D-Manp-(1→4)-β-L-Arap-(1→ connected with →2,6)-α-D-Galp-(1→ and →2,4)-β-L-Arap-(1→,respectively, through the O-2 bond. In vitro cell experiments indicated that Se-POP-21 could significantly enhance the proliferation and phagocytosis of RAW264.7 cells, upregulate the expression of costimulatory molecules CD80/CD86, and promote RAW264.7 cells to secrete NO, ROS, TNF-α, IL-1β, and IL-6 by activating the NF-κB protein. The results of this study indicate that Se-POP-21 can effectively activate RAW264.7 cells. Thus, it has the potential to be used in immunomodulatory drugs or functional foods.
Collapse
|
22
|
Xu X, Guo Y, Chen S, Ma W, Xu X, Hu S, Jin L, Sun J, Mao J, Shen C. The Positive Influence of Polyphenols Extracted From Pueraria lobata Root on the Gut Microbiota and Its Antioxidant Capability. Front Nutr 2022; 9:868188. [PMID: 35425798 PMCID: PMC9001911 DOI: 10.3389/fnut.2022.868188] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Pueraria lobata, an edible food and medicinal plant, is a rich source of bioactive components. In this study, a polyphenol-rich extract was isolated from P. lobata. Puerarin was identified, and the high antioxidant bioactivity of the P. lobata extract was evaluated using the methods of 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS), and hydroxyl free radical scavenging ratio. Additionally, the IC50 values of DPPH, ABTS, and hydroxyl radical scavenging activities were 50.8, 13.9, and 100.4 μg/ml, respectively. Then, the P. lobata extract was administered to C57Bl/6J mice and confirmed to have a superior effect on enhancing the antioxidant status including improving superoxide dismutase activity, glutathione peroxidase peroxide activity, total antioxidant capacity activity, and malondialdehyde contents in vivo. Furthermore, the P. lobata extract had beneficial and prebiotic effects on the composition and structure of gut microbiota. Results showed that the P. lobata extract significantly increased the abundance of beneficial bacteria, involving Lactobacillaceae and Bacteroidetes, and decreased the abundance of Ruminococcaceae, Prevotellaceae, and Burkholderiaceae. Overall, our results provided a basis for using the P. lobata extract as a promising and potential functional ingredient for the food industry.
Collapse
Affiliation(s)
- Xiao Xu
- School of Life Sciences, Shaoxing University, Shaoxing, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Ying Guo
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Shaoqin Chen
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Wenliang Ma
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Xinlei Xu
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Shuning Hu
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Lifang Jin
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Jianqiu Sun
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Jian Mao
- School of Life Sciences, Shaoxing University, Shaoxing, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- *Correspondence: Jian Mao,
| | - Chi Shen
- School of Life Sciences, Shaoxing University, Shaoxing, China
- Chi Shen,
| |
Collapse
|
23
|
Qin Z, Yuan X, Liu J, Shi Z, Cao L, Yang L, Wu K, Lou Y, Tong H, Jiang L, Du J. Albuca Bracteata Polysaccharides Attenuate AOM/DSS Induced Colon Tumorigenesis via Regulating Oxidative Stress, Inflammation and Gut Microbiota in Mice. Front Pharmacol 2022; 13:833077. [PMID: 35264966 PMCID: PMC8899018 DOI: 10.3389/fphar.2022.833077] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/11/2022] [Indexed: 12/20/2022] Open
Abstract
Inflammation is an important risk factor in the development of inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC). Accumulating evidence indicates that some phytochemicals have anti-cancer properties. Polysaccharides extracted from Albuca bracteata (AB) have been reported to possess anti-neoplastic activities on colorectal cancer (CRC) models. However, it is still unclear whether they exert therapeutic effects on colorectal cancer. In this study, we investigate the properties of polysaccharides of A. bracteate, named ABP. The average molecular weight of ABP was 18.3 kDa and ABP consisted of glucose, mannose, galactose, xylose, galacturonic acid, glucuronic acid at a molar ratio of 37.8:8:2.5:1.7:1:1. An Azoxymethane/Dextran sodium sulfate (AOM/DSS) induced CAC mouse model was established. The CAC mice treated with ABP showed smaller tumor size and lower tumor incidence than untreated ones. ABP increased anti-inflammatory cytokine IL-10, inhibited secretion of pro-inflammatory cytokines (IL-6, IFN-γ, and TNF-α), mitigated oxidative stress by increasing GSH and decreasing MDA levels, suppressed the activation of STAT3 and expressions of its related genes c-Myc and cyclin D1. Moreover, ABP treatment increased the relative abundance of beneficial bacteria (f_Ruminococcaceae, g_Roseburia, g_Odoribacter, g_Oscillospira, and g_Akkermansia) and the levels of fecal short-chain fatty acid (SCFA) in CAC model mice. In summary, our data suggest that ABP could be a potential therapeutic agent for treating CAC.
Collapse
Affiliation(s)
- Ziyan Qin
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Xinyu Yuan
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Jian Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Zhuqing Shi
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Leipeng Cao
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Lexuan Yang
- Central Laboratory, School of the First Clinical Medicine and the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kai Wu
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Lei Jiang
- Central Laboratory, School of the First Clinical Medicine and the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jimei Du
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| |
Collapse
|
24
|
Han C, Wang Y, Liu R, Ran B, Li W. Structural characterization and protective effect of Lonicerae flos polysaccharide on cyclophosphamide-induced immunosuppression in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113174. [PMID: 34999342 DOI: 10.1016/j.ecoenv.2022.113174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to investigate the structure characteristics Lonicera flos polysaccharides (LP) and the protective effects of LP on cyclophosphamide-induced immunosuppression in mice. The results showed the yield and purity of LP was 1.41% and 94.15%, the molecular weight was 53 kDa, and composed of arabinose, rhamnose, ribose, xylose, mannose, fructose, galactose and glucose; and LP had typical polysaccharide structural characteristics via ultraviolet and Fourier transform infrared (FTIR) spectroscopy, 1H NMR and 13C NMR spectra, and scanning electron microscopy (SEM) analyses. Furthermore, LP obviously alleviated the injury of spleen and thymus; significantly promoted Interleukin-2 (IL-2), IL-6, tumor necrosis factor α (TNF-α), immunoglobulin (IgA, IgG and IgM) secretion; and improved the richness of gut microbiota and the contents of short-chain fatty acids (SCFAs) in immunosuppressive mice. Taken together, these results suggested that LP possessed strong protective effect on cyclophosphamide-induced immunosuppression in mice via modulating gut microbiota.
Collapse
Affiliation(s)
- Chao Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ying Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ruiying Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Beibei Ran
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Weidong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
25
|
Pectin polysaccharide from Flos Magnoliae (Xin Yi, Magnolia biondii Pamp. flower buds): Hot-compressed water extraction, purification and partial structural characterization. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107061] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Mohanta B, Sen DJ, Mahanti B, Nayak AK. Antioxidant potential of herbal polysaccharides: An overview on recent researches. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
27
|
Hellebois T, Fortuin J, Xu X, Shaplov AS, Gaiani C, Soukoulis C. Structure conformation, physicochemical and rheological properties of flaxseed gums extracted under alkaline and acidic conditions. Int J Biol Macromol 2021; 192:1217-1230. [PMID: 34666134 DOI: 10.1016/j.ijbiomac.2021.10.087] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/02/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
The present work aimed at investigating an extraction protocol based on consecutive steps of isoelectric point (pH ~ 4.25) mediated gum swelling and deproteinisation as an alternative method to produce flaxseed gum extracts of enhanced techno-functional characteristics. The osidic and proximate composition, structure conformation, flow behaviour, dynamic rheological and thermal properties of gums isolated from brown and golden flaxseeds were assessed. Gum extraction under near-to-isoelectric point conditions did not impair the extraction yield, residual protein and ash content, whilst it resulted in minor changes in the sugar composition of the flaxseed gum extracts. The deconvolution of the GPC/SEC chromatographs revealed the presence of four major polysaccharidic populations corresponding to arabinoxylans, rhamnogalacturonan-I and two AX-RG-I composite fractions. The latter appeared to minimise the intra- and interchain polymer non-covalent interactions (hydrogen bonding) leading to a better solvation affinity in water and lyotropic solvents. Golden flaxseed gums exerted higher molecular weight (Mw = 1.34-1.15 × 106 Da) and intrinsic viscosities (6.63-5.13 dL g-1) as well as better thickening and viscoelastic performance than the brown flaxseed gum exemplars. Golden flaxseed gums exhibited a better thermal stability compared to the brown flaxseed counterparts and therefore, they are suitable for product applications involving severe heat treatments.
Collapse
Affiliation(s)
- Thierry Hellebois
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette L4362, Luxembourg; Université de Lorraine, LIBio, Nancy, France
| | - Jennyfer Fortuin
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette L4362, Luxembourg; Trier University of Applied Sciences, Department of Food Technology, Schneidershof, 54293 Trier, Germany
| | - Xuan Xu
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette L4362, Luxembourg
| | - Alexander S Shaplov
- Materials Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, L4362 Esch-sur-Alzette, Luxembourg
| | - Claire Gaiani
- Université de Lorraine, LIBio, Nancy, France; Institut Universitaire de France (IUF), France
| | - Christos Soukoulis
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette L4362, Luxembourg.
| |
Collapse
|
28
|
An S, Wang L, Zhou P, Luo Z, Feng R, Li X. Construction of Hohenbuehelia serotina polysaccharides-mucin nanoparticles and their sustain-release characteristics under simulated gastrointestinal digestion in vitro. Int J Biol Macromol 2021; 191:1-8. [PMID: 34537291 DOI: 10.1016/j.ijbiomac.2021.09.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/03/2021] [Accepted: 09/12/2021] [Indexed: 11/26/2022]
Abstract
In this study, Hohenbuehelia serotina polysaccharides-mucin nanoparticles (HSP-MC NPs) were fabricated based on hydrogen bonding and hydrophobicity effects for improving the bioavailability of HSP. The structural characteristics and morphology of HSP-MC NPs prepared by different conditions were respectively identified and observed. The results showed that HSP-MC NPs (HSP/MC, 1/1, w/w) presented the optimal physicochemical characteristics, with the encapsulation efficiency of 88.09 ± 0.01%, average particle size of 509.4 ± 9.76 nm and zeta potential of -20.6 ± 0.7 mV. Furthermore, HSP-MC NPs (HSP/MC, 1/1, w/w), belonged to non-crystalline substances, exhibited the excellent physicochemical stabilities against temperature, pH and ionic strength, and had the uniform spherical morphological characteristics. In addition, under simulated gastrointestinal digestion in vitro, HSP-MC NPs (HSP/MC, 1/1, w/w) showed the good sustained release performances, that might effectively improve the absorption rate of HSP. The present research is meaningful for designing the polysaccharides-loaded nano-delivery system based on natural non-toxic carrier that can be used in function food field.
Collapse
Affiliation(s)
- Siying An
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Lu Wang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China.
| | - Peng Zhou
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Zhen Luo
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Ru Feng
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Xiaoyu Li
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Nanobiotechnology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China.
| |
Collapse
|
29
|
Bai JB, Ge JC, Zhang WJ, Liu W, Luo JP, Xu FQ, Wu DL, Xie SZ. Physicochemical, morpho-structural, and biological characterization of polysaccharides from three Polygonatum spp. RSC Adv 2021; 11:37952-37965. [PMID: 35498116 PMCID: PMC9044025 DOI: 10.1039/d1ra07214e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/07/2021] [Indexed: 12/11/2022] Open
Abstract
Polygonatum species, including P. cyrtonema, P. kingianum, and P. sibiricum, are edible plants with medicinal purposes, which have long been consumed as food due to their high nutritional value. In this study, polysaccharides from P. cyrtonema (PCP), P. kingianum (PKP) and P. sibiricum (PSP) were obtained, and their physicochemical properties and in vitro biological activities were investigated. Our results demonstrated that PCP, PKP, and PSP consist of major fructose and minor glucose, galacturonic acid, and galactose in different molar ratios with the molecular weights of 8.5 × 103 Da, 8.7 × 103 Da, and 1.0 × 104 Da, respectively. The three polysaccharides had triple-helical structures with β-d-Fruf, α-d-Glcp, α-d-Galp sugar residues, and an O-acetyl group, and displayed peak-shaped structures in different sizes. They also exhibited thermal, shear-thinning behavior and viscoelastic properties, and PCP presented the highest viscoelasticity. Moreover, they exerted strong free radical-scavenging abilities, and significant reducing capacity. PCP was the strongest, followed by PSP and then PKP. They significantly promoted the polarization of the M1 macrophage, with the effect of PCP ranking first. All three had similar effects on GLP-1 secretion. It is, therefore, necessary to identify the various roles of these three Polygonatum polysaccharides as functional agents based on their bioactivities and physicochemical properties. Three Polygonatum polysaccharides with different physicochemical properties exert distinct effects on free radical-scavenging abilities and the promotion of M1 macrophage polarization, while they have similar effects on GLP-1 secretion.![]()
Collapse
Affiliation(s)
- Jin-Bo Bai
- School of Pharmacy, Anhui University of Chinese Medicine Hefei Anhui 230012 China
| | - Ji-Chun Ge
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Wang-Juan Zhang
- School of Pharmacy, Anhui University of Chinese Medicine Hefei Anhui 230012 China
| | - Wang Liu
- School of Pharmacy, Anhui University of Chinese Medicine Hefei Anhui 230012 China
| | - Jian-Ping Luo
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Feng-Qing Xu
- School of Pharmacy, Anhui University of Chinese Medicine Hefei Anhui 230012 China .,Anhui Province Key Laboratory of Research & Development of Chinese Medicine Hefei 230012 PR China.,Anhui Provincial Key Laboratory of New Manufacturing Technology for Traditional Chinese Medicine Decoction Pieces Hefei 230012 PR China
| | - De-Ling Wu
- School of Pharmacy, Anhui University of Chinese Medicine Hefei Anhui 230012 China .,Anhui Province Key Laboratory of Research & Development of Chinese Medicine Hefei 230012 PR China.,Anhui Provincial Key Laboratory of New Manufacturing Technology for Traditional Chinese Medicine Decoction Pieces Hefei 230012 PR China
| | - Song-Zi Xie
- School of Pharmacy, Anhui University of Chinese Medicine Hefei Anhui 230012 China .,Anhui Province Key Laboratory of Research & Development of Chinese Medicine Hefei 230012 PR China.,Anhui Provincial Key Laboratory of New Manufacturing Technology for Traditional Chinese Medicine Decoction Pieces Hefei 230012 PR China
| |
Collapse
|
30
|
Wei X, Zhao Z, Zhong R, Tan X. A comprehensive review of herbacetin: From chemistry to pharmacological activities. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114356. [PMID: 34166735 DOI: 10.1016/j.jep.2021.114356] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/09/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbacetin is an active constituent of traditional Chinese medicines such as Ephedra sinica Stapf (MaHuang) and Sedum roseum (L.). Scop. (Hong JingTian). MaHuang was used to treat cough, asthma, fever, and edema for more than 5000 years, while Hong JingTian was used to treat depression, fatigue, cancers, and cardiovascular disease. Recent studies indicate that herbacetin and its glycosides play a critical role in the pharmacological activities of these herbs. However, currently, no comprehensive review on herbacetin has been published yet. AIM OF THE STUDY This review aimed to summarize information on the chemistry, natural sources, and pharmacokinetic features of herbacetin, with an emphasis on its pharmacological activities and possible mechanisms of action. MATERIALS AND METHODS A literature search was performed on the Web of Science, PubMed, and China Knowledge Resource Integrated databases (CNKI) using the search term "herbacetin" ("all fields") from 1935 to 2020. Information was also obtained from classic books of Chinese herbal medicine, Chinese pharmacopeia, and the database "The Plant List" (www.theplantlist.org). Studies have been analyzed and summarized in this review if they dealt with chemistry, taxonomy, pharmacokinetic, and pharmacological activity. RESULTS Herbacetin is distributed in various plants and can be extracted or synthesized. It showed diverse pharmacological activities including antioxidant, antiviral, anti-inflammatory, anticancer, antidiabetic, and anticholinesterase. It is thought to have great potential in cancer treatment, especially colon and skin cancers. However, the bioavailability of herbacetin is low and the toxicity of herbacetin has not been studied. Thus, more studies are required to solve these problems. CONCLUSIONS Herbacetin shows promising pharmacological activities against multiple diseases. Future research should focus on improving bioavailability, further studying its pharmacological mechanism, evaluating its toxicity and optimal dose, and performing the clinical assessment. We hope that the present review will serve as a guideline for future research on herbacetin.
Collapse
Affiliation(s)
- Xiaohan Wei
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangzhou Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation, Technology, Guangzhou, 510515, China
| | - Zhejun Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Rongheng Zhong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaomei Tan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangzhou Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation, Technology, Guangzhou, 510515, China.
| |
Collapse
|
31
|
Feng H, Yang J, Zhi H, Hu X, Yang Y, Zhang L, Liu Q, Feng Y, Wu D, Li H. Eucommia ulmoides Leaf Polysaccharide in Conjugation with Ovalbumin Act as Delivery System Can Improve Immune Response. Pharmaceutics 2021; 13:pharmaceutics13091384. [PMID: 34575460 PMCID: PMC8471226 DOI: 10.3390/pharmaceutics13091384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 01/14/2023] Open
Abstract
In this investigation, to maximize the desired immunoenhancement effects of PsEUL and stimulate an efficient humoral and cellular immune response against an antigen, PsEUL and the model antigen ovalbumin (OVA) were coupled using the N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) reaction to yield a novel delivery system (PsEUL-OVA). The physicochemical characteristics and immune regulation effects of this new system were investigated. We found the yield of this EDC method to be 46.25%. In vitro, PsEUL-OVA (200 μg mL−1) could enhance macrophage proliferation and increase their phagocytic efficiency. In vivo, PsEUL-OVA could significantly increase the levels of OVA-specific antibody (IgG, IgG1, IgG2a, and IgG2b) titers and cytokine (IL-2, IL-4, IL-6, IFN-γ) levels. Additionally, it could activate T lymphocytes and facilitate the maturation of dendritic cells (DCs). These findings collectively suggested that PsEUL-OVA induced humoral and cellular immune responses by promoting the phagocytic activity of macrophages and DCs. Taken together, these results revealed that PsEUL-OVA had the potential to improve immune responses and provide a promising theoretical basis for the design of a novel delivery system.
Collapse
Affiliation(s)
- Haibo Feng
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (Q.L.); (Y.F.); (D.W.); (H.L.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
- Correspondence: ; Tel./Fax: +86-28-85522310
| | - Jie Yang
- Department of Veterinary Medicine, Southwest University, Chongqing 402460, China; (J.Y.); (H.Z.); (X.H.); (Y.Y.)
| | - Hui Zhi
- Department of Veterinary Medicine, Southwest University, Chongqing 402460, China; (J.Y.); (H.Z.); (X.H.); (Y.Y.)
| | - Xin Hu
- Department of Veterinary Medicine, Southwest University, Chongqing 402460, China; (J.Y.); (H.Z.); (X.H.); (Y.Y.)
| | - Yan Yang
- Department of Veterinary Medicine, Southwest University, Chongqing 402460, China; (J.Y.); (H.Z.); (X.H.); (Y.Y.)
| | - Linzi Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (Q.L.); (Y.F.); (D.W.); (H.L.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Qianqian Liu
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (Q.L.); (Y.F.); (D.W.); (H.L.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Yangyang Feng
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (Q.L.); (Y.F.); (D.W.); (H.L.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Daiyan Wu
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (Q.L.); (Y.F.); (D.W.); (H.L.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Hangyu Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (Q.L.); (Y.F.); (D.W.); (H.L.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| |
Collapse
|
32
|
Xu W, Zhao M, Fu X, Hou J, Wang Y, Shi F, Hu S. Molecular mechanisms underlying macrophage immunomodulatory activity of Rubus chingii Hu polysaccharides. Int J Biol Macromol 2021; 185:907-916. [PMID: 34242647 DOI: 10.1016/j.ijbiomac.2021.07.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 01/01/2023]
Abstract
The present study was to investigate the mechanisms involved in macrophage activation by polysaccharides from the fruits of Rubus chingii Hu (RFPs). The results showed that RFPs enhanced pinocytic and phagocytic activity, promoted the expression and secretion of inflammatory factors (ROS, PTGS2, iNOS, IL-6, IL-10 and TNF-α) and chemokines (CCL2 and CXCL10), and boosted the expression of accessory and costimulatory molecules (CD40, CD80, CD86, MHC-I and MHC-II). RNA-Seq analysis identified 2564 DEGs, 1710 GO terms and 101 KEGG pathways. TNF was identified as the core gene via analysis of pathway information integration and PPI network. The western blot analysis combined with functional verification assay confirmed that MAPK, NF-κB and Jak-STAT pathways were essential to RFPs-mediated macrophage activation. TLR2 was revealed to be the functional receptor and involved in the early recognition of RFPs. These results indicated that RFPs modulated macrophage immune response mainly through TLR2-dependent MAPK, NF-κB and Jak-STAT pathways.
Collapse
Affiliation(s)
- Wei Xu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China; Center for Veterinary Sciences, Zhejiang University, Hangzhou, China; Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China.
| | - Ming Zhao
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| | - Xinyu Fu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| | - Jing Hou
- Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, China.
| | - Yong Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| | - Fushan Shi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China; Center for Veterinary Sciences, Zhejiang University, Hangzhou, China; Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China.
| | - Songhua Hu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
33
|
Antioxidant, Anti-Inflammatory, and Cytotoxic Properties and Chemical Compositions of Filipendula palmata (Pall.) Maxim. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6659620. [PMID: 33643423 PMCID: PMC7902150 DOI: 10.1155/2021/6659620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 01/05/2023]
Abstract
Filipendula palmata (Pall.) Maxim. remains unexplored and underutilized resources with a high potential to improve human health. In this study, a new ursane-type triterpenoid, namely, 2α, 3β-dihydroxyurs-12-en-28-aldehyde (compound 10), and other 23 known compounds were isolated. 5 triterpenoids (compounds 6, 8, and 10-12), 11 flavonoids (compounds 13-15 and 17-24), 6 phenolic compounds (compounds 1, 2, 4, 5, 9, and 16), 2 sterols (compounds 3 and 7) were isolated from the aqueous solution extract of the aerial parts of F. palmata. The structures of all compounds were elucidated by the use of extensive spectroscopic methods such as infrared spectroscopy (IR), high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), 1H-NMR, and 13C-NMR. The solvent extractions of ethyl acetate fraction were evaluated for antioxidant activities using DPPH (2, 2-diphenyl-1-picrylhydrazyl) and ABTS+ (2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) methods. The anti-inflammatory effects of the compounds were evaluated in lipopolysaccharide- (LPS-) stimulated RAW 264.7 macrophages. The extract cytotoxicity on the cancer cell lines MCF-7, HeLa, 4T1, and A549 was determined by MTT assay. As a result, compounds 10, 11, and 12 exhibited better antioxidant activity compared to the other compounds. Compounds 8-24 had different inhibitory effects on the release of NO, TNF-α, and IL-6 in LPS-stimulated RAW 264.7 cells. The new compound has shown a significant inhibiting effect on cancer cells, and the cell inhibition rate increased in a dose-dependent manner. Further research to elucidate the chemical compositions and pharmacological effects of F. palmata is of major importance towards the development and foundation of clinical application of the species.
Collapse
|
34
|
Cai G, Wu Y, Wusiman A, Gu P, Mao N, Xu S, Zhu T, Feng Z, Liu Z, Wang D. Alhagi honey polysaccharides attenuate intestinal injury and immune suppression in cyclophosphamide-induced mice. Food Funct 2021; 12:6863-6877. [PMID: 34128029 DOI: 10.1039/d1fo01008e] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cyclophosphamide (CY), extensively used as an anti-cancer agent, could cause diverse side effects, such as immunosuppression and intestinal barrier damage. Alhagi honey polysaccharides (AH), polysaccharides isolated from Alhagi honey, are widely known for their anti-tumor and immunomodulatory activities. Herein, AH are evaluated for their ability to protect mice from CY-induced toxicity. The results demonstrated that treatment with AH could prevent the reduction in spleen and thymus indices as well as body weight, and significantly increase the Peyer's patch count in CY-induced mice and the levels of IL-2, IL-6, and TNF-α in serum, suggesting the role of Alhagi honey polysaccharides in alleviating the immunosuppression induced by CY. Moreover, administration of AH significantly increased the SOD activity and the expression level of β-defensin while decreasing the MDA content and DAO activity in CY-treated mice, which suggested a protective effect of AH on the intestinal barrier. Simultaneously, a CY-induced decrease in the ratio of villi length/crypt depth and the number of intraepithelial lymphocytes and goblet cells was reversed by AH treatment, as were the alterations in the expression of ZO-1, mucin-2, E-cadherin and occludin in the intestine and the concentrations of SCFAs in the colon. Furthermore, AH have the ability to regulate the MAPK pathway in CY-mice models to reduce CY-induced toxicity, evidenced by the increased expression of p-ERK and inhibited production of both p-JNK and p-p38. Overall, these results showed that AH could be used as protective agents to mitigate intestinal injury and immune suppression in mice induced by CY.
Collapse
Affiliation(s)
- Gaofeng Cai
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhang Z, Zhang Y, Liu H, Wang J, Wang D, Deng Z, Li T, He Y, Yang Y, Zhong S. A water-soluble selenium-enriched polysaccharide produced by Pleurotus ostreatus: Purification, characterization, antioxidant and antitumor activities in vitro. Int J Biol Macromol 2020; 168:356-370. [PMID: 33316336 DOI: 10.1016/j.ijbiomac.2020.12.070] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022]
Abstract
The development and application of new selenium-enriched polysaccharides has become a critical topic in recent years. In this study, a natural selenium-enriched polysaccharide fraction (Se-POP-21) produced by Pleurotus ostreatus was purified, characterized, and investigated the antioxidant and antitumor activities in vitro. The Se-POP-21 was mainly composed of mannose, glucose, galactose and arabinose, with a molar ratio of 18.01:2.40:26.15:7.34, of which molecular weight was 15,888 Da and the selenium content was 5.31 μg/g. Spectral analysis demonstrated that Se-POP-21 represented a non-triple helix pyranopolysaccharide and selenium occurred in the form of C-O-Se and SeO. Molecular size and morphology studies showed that Se-POP-21 exhibited a spherical shape with a particle size distribution between 100 and 200 nm, even though Se-POP-21 aggregates were also found with a size between 500 and 600 nm. In addition, Se-POP-21 showed strong scavenging capacity to DPPH and hydroxyl radical. More, cell experiments showed that Se-POP-21 could reduce viability of A549, SKOV3, HepG2 and MCF-7 cells, induce apoptosis and inhibit metastasis of A549 cells. A potential mechanism was that Se-POP-21 inhibited the epithelial-to-mesenchymal transition of cancer cells. Se-POP-21 featured no significant effect on normal cells. Se-POP-21 showed great potential to develop into a natural antioxidant or low-toxic antitumor drug.
Collapse
Affiliation(s)
- Zhuomin Zhang
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yunshan Zhang
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jiahui Wang
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - De Wang
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhiwei Deng
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Tianhao Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yao He
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yanjing Yang
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Shian Zhong
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
36
|
Physicochemical characterization and antitumor activity in vitro of a selenium polysaccharide from Pleurotus ostreatus. Int J Biol Macromol 2020; 165:2934-2946. [DOI: 10.1016/j.ijbiomac.2020.10.168] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023]
|
37
|
Xie Z, Bai Y, Chen G, Rui Y, Chen D, Sun Y, Zeng X, Liu Z. Modulation of gut homeostasis by exopolysaccharides from Aspergillus cristatus (MK346334), a strain of fungus isolated from Fuzhuan brick tea, contributes to immunomodulatory activity in cyclophosphamide-treated mice. Food Funct 2020; 11:10397-10412. [PMID: 33237077 DOI: 10.1039/d0fo02272a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, the crude exopolysaccharides (CEPSs) from fungus Aspergillus cristatus (MK346334, NCBI) isolated from Fuzhuan brick tea and its main purified fraction (EPSs-2) were investigated. Using the RAW264.7 cell model, EPSs-2 exhibited an excellent immunomodulatory effect in vitro. Then, the regulating effects of EPSs on immune function and gut microbiota were evaluated using a cyclophosphamide (Cy)-induced mice model. It was found that both CEPSs and EPSs-2 improved the body weight loss, immune organ indexes as well as the levels of TNF-α, IL-1β, IFN-γ and IgA, exhibiting potent immunoregulatory activity. Moreover, CEPSs and EPSs-2 not only attenuated the intestinal tissue damage, but also promoted the production of short-chain fatty acids and modulated the microbial composition by increasing the growth of Muribaculaceae, Prevotellaceae_UCG-001, Bacteroides, Parabacteroides and Tidjanibacter, while decreasing the relative abundances of Helicobacter, Bilophila, Mucispirillum, Lachnospiraceae, Ruminococcaceae and Clostridiales. These results indicated that the EPSs, especially EPSs-2, exhibited immunomodulatory activity associated with the modulation of gut microbiota to maintain gut homeostasis, which provided evidence for the development of novel potential prebiotics and immunomodulators.
Collapse
Affiliation(s)
- Zhiyong Xie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhou X, Zhang Z, Huang F, Yang C, Huang Q. In Vitro Digestion and Fermentation by Human Fecal Microbiota of Polysaccharides from Flaxseed. Molecules 2020; 25:E4354. [PMID: 32977374 PMCID: PMC7582239 DOI: 10.3390/molecules25194354] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
The digestion of flaxseed polysaccharides (FSP) in simulated saliva, gastric and small intestine conditions was assessed, as well as in vitro fermentation of FSP by human gut microbiota. FSP was not degraded in the simulated digestive systems (there was no change in molecular weight or content of reducing sugars), indicating that ingested FSP would reach the large intestine intact. Changes in carbohydrate content, reducing sugars and culture pH suggested that FSP could be broken down and used by gut microbiota. FSP modulated the composition and structure of the gut microbiota by altering the Firmicutes/Bacteroidetes ratio and increasing the relative abundances of Prevotella, Phascolarctobacterium, Clostridium and Megamonas, which can degrade polysaccharides. Meanwhile, FSP fermentation increased the concentration of short-chain fatty acids, especially propionic and butyric acids. Our results indicate that FSP might be developed as a functional food that benefits gut health.
Collapse
Affiliation(s)
| | | | | | - Chen Yang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (X.Z.); (Z.Z.); (F.H.); (Q.H.)
| | | |
Collapse
|
39
|
Liu G, Ye J, Li W, Zhang J, Wang Q, Zhu XA, Miao JY, Huang YH, Chen YJ, Cao Y. Extraction, structural characterization, and immunobiological activity of ABP Ia polysaccharide from Agaricus bisporus. Int J Biol Macromol 2020; 162:975-984. [PMID: 32599242 DOI: 10.1016/j.ijbiomac.2020.06.204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 01/05/2023]
Abstract
The extraction, purification, immunobiological activities, and structure of Agaricus bisporus polysaccharides (ABP) were investigated. Especially we purified and identified the polysaccharides with the highest in vitro immunobiological activity. The extraction conditions of ABP were optimized using single factor and orthogonal experiment. ABP Ia was screened after double purification with DEAE-52 and Sephadex G-200 and showed the best immunoregulatory activity. UV spectra analysis and high-performance gel permeation chromatography results indicated that the ABP Ia fraction did not contain any proteins or nucleotides and was a homogeneous polysaccharide with a relative molecular weight of 784 kDa. Gas chromatography mass spectroscopy results showed that ABP Ia was a heteropolysaccharide consisting of ribose, rhamnose, arabinose, xylose, mannose, glucose, and galactose at a molar ratio of 2.08:4.61:2.45:22.25:36.45:89.22:1.55. FT-IR and periodic acid oxidation analysis indicated that ABP Ia was an α-pyran polysaccharide composed of 1 → 2 and 1 → 4 glycosidic bonds, as well as a possible 1 → 3 glycosidic bond. Furthermore, atomic force microscopy revealed that ABP Ia polysaccharide chains twisted to form a rod-like architecture and, at a 5% concentration, aggregated into a tight structure similar to the shape of a stone forest. These findings identify ABP Ia as a potential functional food ingredient or pharmaceutical for immunoregulation.
Collapse
Affiliation(s)
- Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China; College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jing Ye
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qun Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Ai Zhu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jian-Yin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ya-Hui Huang
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yun-Jiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|