1
|
Zhao M, Qu X, Niu W, Wu L, Li Z, Dong D, Wu Z, Li J, Yuan C, Cui B. Foaming properties of the complex of whey protein isolate fibrils and octenyl succinate starch and the application in angel cake. Int J Biol Macromol 2025; 304:140921. [PMID: 39938819 DOI: 10.1016/j.ijbiomac.2025.140921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/04/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Exploring the functional properties of protein fibrils/polysaccharide complexes has recently attracted significant attention, but their foaming characteristics and potential food applications are still far from being fully understood. This work aimed to enhance the foaming properties of whey protein isolate fibrils (WPIF) through their complexation with amphiphilic octenyl succinate starch (OSS) and assessed the feasibility of utilizing this complex as an egg white alternative in angel cake production. The results showed that at pH 6.0, WPIF/OSS complexes with ratios (r) of 2.0, 4.0, and 10.0 demonstrated equal or superior foaming capacity (up to 1.2) compared to WPIF alone. Low-temperature treatment further augmented both the foaming capacity and foam half-life of the WPIF/OSS complexes. For food application, the complex at pH 6.0 and r = 2.0 was selected. Substituting 12.5 % of the egg white with this complex resulted in cakes with the largest foam volume, lowest foam and batter densities, and reduced cohesiveness and hardness. This was attributed to enlarged pore size, which enhanced product elasticity and resilience. This study used OSS to enhance the WPIF's foaming performance, expanding its applications to the food industry. The improved quality of angel cake with WPIF/OSS highlights its potential as a food formulation ingredient.
Collapse
Affiliation(s)
- Meng Zhao
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Xiaoying Qu
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Wenlong Niu
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan 430068, China
| | - Ling Wu
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan 430068, China
| | - Zhao Li
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Die Dong
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zhengzong Wu
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jianpeng Li
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chao Yuan
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Bo Cui
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
2
|
Wei S, Shi C, Dai Y, Wu L, Ding B, Chen H. Mechanisms underlying the improvement in foaming properties of ovalbumin via non-covalent binding to polymeric proanthocyanidins from Averrhoa carambola fruits. Int J Biol Macromol 2025; 308:142576. [PMID: 40157680 DOI: 10.1016/j.ijbiomac.2025.142576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The strong binding capacity of proanthocyanidins towards proteins provides a potential for natural modification of ovalbumin (OVA) and eventually altering its functionalities. In this study, polymeric proanthocyanidins from the fruit of Averrhoa carambola (APAs) were prepared and structurally characterized, and then the possibility and underlying mechanisms of enhancing OVA foaming properties via non-covalent binding to APAs were evaluated. Procyanidins consisting predominately of epicatechin units connected by both A- and B-type interflavan bonds were identified as APAs principal components. UV-vis absorption, fluorescence, CD, FT-IR spectroscopy and molecular docking results revealed that APAs could bind to OVA to form the ground-state complexes and statically quench the intrinsic fluorescence of OVA. The conformation of OVA was changed by its interaction with APAs, and the main binding forces between them were hydrogen bonding and hydrophobic interactions. Moreover, the surface hydrophobicity, contact angle and surface tension of OVA were declined after complexation with APAs, while the free sulfhydryl content, apparent viscosity and interfacial protein content were increased. The addition of APAs significantly promoted the foaming performance of OVA with an improvement of 15 % in foaming capacity and 7 % in foam stability. These results suggested that APAs might be applied as foaming additives in food industry.
Collapse
Affiliation(s)
- Shudong Wei
- College of Life Science, Yangtze University, Jingzhou 434025, China.
| | - Chenjun Shi
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Ying Dai
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Lang Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Baomiao Ding
- College of Life Science, Yangtze University, Jingzhou 434025, China.
| | - Hui Chen
- College of Life Science, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
3
|
Han S, Meng D, Liu Y, Xu L, Ma Y, Zhang H, Li H, Zhang W, Rayan AM, Ghamry M. Egg white protein‑sodium alginate smart labels based on pH-driven method and nonphase change 3D printing in mackerel freshness response. Int J Biol Macromol 2025; 293:139404. [PMID: 39746427 DOI: 10.1016/j.ijbiomac.2024.139404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
The smart labels prepared via the casting method and molten 3D printing method have a long heating time at high temperature and a dense network structure, resulting in a decrease in the color response ability of the labels. Therefore, this study uses a nonphase change foam 3D printing method with a shorter heating time to improve the color sensitivity of smart labels. By the pH driving method, the blending and pregelation of sodium alginate (Alg) can extend the drainage time of the interfacial film to the maximum extent, thus further improving the foam stability of egg white protein (EWP) and endowing the interfacial adsorption layer with better flexibility and fluidity. The pregelled Alg-EWP foam has good 3D printing adaptability, shows obvious shear thinning behavior, and has excellent shear recovery and creep recovery properties. The 3D-printed smart label has significantly higher swelling rate (275 % → 400 %), porosity (19.86 % → 42.86 %) and phenolic retention rate (55.51 % → 97.26 %). In addition, the sensitivity of the smart labels prepared via foam 3D printing significantly increased, indicating mackerel freshness. Therefore, the method of nonphase-change foam 3D printing provides a new strategy for preparing smart labels with increased porosity and color sensitivity.
Collapse
Affiliation(s)
- Siyao Han
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Dekun Meng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Yujia Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Lina Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Yunze Ma
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Huajiang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Hanyu Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Wentao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Ahmed M Rayan
- Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed Ghamry
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| |
Collapse
|
4
|
Wang F, Dai S, Ye J, Yang X, Xu J, Zhang S, Qiu S, Chen C, Xu H, Deng G. Soy protein isolate/dextran glycation conjugates: Fabrication through ultrasound-assisted cyclic continuous reaction and their applications as carriers of anthocyanins. Int J Biol Macromol 2025; 294:139485. [PMID: 39756761 DOI: 10.1016/j.ijbiomac.2025.139485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/05/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
The precise control of browning and enhancement of Maillard reaction kinetics to improve the surface functionality and nutrient encapsulation efficiency of soy proteins remains a significant challenge. This research presents an ultrasound-assisted cyclic reaction method (1-7 cycles) to synthesize soy protein isolate/dextran (SPI/D) conjugates with enhanced grafting degree and functionality during the Maillard reaction. The technique significantly increased the grafting degree to 65.92 % by the seventh cycle, with minimal browning. Structural analysis showed tighter secondary and more relaxed tertiary structures, leading to a diminished exposure of hydrophobic moieties and an enhancement in solubility, emulsification, foaming, and antioxidant capacity. These functional improvements notably bolstered the SPI/D conjugates' ability to encapsulate anthocyanins (ANs). Particularly, after seven cycles, SPI/D demonstrated a marked enhancement in the thermal, storage, and light stability of ANs. Additionally, it reduced the susceptibility of ANs to degradation by hydrogen peroxide, Fe3+ ions, and gastrointestinal simulated digestion (p < 0.05), which was attributed to their relatively higher hydrophobic residues, hydrogen bonds, and hydrophobic interactions. This strategy provides new insights into soy protein design, highlighting the potential to augment surface functionality and nutrient encapsulate efficiency by controlling the browning degree and enhancing Maillard reaction kinetics.
Collapse
Affiliation(s)
- Fang Wang
- College of Chemistry and Life Sciences, Institute of Food Fermentation, Chengdu Normal University, Chengdu 611130, China; Key Laboratory of Functional Molecule Structure Optimisation and Application in Sichuan Province Colleges and Universities, Chengdu Normal University, Chengdu 611130, China
| | - Shengsheng Dai
- College of Chemistry and Life Sciences, Institute of Food Fermentation, Chengdu Normal University, Chengdu 611130, China
| | - Jiarui Ye
- College of Chemistry and Life Sciences, Institute of Food Fermentation, Chengdu Normal University, Chengdu 611130, China
| | - Xinrui Yang
- College of Chemistry and Life Sciences, Institute of Food Fermentation, Chengdu Normal University, Chengdu 611130, China
| | - Jiali Xu
- College of Chemistry and Life Sciences, Institute of Food Fermentation, Chengdu Normal University, Chengdu 611130, China
| | - Shuo Zhang
- College of Chemistry and Life Sciences, Institute of Food Fermentation, Chengdu Normal University, Chengdu 611130, China
| | - Si Qiu
- College of Chemistry and Life Sciences, Institute of Food Fermentation, Chengdu Normal University, Chengdu 611130, China
| | - Congdi Chen
- College of Chemistry and Life Sciences, Institute of Food Fermentation, Chengdu Normal University, Chengdu 611130, China
| | - Haiyan Xu
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China.
| | - Guowei Deng
- College of Chemistry and Life Sciences, Institute of Food Fermentation, Chengdu Normal University, Chengdu 611130, China; Key Laboratory of Functional Molecule Structure Optimisation and Application in Sichuan Province Colleges and Universities, Chengdu Normal University, Chengdu 611130, China.
| |
Collapse
|
5
|
Kar A, Bornhorst GM. Ultrasound-treated hybrid protein gels from pea and whey: A comparison of gastric breakdown mechanisms with commercial protein-based foods. Food Res Int 2025; 203:115856. [PMID: 40022377 DOI: 10.1016/j.foodres.2025.115856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 03/03/2025]
Abstract
A novel hybrid protein gel was developed to sustainably meet the growing demands for protein with pea and whey protein isolates (3:2 in 15 % w/v protein content) which was ultrasound treated (7.5 and 15 min), and gelled (90 °C, 60 min). The study investigated the impact of ultrasound treatment on the structure and gastric breakdown kinetics of hybrid protein gels and compared these properties to commercial protein-based foods (ham, paneer, and mozzarella). Ultrasound treatment for 15 min significantly (p < 0.05) reduced particle size (d50: 5.4 µm vs 32.5 µm in control) and resulted in a higher initial Young's modulus than control. Protein hydrolysis at 180 min was ∼53 % lower (p < 0.05) with 15 min ultrasound treatment than control and 7.5 min ultrasound treatment. Hybrid protein gels exhibited similarities in initial Young's modulus to mozzarella (p > 0.05), while ham and paneer were significantly firmer (p < 0.05). Effective diffusivity of moisture from gastric fluid decreased (p < 0.05) in the order: ham > paneer and mozzarella > hybrid protein gels. In contrast, the effective acid diffusivity from gastric fluid was similar (p > 0.05) between hybrid protein gels and paneer, which were ∼74 % higher (p < 0.05) than ham and mozzarella. Digestion time influenced (p < 0.05) breakdown mechanisms (texture, dry matter loss, moisture, and acid uptake) during digestion. This study confirmed that hybrid protein gels were comparable to commercial protein-based foods and the limiting factor driving gastric breakdown is unique to different foods incorporating proteins.
Collapse
Affiliation(s)
- Alisha Kar
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Gail M Bornhorst
- Department of Food Science and Technology, University of California, Davis, CA, USA; Department of Biological and Agricultural Engineering, University of California, Davis, CA, USA; Riddet Institute, Palmerston North, New Zealand.
| |
Collapse
|
6
|
Liu JC, Nie B, Wang YQ, Yan JN, Wu HT. Phase behavior and synergistic gelation of scallop (Patinopecten yessoensis) male gonad hydrolysates and gellan gum driven by pH. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1841-1849. [PMID: 39425557 DOI: 10.1002/jsfa.13961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/08/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Previous studies have investigated complexation and coacervation of scallop Patinopecten yessoensis male gonad hydrolysates (SMGHs) and polysaccharides influenced by pH and blending ratio. It has been found that SMGHs/polysaccharide composite shows better gel properties under strongly acidic conditions. Thus, the complexation and coacervation of SMGHs and gellan gum (GG) were investigated via turbidimetric titration at different pH values (1-12) and biopolymer blending ratios (9.5:0.5-6:4). RESULTS Both pHc and pHφ1 exhibited ratio-independent behavior with constant values at approximately pH 5.8 and pH 3.8, respectively, dividing SMGHs/GG blends into three phases named mixed polymers, soluble complexes and insoluble coacervates, respectively. Overall, SMGHs and GG exhibited synergistic gelation under neutral and acidic conditions, with the initial storage modulus (G') increasing by approximately 42.5-, 573.7- and 3421-fold and 97.7-, 550.3- and 0.5-fold, respectively, at pH 7, 5 and 3, compared with SMGHs and GG. As pH decreased from 7 to 3, the initial G' and viscosity η values of SMGHs/GG gels increased by 20.1- and 2.3-fold, respectively, exhibiting the greatest increase in gel strength. Moreover, the free water in the SMGHs/GG system significantly shifted toward lower relaxation times attributed to the immobilization of the outer hydration layers. SMGHs/GG gels in the insoluble phase exhibited denser networks and rougher surfaces, supporting the enhanced rheological properties and water retention capacity of the gel. CONCLUSION This work provides a basic foundation for the development of pH-driven SMGHs/GG gelation by examining complexation and coacervation processes. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia-Cheng Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, Ministry of Agriculture and Rural Affair, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Bin Nie
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, Ministry of Agriculture and Rural Affair, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Yu-Qiao Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, Ministry of Agriculture and Rural Affair, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Jia-Nan Yan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, Ministry of Agriculture and Rural Affair, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Hai-Tao Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, Ministry of Agriculture and Rural Affair, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
7
|
Kim W, Yiu CCY, Wang Y, Zhou W, Selomulya C. Toward Diverse Plant Proteins for Food Innovation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408150. [PMID: 39119828 DOI: 10.1002/advs.202408150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Indexed: 08/10/2024]
Abstract
This review highlights the development of plant proteins from a wide variety of sources, as most of the research and development efforts to date have been limited to a few sources including soy, chickpea, wheat, and pea. The native structure of plant proteins during production and their impact on food colloids including emulsions, foams, and gels are considered in relation to their fundamental properties, while highlighting the recent developments in the production and processing technologies with regard to their impacts on the molecular properties and aggregation of the proteins. The ability to quantify structural, morphological, and rheological properties can provide a better understanding of the roles of plant proteins in food systems. The applications of plant proteins as dairy and meat alternatives are discussed from the perspective of food structure formation. Future directions on the processing of plant proteins and potential applications are outlined to encourage the generation of more diverse plant-based products.
Collapse
Affiliation(s)
- Woojeong Kim
- School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | | | - Yong Wang
- School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, 117542, Singapore
| | | |
Collapse
|
8
|
Song MK, Guo XN, Zhu KX. Alkali-Induced Protein Structural, Foaming, and Air-Water Interfacial Property Changes and Quantitative Proteomic Analysis of Buckwheat Sourdough Liquor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15387-15397. [PMID: 38920293 DOI: 10.1021/acs.jafc.4c02026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
In this study, the protein structural, foaming, and air-water interfacial properties in dough liquor (DL) ultracentrifugated from buckwheat sourdough with different concentrations of an alkali (1.0-2.5% of sodium bicarbonate) were investigated. Results showed that the alkali led to the cross-linking of protein disulfide bonds through the oxidation of free sulfhydryl groups in DL. The alterations in protein secondary and tertiary structures revealed that the alkali caused the proteins in DL to fold, decreased the hydrophobicity, and led to a less flexible but compact structure. The alkali accelerated the diffusion of proteins and decreased the surface tension of DL. In addition, the alkali notably improved the foam stability by up to 34.08% at 2.5% concentration, mainly by increasing the net charge, reducing the bubble size, and strengthening the viscoelasticity of interfacial protein films. Quantitative proteomic analysis showed that histones and puroindolines of wheat and 13S globulin of buckwheat were closely related to the changes in the alkali-induced foaming properties. This study sheds light on the mechanism of alkali-induced improvement in gas cell stabilization and the buckwheat sourdough steamed bread quality from the aspect of the liquid lamella.
Collapse
Affiliation(s)
- Meng-Kun Song
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, P. R. China
| | - Xiao-Na Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, P. R. China
| | - Ke-Xue Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, P. R. China
| |
Collapse
|
9
|
Guo X, Wang Q, Yang Q, Gong Z, Wu Y, Liu X. Effects of molecular structure and charge state on the foaming and emulsifying properties of Spirulina protein isolates. Food Res Int 2024; 187:114407. [PMID: 38763661 DOI: 10.1016/j.foodres.2024.114407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
Microalgae protein holds great potential for various applications in the food industry. However, the current knowledge regarding microalgae protein remains limited, with little information available on its functional properties. Furthermore, the relationship between its molecular structure and functional properties is not well defined, which limits its application in food processing. This study aims to addresses these gaps though an analysis of the emulsibility and foamability of various soluble protein isolates from two species of Spirulina (Arthospira platensis and Spirulina platensis), and the functional properties of Spirulina protein isolates in relation to its molecular structure and charge state. Results revealed that the degree of cross-linking and aggregation or folding and curling of protein tertiary structures was higher in the highly soluble Spirulina protein isolates (AP50% and SP50%) than in the low-solubility isolates (AP30% and SP30%). The foaming capacity (FC) of AP50% and SP50% was found to be lower than that of AP30% and SP30%. Spirulina protein isolates can stably adsorb at the air-water interface for at least 20 min and possessed good interfacial activity. A high pH value was found to promote cross-linking of protein particles at the oil-water interface, thereby reinforcing the internal network structure of emulsions and increasing viscosity. These findings provide preliminary insights for potential applications of Spirulina protein isolates in food production, especially towards quality improvement.
Collapse
Affiliation(s)
- Xiao Guo
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Qian Wang
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Qing Yang
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - ZhiYong Gong
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Yongning Wu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China; NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, People's Republic of China
| | - Xin Liu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China.
| |
Collapse
|
10
|
Kim GH, Chin KB. Effect of Faba Bean Isolate and Microbial Transglutaminase on Rheological Properties of Pork Myofibrillar Protein Gel and Physicochemical and Textural Properties of Reduced-Salt, Low-Fat Pork Model Sausages. Food Sci Anim Resour 2024; 44:586-606. [PMID: 38765284 PMCID: PMC11097017 DOI: 10.5851/kosfa.2024.e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 05/22/2024] Open
Abstract
The study was performed to determine the effect of faba bean protein isolate (FBPI) alone or in combination with microbial transglutaminase (MTG) on the rheological properties of pork myofibrillar protein gel (MPG), and physiochemical and textural properties of reduced-salt, low-fat pork model sausages (LFMSs). The cooking yields of MPGs with MTG or FBPI alone decreased and increased, respectively. However, the combination of FBPI and MTG was similar to the control (CTL) without FBPI or MTG. Gel strength values of MPG added with both FBPI and MTG were higher than treatments with FBPI or MTG alone. The hydrophobicity values of CTL were lower than those of MPG with FBPI alone, whereas the addition of MTG decreased the hydrophobicity of MPGs. The incorporation of FBPI alone or in combination with MTG decreased sulfhydryl groups (p<0.05). Shear stress values of MPGs with MTG tended to be higher than those of non-MTG treatments at all shear rates, and the addition of FBPI into MPGs increased shear stress values. Reduced-salt (1.0%) LFMSs with FBPI alone or combined with MTG had both lower cooking loss and expressible moisture values than those of CTL and similar values to the reference sample (REF, 1.5% salt). Textural properties of reduced-salt LFMSs with FBPI or MTG were similar to those of REF. These results demonstrated that the combination of FBPI and MTG could improve the water binding capacity and textural properties of pork MPGs and LFMSs and might be suitable for application in the development of healthier meat products.
Collapse
Affiliation(s)
- Geon Ho Kim
- Department of Animal Science, Chonnam National University, Gwangju 61186, Korea
| | - Koo Bok Chin
- Department of Animal Science, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
11
|
Hamed HA, Kobacy W, Mahmoud EA, El-Geddawy MMA. Looking for a Novel Vegan Protein Supplement from Faba Bean, Lupine, and Soybean: a Dietary and Industrial Standpoint. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:90-97. [PMID: 38060143 PMCID: PMC10891211 DOI: 10.1007/s11130-023-01125-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/05/2023] [Indexed: 12/08/2023]
Abstract
Global population growth poses a threat to sustainable development. Meanwhile, the use of plant proteins as healthy and sustainable alternatives to animal proteins needs further research. Therefore, this investigation was designed to study the nutritive, structural, and thermal properties of isolated protein fractions from different legumes, i.e., faba bean (FPI), soybean (SPI), and lupine (LPI). As a prospective plant-based protein powder, an equal mixture (MPI) of the three prior legume samples was formulated to study its properties compared to each sole sample. The alkaline extraction and isoelectric precipitation (AE-IP) technique was used for protein isolation. Results showed that all protein isolates had reasonable levels of protein with maximum protein content in SPI (96.15%). The MPI sample, however, came out on top in terms of amino acid profile followed by FBI. Compared to SPI and LPI, it had the highest isoleucine content and higher methionine, valine, leucine, phenylalanine, and lysine. Moreover, MPI showed a median particle charge (-37.1 mV) compared to FPI, SPI, and LPI samples. MPI sample peak showed resistance to heat denaturation at a temperature greater than 200 °C when the DSC test was conducted. With respect to its rheological characteristics, it outperformed the other three protein isolates and exhibited the highest values of storage modulus G' and loss modulus G". Consequently, our study suggests that pulse-derived protein isolate mixture can be used as a unique type of nutritious dietary protein supplement. It could be a good nutritional alternative to proteins derived from animals.
Collapse
Affiliation(s)
- Hend A Hamed
- Faculty of Agriculture, Horticulture Department, Sohag University, Sohag, 82524, Egypt
| | - Walaa Kobacy
- Faculty of Agriculture, Food Science & Nutrition Department, Sohag University, Sohag, 82524, Egypt
| | - Elsayed A Mahmoud
- Faculty of Agriculture, Food Science & Nutrition Department, Sohag University, Sohag, 82524, Egypt
| | | |
Collapse
|
12
|
Zhao W, Wei Z, Xue C. Foam-templated oleogels constructed by whey protein isolate and xanthan gum: Multiple-effect delivery vehicle for Antarctic krill oil. Int J Biol Macromol 2024; 256:128391. [PMID: 38029892 DOI: 10.1016/j.ijbiomac.2023.128391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
To address the limitations of Antarctic krill oil (AKO) such as easy oxidation, unacceptable fishy flavor and low bioaccessibility of astaxanthin in it, a multiple-effect delivery vehicle for AKO is needed. In this study, whey protein isolate (WPI) and xanthan gum (XG) were utilized to construct AKO into oleogels by generating foam-templates. The effects of the concentration of XG on the properties of foam, cryogel and the corresponding oleogels were investigated, and the formation mechanism of oleogel was discussed from the perspective of the correlation between foam-cryogel-oleogel. The results demonstrated that with the increase of the concentration of XG, the foam stability was improved, the cryogel after freeze drying had a more uniform network structure and superior oil absorption ability, and the corresponding oleogel had excellent oil holding ability after oil absorption. The AKO oleogels showed superior oxidative stability compared with AKO. The in vitro digestion experiments demonstrated that the bioaccessibility of the astaxanthin in this oleogel was also considerably higher than that in AKO. In addition, this oleogel had masking effect on the odor-presenting substances in AKO, while retaining other flavors of AKO. The foam-templated oleogel can be considered as a multiple-effect vehicle for AKO to facilitate its application in food products. This study provides theoretical basis and data support for the development and utilization of novel vehicle for AKO, broadening the application of AKO in the field of food science.
Collapse
Affiliation(s)
- Wanjun Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zihao Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Laboratory of Marine Drugs and Biological Products, The Laoshan Laboratory, Qingdao 266235, China
| |
Collapse
|
13
|
Zhang Z, Li T, Zhang Y, Shao J, Ye C, Wang H, Zhu B, Zhang Y. Effect of polysaccharides on conformational changes and functional properties of protein-polyphenol binary complexes: A comparative study. Int J Biol Macromol 2023; 253:126890. [PMID: 37716302 DOI: 10.1016/j.ijbiomac.2023.126890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
This study aimed to investigate the effect of different polysaccharides on the binding behavior and functional properties of soybean protein isolate (SPI)-quercetin (Que) complex. The binding behavior was assessed using multi-spectral technique with the Stern-Volmer equation, which confirmed the presence of static fluorescence quenching in Que and SPI. The addition of sodium alginate (SA) resulted in a reduction of the binding affinity between SPI and Que, while dextran (DX) exhibited some promoting effect. A slight blue shift was observed in amide I and amide II bands, indicating the presence of hydrophobic and electrostatic interactions. Circular dichroism spectra revealed the ordered structures transformed into a more disordered state when polysaccharides were added, leading to an increase in random coils (SA: 18.5 %, DX: 15.4 %). Docking and dynamic simulations demonstrated that SA displayed greater stability within the hydrophobic compartments of SPI than DX, increased rigidity and stability of the SPI structure in SPI-Que-SA complexes. Electrostatic forces played a significant role between SPI and SA, while van der Waals forces were the main driving forces in SPI-DX complexes. Overall, the introduction of SA led to a looser and stable structure of SPI-Que complexes, resulting in an improvement of their emulsifying, foaming, and antioxidant properties.
Collapse
Affiliation(s)
- Zifan Zhang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Taoran Li
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yubo Zhang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Juanjuan Shao
- Department of Science and Technology, Hebei Agricultural University, Hebei 061100, China
| | - Chengxiang Ye
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongwu Wang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Beibei Zhu
- College of Chinese Medicine Pharmaceutical Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China..
| | - Yating Zhang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
14
|
Lima Nascimento LG, Odelli D, Fernandes de Carvalho A, Martins E, Delaplace G, Peres de Sá Peixoto Júnior P, Nogueira Silva NF, Casanova F. Combination of Milk and Plant Proteins to Develop Novel Food Systems: What Are the Limits? Foods 2023; 12:2385. [PMID: 37372596 DOI: 10.3390/foods12122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In the context of a diet transition from animal protein to plant protein, both for sustainable and healthy scopes, innovative plant-based foods are being developing. A combination with milk proteins has been proposed as a strategy to overcome the scarce functional and sensorial properties of plant proteins. Based on this mixture were designed several colloidal systems such as suspensions, gels, emulsions, and foams which can be found in many food products. This review aims to give profound scientific insights on the challenges and opportunities of developing such binary systems which could soon open a new market category in the food industry. The recent trends in the formulation of each colloidal system, as well as their limits and advantages are here considered. Lastly, new approaches to improve the coexistence of both milk and plant proteins and how they affect the sensorial profile of food products are discussed.
Collapse
Affiliation(s)
- Luis Gustavo Lima Nascimento
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
- Laboratoire de Processus aux Interfaces et Hygiène des Matériaux, INRAE, 59009 Lille, France
| | - Davide Odelli
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | | | - Evandro Martins
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | - Guillaume Delaplace
- Laboratoire de Processus aux Interfaces et Hygiène des Matériaux, INRAE, 59009 Lille, France
| | | | | | - Federico Casanova
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
15
|
Grossmann L. Structural properties of pea proteins ( Pisum sativum) for sustainable food matrices. Crit Rev Food Sci Nutr 2023; 64:8346-8366. [PMID: 37074167 DOI: 10.1080/10408398.2023.2199338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Pea proteins are widely used as a food ingredient, especially in sustainable food formulations. The seed itself consists of many proteins with different structures and properties that determine their structure-forming properties in food matrices, such as emulsions, foams, and gels. This review discusses the current insights into the structuring properties of pea protein mixtures (concentrates, isolates) and the resulting individual fractions (globulins, albumins). The structural molecular features of the proteins found in pea seeds are discussed and based on this information, different structural length scales relevant to foods are reviewed. The main finding of this article is that the different pea proteins are able to form and stabilize structural components found in foods such as air-water and oil-water interfaces, gels, and anisotropic structures. Current research reveals that each individual protein fraction has unique structure-forming properties and that tailored breeding and fractionation processes will be required to optimize these properties. Especially the use of albumins, globulins, and mixed albumin-globulins proved to be useful in specific food structures such as foams, emulsions, and self-coacervation, respectively. These new research findings will transform how pea proteins are processed and being used in novel sustainable food formulations in the future.
Collapse
Affiliation(s)
- Lutz Grossmann
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
16
|
Evaluation of Processing Conditions and Hydrocolloid Addition on Functional Properties of Aquafaba. Foods 2023; 12:foods12040775. [PMID: 36832848 PMCID: PMC9956225 DOI: 10.3390/foods12040775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Aquafaba, the cooking water from chickpeas, could replace animal-derived ingredients such as egg whites in systems that require the stabilization of an oil or gas phase. However, little is known about how processing methods and additives affect its functional properties. In this study, aquafaba was prepared via boiling or pressure-cooking at water-to-seed (WSR) ratios of 5:1, 4:1 and 3:1. The effects of preparation method and pH adjustment on viscosity, protein content, solubility and profile were evaluated. Samples were further analyzed for foaming capacity/stability (FC/FS) and emulsifying activity/stability index (EAI/ESI). Foams were also prepared in combination with xanthan gum or hydroxypropyl methylcellulose (HPMC). Solubility was lowest near pH 4 and not affected by cooking method and protein profile was not affected by method or ratio. Samples with pH 3 had high EAI and FS, but low ESI and FC. WSR did not significantly affect interfacial properties. Xanthan gum had a greater effect than HPMC on viscosity and prevented foam liquid drainage for 24 h. While the preparation method affects aquafaba properties, subsequent pH adjustment is of greater relevance for interfacial properties. Foam volumes can be maximized and foam drainage limited by appropriate choice of hydrocolloids and addition levels.
Collapse
|
17
|
Zhang X, Sun Z, Zeng Q, Jin H, Wang S, Jin Y, Hu Y, Cai Z. Utilization of ovalbumin-propylene glycol alginate complex system for superior foam: The effect of pH-driven phase behavior. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Li J, Sun J, Chang C, Gu L, Su Y, Zhai J, Yang Y. Influence of selected gums on the foaming properties of egg white powders: Kinetics of foam formation and baking performance. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
19
|
Huang PH, Hazeena SH, Qiu YT, Ciou JY, Hsieh CW, Shih MK, Chen MH, Hou CY. Application of egg white hydrolysate (EWH) to improve frothing functionality of pasteurized liquid egg in large quantity production. Heliyon 2023; 9:e12697. [PMID: 36632096 PMCID: PMC9826854 DOI: 10.1016/j.heliyon.2022.e12697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/02/2023] Open
Abstract
Sterilized Liquid Eggs (SLE) are convenient for the baking process by minimizing the food safety risks of fresh eggs. Although these advantages were encouraging, the thermal effects of the pasteurization process had a negative impact on the functionality of the egg whites, thus making them unattractive to the food industry. Therefore, our previous study found that adding 1-5% egg white hydrolysate (EWH) contributed to the foaminess and stability in SLE. This primary purpose of this study was to confirm the feasibility of applying the optimum concentration of EWH for simultaneous evaluation and shelf life for batch production of SLE. The physical characteristics of the foam were analyzed by adding 1 ± 0.2% of EWH to SLE, and it was found that the foam with 1% EWH had better stability (low drainage), better viscosity, and similar distribution of foam bubbles size in the microstructure. No Salmonella infection has been found during the shelf life of 7 days. In addition, the highest overall acceptability has obtained using the large quantity produced SLE with 1% EWH to produce spoon cookies, followed by sensory evaluation. The cross-sectional height of the cookie and the distribution of holes in the structure were in line with those of the non-sterilized liquid egg white (NSLE). Hence, adding 1% EWH was found to the optimum concentration, which provides good foaming performance and stability of SLE. This study conveys a positive assessment to SLE producers and potential users, as it will increase their profitability economically while meeting the market challenges.
Collapse
Affiliation(s)
- Ping-Hsiu Huang
- College of Food, Jiangsu Food and Pharmaceutical Science College, No. 4, Meicheng Road, Higher Education Park, Huai'an City, Jiangsu Province 223003, China
| | - Sulfath Hakkim Hazeena
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung. University of Science and Technology, Kaohsiung 81157, Taiwan, ROC
| | - Yi-Ting Qiu
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung. University of Science and Technology, Kaohsiung 81157, Taiwan, ROC
| | - Jhih-Ying Ciou
- Department of Food Science, Tunghai University, Taichung City 407, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, Taichung City 404, Taiwan, ROC
| | - Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung, Taiwan, ROC
| | - Min-Hung Chen
- Agriculture & Food Agency Council of Agriculture Executive, Yuan Marketing & Processing Division, 54044 No. 8 Kuang-Hua Rd., Chung-Hsing New Village, Nantou City, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung. University of Science and Technology, Kaohsiung 81157, Taiwan, ROC
| |
Collapse
|
20
|
Kongjaroen A, Methacanon P, Seetapan N, Fuongfuchat A, Gamonpilas C, Nishinari K. Effects of dispersing media on the shear and extensional rheology of xanthan gum and guar gum-based thickeners used for dysphagia management. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Jin H, Jin Y, Pan J, Sun Y, Sheng L. Multidimensional evaluation of structural properties of ovalbumin at the air-water interface: Spectroscopy and molecular dynamics simulations. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
22
|
Conversion of Pulse Protein Foam-Templated Oleogels into Oleofoams for Improved Baking Application. Foods 2022; 11:foods11182887. [PMID: 36141019 DOI: 10.3390/foods11182887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
The food industry has long been searching for an efficient replacement for saturated-fatty-acid-rich fats for baking applications. Although oleogels have been considered a potential alternative for saturated and trans fats, their success in food application has been poor. The present study explored the use of oleofoams obtained by whipping the pulse protein foam-templated oleogels for cake baking. Oleogels were prepared at room temperature by adding canola oil containing high-melting monoglyceride (MAG) or candelilla wax (CW) to the freeze-dried pea or faba bean protein-stabilized foams. Oleogels were then whipped to create the oleofoams; however, only the oleogels containing MAG could form oleofoams. CW-oleogel could not form any oleofoam. The most stable oleofoams with the highest overrun, stability, and storage modulus were obtained from 3% MAG+pulse protein foam-templated oleogels. The MAG plus protein foam-templated oleogels showed smaller and more packed air bubbles than MAG-only oleofoam, which was ascribed to the protein's ability to stabilize air bubbles and provide a network in the continuous oil phase to restrict air bubble movement. A novel batter preparation method for oleofoam was developed to increase air bubble incorporation. The X-ray microtomography images of the cakes showed a non-homogeneous distribution of larger air bubbles in the oleofoam cake compared to the shortening cake although their total porosity was not much different. The oleofoam cakes made with the new method yielded similar hardness and chewiness compared to the shortening cakes. By improving rheology and increasing air incorporation in the batter, high-quality cakes can be obtained with MAG-containing oleofoams made from pulse protein foam-templated oleogels.
Collapse
|
23
|
Shanthakumar P, Klepacka J, Bains A, Chawla P, Dhull SB, Najda A. The Current Situation of Pea Protein and Its Application in the Food Industry. Molecules 2022; 27:5354. [PMID: 36014591 PMCID: PMC9412838 DOI: 10.3390/molecules27165354] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Pea (Pisum sativum) is an important source of nutritional components and is rich in protein, starch, and fiber. Pea protein is considered a high-quality protein and a functional ingredient in the global industry due to its low allergenicity, high protein content, availability, affordability, and deriving from a sustainable crop. Moreover, pea protein has excellent functional properties such as solubility, water, and oil holding capacity, emulsion ability, gelation, and viscosity. Therefore, these functional properties make pea protein a promising ingredient in the food industry. Furthermore, several extraction techniques are used to obtain pea protein isolate and concentrate, including dry fractionation, wet fractionation, salt extraction, and mild fractionation methods. Dry fractionation is chemical-free, has no loss of native functionality, no water use, and is cost-effective, but the protein purity is comparatively low compared to wet extraction. Pea protein can be used as a food emulsifier, encapsulating material, a biodegradable natural polymer, and also in cereals, bakery, dairy, and meat products. Therefore, in this review, we detail the key properties related to extraction techniques, chemistry, and structure, functional properties, and modification techniques, along with their suitable application and health attributes.
Collapse
Affiliation(s)
- Parvathy Shanthakumar
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Joanna Klepacka
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, 10719 Olsztyn, Poland
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Science in Lublin, Doświadczalna Street 51A, 20280 Lublin, Poland
| |
Collapse
|
24
|
Barroso NG, Santos MAS, Okuro PK, Cunha RL. Composition and process approaches that underpin the mechanical properties of oleogels. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Noádia Genuario Barroso
- Department of Food Engineering and Technology, School of Food Engineering University of Campinas (UNICAMP) Campinas Brazil
| | - Matheus Augusto Silva Santos
- Department of Food Engineering and Technology, School of Food Engineering University of Campinas (UNICAMP) Campinas Brazil
| | - Paula Kiyomi Okuro
- Department of Food Engineering and Technology, School of Food Engineering University of Campinas (UNICAMP) Campinas Brazil
| | - Rosiane Lopes Cunha
- Department of Food Engineering and Technology, School of Food Engineering University of Campinas (UNICAMP) Campinas Brazil
| |
Collapse
|
25
|
Nooshkam M, Varidi M, Alkobeisi F. Bioactive food foams stabilized by licorice extract/whey protein isolate/sodium alginate ternary complexes. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
26
|
Hundschell CS, Brühan J, Anzmann T, Kohlus R, Wagemans AM. Influence of Levan on the Thermally Induced Gel Formation of β-Lactoglobulin. Gels 2022; 8:gels8040228. [PMID: 35448130 PMCID: PMC9029924 DOI: 10.3390/gels8040228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
In this study, the influence of levan on the phase behavior and the thermally induced gelation of the mixed β-lactoglobulin—levan gels as a function of polymer content, molecular weight and ionic strength was characterized. For this purpose, rheology was used to study the mechanical properties of the gels and the water binding of the network structure was investigated by time domain nuclear magnetic resonance. Phase behavior and network type were analyzed by optical observation and electron microscopy. Levan enhanced the aggregation and gel formation of β-lg due to segregative forces between the polymer species. Segregation was caused by the excluded volume effect and was more pronounced at lower ionic strength, higher levan contents and higher levan molecular weights. The presence of levan increased the water binding of the gel networks. However, this effect decreased with increasing levan content. At high ionic strength and high levan content, phase separated gels were formed. While segregative forces enhanced network formation, and therefore, increased the gel strength of mixed gels at low ionic strength, levan had also antagonistic effects on the network formation at high ionic strength and high polymer contents.
Collapse
Affiliation(s)
- Christoph S. Hundschell
- Department of Food Colloids, Institute of Food Technology and Food Chemistry, Technical University Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
- Correspondence: (C.S.H.); (A.M.W.)
| | - Juliane Brühan
- Department of Food Colloids, Institute of Food Technology and Food Chemistry, Technical University Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
| | - Theresa Anzmann
- Department of Process Engineering and Food Powders, University of Hohenheim, Garbenstraße 25, 70599 Stuttgart, Germany; (T.A.); (R.K.)
| | - Reinhard Kohlus
- Department of Process Engineering and Food Powders, University of Hohenheim, Garbenstraße 25, 70599 Stuttgart, Germany; (T.A.); (R.K.)
| | - Anja M. Wagemans
- Department of Food Colloids, Institute of Food Technology and Food Chemistry, Technical University Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
- Correspondence: (C.S.H.); (A.M.W.)
| |
Collapse
|
27
|
Zhan F, Youssef M, Shah BR, Li J, Li B. Overview of foam system: Natural material-based foam, stabilization, characterization, and applications. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Guldane M, Dogan M. Multi‐response optimization of process parameters of saponin‐based model foam using Taguchi method and grey relational analysis coupled with principal component analysis. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Mehmet Guldane
- Program of Laboratory Technology, Pamukova Vocational School Sakarya University of Applied Sciences Sakarya Turkey
| | - Mahmut Dogan
- Department of Food Engineering, Engineering Faculty Erciyes University Kayseri Turkey
- TAGEM Food Analysis Center Co. Erciyes University Technopark Area 38039 Kayseri Turkey
| |
Collapse
|
29
|
Effects of combined treatment with ultrasound and pH shifting on foaming properties of chickpea protein isolate. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107351] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Wei F, Lu M, Li J, Xiao J, Rogers MA, Cao Y, Lan Y. Construction of foam-templated oleogels based on rice bran protein. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Boukid F. Peanut protein – an underutilised by‐product with great potential: a review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fatma Boukid
- Food safety and Functionality Programme Food Industries Institute of Agriculture and Food Research and Technology (IRTA) Finca Camps i Armet S/N Monells 17121 Spain
| |
Collapse
|
32
|
Li J, Yang X, Swallah MS, Fu H, Ji L, Meng X, Yu H, Lyu B. Soy protein isolate: an overview on foaming properties and air–liquid interface. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiaxin Li
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
| | - Xiaoqing Yang
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
| | - Mohammed Sharif Swallah
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
| | - Hongling Fu
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
| | - Lei Ji
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
| | - Xiangze Meng
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
| | - Hansong Yu
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
| | - Bo Lyu
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
- College of Food Science Northeast Agricultural University Harbin 150030 China
| |
Collapse
|
33
|
López-Castejón ML, Bengoechea C, Alguacil JM, Carrera C. Prebiotic food foams stabilized by inulin and β-lactoglobulin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Effect of freezing temperature on molecular structure and functional properties of gelatin extracted by microwave-freezing-thawing coupling method. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Sim SYJ, SRV A, Chiang JH, Henry CJ. Plant Proteins for Future Foods: A Roadmap. Foods 2021; 10:1967. [PMID: 34441744 PMCID: PMC8391319 DOI: 10.3390/foods10081967] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Protein calories consumed by people all over the world approximate 15-20% of their energy intake. This makes protein a major nutritional imperative. Today, we are facing an unprecedented challenge to produce and distribute adequate protein to feed over nine billion people by 2050, in an environmentally sustainable and affordable way. Plant-based proteins present a promising solution to our nutritional needs due to their long history of crop use and cultivation, lower cost of production, and easy access in many parts of the world. However, plant proteins have comparatively poor functionality, defined as poor solubility, foaming, emulsifying, and gelling properties, limiting their use in food products. Relative to animal proteins, including dairy products, plant protein technology is still in its infancy. To bridge this gap, advances in plant protein ingredient development and the knowledge to construct plant-based foods are sorely needed. This review focuses on some salient features in the science and technology of plant proteins, providing the current state of the art and highlighting new research directions. It focuses on how manipulating plant protein structures during protein extraction, fractionation, and modification can considerably enhance protein functionality. To create novel plant-based foods, important considerations such as protein-polysaccharide interactions, the inclusion of plant protein-generated flavors, and some novel techniques to structure plant proteins are discussed. Finally, the attention to nutrition as a compass to navigate the plant protein roadmap is also considered.
Collapse
Affiliation(s)
- Shaun Yong Jie Sim
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore; (A.S.); (J.H.C.); (C.J.H.)
| | - Akila SRV
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore; (A.S.); (J.H.C.); (C.J.H.)
| | - Jie Hong Chiang
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore; (A.S.); (J.H.C.); (C.J.H.)
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore; (A.S.); (J.H.C.); (C.J.H.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
36
|
Pea protein ingredients: A mainstream ingredient to (re)formulate innovative foods and beverages. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.040] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Functionality of Ingredients and Additives in Plant-Based Meat Analogues. Foods 2021; 10:foods10030600. [PMID: 33809143 PMCID: PMC7999387 DOI: 10.3390/foods10030600] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Meat analogue research and development focuses on the production of sustainable products that recreate conventional meat in its physical sensations (texture, appearance, taste, etc.) and nutritional aspects. Minced products, like burger patties and nuggets, muscle-type products, like chicken or steak-like cuts, and emulsion products, like Frankfurter and Mortadella type sausages, are the major categories of meat analogues. In this review, we discuss key ingredients for the production of these novel products, with special focus on protein sources, and underline the importance of ingredient functionality. Our observation is that structuring processes are optimized based on ingredients that were not originally designed for meat analogues applications. Therefore, mixing and blending different plant materials to obtain superior functionality is for now the common practice. We observed though that an alternative approach towards the use of ingredients such as flours, is gaining more interest. The emphasis, in this case, is on functionality towards use in meat analogues, rather than classical functionality such as purity and solubility. Another trend is the exploration of novel protein sources such as seaweed, algae and proteins produced via fermentation (cellular agriculture).
Collapse
|
38
|
Development of soy milk in the form of wet foam in the presences of whey protein concentrate and polysaccharides at different whipping temperatures: Study of physical, rheological and microstructural properties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Jia J, Ji B, Tian L, Li M, Lu M, Ding L, Liu X, Duan X. Mechanism study on enhanced foaming properties of individual albumen proteins by Lactobacillus fermentation. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106218] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Influence of process variables on foaming ability of surfactants: Experimental study and dimensional analysis. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2020.10.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|