1
|
R S, Rasane P, Singh A, Singh J, Kaur S, Nanda V, Kaur J, Gunjal M, Bhadariya V, Ercisli S, Ullah R, Ali EA. Image analysis-based discoloration rate quantification and kinetic modeling for shelf-life prediction in herb-coated pear slices. Sci Rep 2024; 14:1647. [PMID: 38238415 PMCID: PMC10796316 DOI: 10.1038/s41598-024-51840-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
The present research study aimed to examine three different herb extract's effects on the discoloration rate of fresh-cut pear slices using an image analysis technique. Pear slices were sprayed and dip-coated with Ocimum basilicum, Origanum vulgare, and Camellia sinensis (0.1 g/ml) extract solution. During 15 days storage period with three days intervals, all sprayed/dip-coated pear slices were analyzed for the quality attribute (TA) and color parameters notably a*, b*, hue angle (H*), lightness (L*), and total color change (ΔE). Further, order kinetic models were used to observe the color changes and to predict the shelf-life. The results obtained showed that the applicability of image analysis helped to predict the discoloration rate, and it was better fitted to the first-order (FO) kinetic model (R2 ranging from 0.87 to 0.99). Based on the kinetic model, color features ΔE and L* was used to predict the shelf-life as they had high regression coefficient values. Thus, the findings obtained from the kinetic study demonstrated Camellia sinensis (assamica) extract spray-coated pear slices reported approximately 28.63- and 27.95-days shelf-stability without much discoloration compared with all other types of surface coating.
Collapse
Affiliation(s)
- Sathya R
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Prasad Rasane
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Aishvina Singh
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Jyoti Singh
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Vikas Nanda
- Sant Longowal Institute of Engineering and Technology, Sangrur, Punjab, 148106, India
| | - Jaspreet Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Mahendra Gunjal
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Vishesh Bhadariya
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK-74078, USA
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240, Erzurum, Turkey
- HGF Agro, ATA Teknokent, TR-25240, Erzurum, Turkey
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Essam A Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Maghraby YR, Labib RM, Sobeh M, Farag MA. Gingerols and shogaols: A multi-faceted review of their extraction, formulation, and analysis in drugs and biofluids to maximize their nutraceutical and pharmaceutical applications. Food Chem X 2023; 20:100947. [PMID: 38144766 PMCID: PMC10739842 DOI: 10.1016/j.fochx.2023.100947] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 12/26/2023] Open
Abstract
Gingerols represent the main bioactive compounds in ginger drugs mostly Zinigiber officinale (F. Zingebraceae) and account for the biological activities and the strong/pungent flavor in ginger. Ginger (Z. officinale) rhizome is one of the most valued herbal drugs for ailments' treatment in many ayurvedic medicine asides from its culinary applications as a spice. Gingerols and their dehydrated products shogaols are phenolic phytochemicals found in members of the Zingiberaceae family and account for most of their effects including anti-inflammatory and anticancer activities. This review entails most of the novel trends related to the extraction, optimization, and formulations of gingerols and shogaols to insure best recoveries and efficacies from their natural resources. Further, it presents a comprehensive overview of the different analytical approaches for the determination of gingerols/shogaols' levels in nutraceuticals to ensure highest quality and for their detection in body fluids for proof of efficacy.
Collapse
Affiliation(s)
- Yasmin R. Maghraby
- Department of Chemistry, The American University in Cairo, New Cairo, Egypt
| | - Rola M. Labib
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mansour Sobeh
- AgroBioSciences Program, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben-Guerir 43150, Morocco
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Yu W, Wang Y, Liu Y, Wu Y, Ouyang J. Browning inhibition and shelf life of packaged air‐dried chestnut kernels. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Wenjie Yu
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Yi Wang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Yongguo Liu
- Beijing Key Laboratory of Flavor Chemistry Beijing Technology and Business University (BTBU) Beijing China
| | - Yanwen Wu
- Institute of Analysis and Testing Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis) Beijing China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| |
Collapse
|
4
|
Dalsasso RR, Valencia GA, Monteiro AR. Impact of drying and extractions processes on the recovery of gingerols and shogaols, the main bioactive compounds of ginger. Food Res Int 2022; 154:111043. [PMID: 35337584 DOI: 10.1016/j.foodres.2022.111043] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 01/10/2023]
Abstract
Ginger extracts have anti-inflammatory, antioxidant, antitumor, and antibacterial activities mainly due to gingerols and shogaols. Extract composition and functionality can be affected by drying and extraction processes. Alternative methods to obtain ginger extracts based on high contents of gingerols and shogaols have been reported. However, there were no studies that present a broad overview of how these methods affect the composition and functionalities of ginger extracts. Based on literature data from 2011 to 2022, this review shows how drying, extraction, and complementary processes (i.e., enzymatic, acidic, and carbonic maceration) affect the composition and bioactivity of the ginger extract. Lower temperature processes, including freeze-drying, cold ultrasound-, or enzyme-assisted extraction, lead to extracts richer in phenolics, gingerols, and antioxidant activity. On the other hand, acidic solvents or "hot" processes including microwave-drying, pressurized liquid, and microwave-assisted extraction can favor higher shogaols concentrations, which have higher antitumor, anti-inflammatory, and antimicrobial activities than the gingerols precursors. Thus, in this review, we analyzed and discussed the relation between ginger processing and their bioactive compounds, focusing especially on gingerols and shogaols, as well as the main processes that increase the content of 6-shogaol without compromising other phenolic compounds to produce highly functional extracts for future applications in the food packaging sector.
Collapse
Affiliation(s)
- Raul Remor Dalsasso
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Germán Ayala Valencia
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - Alcilene Rodrigues Monteiro
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
5
|
Barradas‐Pretelín R, García‐Barradas O, Beristain‐Guevara CI, Mendoza‐López MR, Pascual‐Pineda LA, Flores‐Andrade E, Jiménez‐Fernández M. Effect of ginger extract on stability, physicochemical and antioxidant properties of avocado powder using maltodextrin as carrier. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Raúl Barradas‐Pretelín
- Centro de Investigación y Desarrollo en Alimentos, Universidad Veracruzana, Xalapa Veracruz México
| | | | | | | | - Luz A. Pascual‐Pineda
- Centro de Investigación y Desarrollo en Alimentos, Universidad Veracruzana, Xalapa Veracruz México
| | | | | |
Collapse
|
6
|
XU Y, LU L. The time-temperature tolerance theory behind thermal kinetic models for shelf-life prediction of common foods. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.32722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Ying XU
- Nanjing Agricultural University, China
| | - Lu LU
- Nanjing Agricultural University, China
| |
Collapse
|
7
|
Rai K, Chhanwal N, Shah NN, Singhal RS. Encapsulation of ginger oleoresin in co-crystallized sucrose: development, characterization and storage stability. Food Funct 2021; 12:7964-7974. [PMID: 34254624 DOI: 10.1039/d1fo00565k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ginger oleoresin was emulsified with gum acacia and encapsulated in a sucrose matrix by co-crystallization. The increased void space and surface area of sucrose provided a porous base for the incorporation of oleoresin. This co-crystallization led to modification from crystalline to irregular agglomerates, as evident from X-ray diffraction and differential scanning calorimetry. Hygroscopicity, water sorption isotherms and water activity demonstrated changes due to the change in crystallinity of sucrose. The active components such as [6]-, [8]- and [10]-gingerols and [6]-shogaol were quantified by HPLC. The encapsulation efficiency of [6]-gingerol was 45.59%. The storage kinetics at different relative humidity levels and temperatures indicated [6]-gingerol to be the most stable among the gingerols studied. A temperature of 25 °C and relative humidity of 33% proved to be the best storage conditions for the ginger flavoured sugar cubes. Thus, co-crystallization for the encapsulation of ginger oleoresin serves a dual purpose, i.e., protection and a mode of delivering a spicy flavour.
Collapse
Affiliation(s)
- Kapil Rai
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai-400 019, India.
| | | | | | | |
Collapse
|
8
|
Ma RH, Ni ZJ, Zhu YY, Thakur K, Zhang F, Zhang YY, Hu F, Zhang JG, Wei ZJ. A recent update on the multifaceted health benefits associated with ginger and its bioactive components. Food Funct 2021; 12:519-542. [PMID: 33367423 DOI: 10.1039/d0fo02834g] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Due to recent lifestyle shifts and health discernments among consumers, synthetic drugs are facing the challenge of controlling disease development and progression. Various medicinal plants and their constituents are recognized for their imminent role in disease management via modulation of biological activities. At present, research scholars have diverted their attention on natural bioactive entities with health-boosting perception to combat the lifestyle-related disarrays. In particular, Zingiber officinale is a medicinal herb that has been commonly used in food and pharmaceutical products. Its detailed chemical composition and high value-added active components have been extensively studied. In this review, we have summarized the pharmacological potential of this well-endowed chemo preventive agent. It was revealed that its functionalities are attributed to several inherent chemical constituents, including 6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 6-hydroshogaol, and oleoresin, which were established through many studies (in vitro, in vivo, and cell lines). In this review, we also focused on the therapeutic effects of ginger and its constituents for their effective antioxidant properties. Their consumption may reduce or delay the progression of related diseases, such as cancer, diabetes, and obesity, via modulation of genetic and metabolic activities. The updated data could elucidate the relationship of the extraction processes with the constituents and biological manifestations. We have collated the current knowledge (including the latest clinical data) about the bioactive compounds and bioactivities of ginger. Their detailed mechanisms, which can lay foundation for their food and medical applications are also discussed.
Collapse
Affiliation(s)
- Run-Hui Ma
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Design of a carrier system for gingerols enriched oleoresin tailored for food applications. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|